Thyristors Module 6.0
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Snubber Considerations for IGBT Applications
Snubber Considerations for IGBT Applications by Yi Zhang, Saed Sobhani, Rahul Chokhawala International Rectifier Applications Engineering 233 Kansas St., El Segundo, CA, 90245 USA Abstract - Snubber circuits can be used to protect fast Note that the fault current transients are more switching IGBTs from turn-on and turn-off voltage effectively protected by considerably slowing the rate transients. Snubbers are available in various of fall of fault current. Fault current turn-off protection configurations and a clear understanding of their through electronic gate control is convered in detail operation is necessary to make the appropriate elsewhere[1]. selection. This paper will discuss pros and cons of these circuits. Decoupling capacitors, RCD voltage Decoupling Capacitors clamp circuit, RCD charge-discharge snubbers are As mentioned earlier, the magnitude of transient voltage included in the discussion. depends on the trapped energy in the circuit stray inductance, also call “DC loop” inductance LS. As a Introduction preventive measure, steps should be taken to improve When a power device is abruptly turned off, trapped the circuit layout. Usage of laminated copper plates, energy in the circuit stray inductance is dissipated in minimizing the size of the “DC loop” and choosing the switching device, causing a voltage overshoot source capacitance with inherently low self inductance across the device. The magnitude of this transient are ways to lower stray inductance [2]. Decoupling voltage is proportional to the amount of stray capacitors, connected across the module’s bus inductance and the rate of fall or turn-off current. The terminals, as shown in Fig.1a, are found to be useful situation is at its worst for fast switching IGBT for low/medium current applications. -
Thyristors.Pdf
THYRISTORS Electronic Devices, 9th edition © 2012 Pearson Education. Upper Saddle River, NJ, 07458. Thomas L. Floyd All rights reserved. Thyristors Thyristors are a class of semiconductor devices characterized by 4-layers of alternating p and n material. Four-layer devices act as either open or closed switches; for this reason, they are most frequently used in control applications. Some thyristors and their symbols are (a) 4-layer diode (b) SCR (c) Diac (d) Triac (e) SCS Electronic Devices, 9th edition © 2012 Pearson Education. Upper Saddle River, NJ, 07458. Thomas L. Floyd All rights reserved. The Four-Layer Diode The 4-layer diode (or Shockley diode) is a type of thyristor that acts something like an ordinary diode but conducts in the forward direction only after a certain anode to cathode voltage called the forward-breakover voltage is reached. The basic construction of a 4-layer diode and its schematic symbol are shown The 4-layer diode has two leads, labeled the anode (A) and the Anode (A) A cathode (K). p 1 n The symbol reminds you that it acts 2 p like a diode. It does not conduct 3 when it is reverse-biased. n Cathode (K) K Electronic Devices, 9th edition © 2012 Pearson Education. Upper Saddle River, NJ, 07458. Thomas L. Floyd All rights reserved. The Four-Layer Diode The concept of 4-layer devices is usually shown as an equivalent circuit of a pnp and an npn transistor. Ideally, these devices would not conduct, but when forward biased, if there is sufficient leakage current in the upper pnp device, it can act as base current to the lower npn device causing it to conduct and bringing both transistors into saturation. -
AN1048/D RC Snubber Networks for Thyristor Power Control
AN1048/D RC Snubber Networks For Thyristor Power Control and Littelfuse.com Transient Suppression By George Templeton APPLICATION NOTE Thyristor Applications Engineer INTRODUCTION Edited and Updated RC networks are used to control voltage transients that ǒdVǓ DEVICE PHYSICS could falsely turn-on a thyristor. These networks are called dt s snubbers. Static dV turn-on is a consequence of the Miller effect The simple snubber consists of a series resistor and dt capacitor placed around the thyristor. These components and regeneration (Figure 1). A change in voltage across the along with the load inductance form a series CRL circuit. junction capacitance induces a current through it. This cur- Snubber theory follows from the solution of the circuit’s rent is proportional to the rate of voltage change ǒdVǓ . It differential equation. dt Many RC combinations are capable of providing accept- triggers the device on when it becomes large enough to able performance. However, improperly used snubbers can raise the sum of the NPN and PNP transistor alphas to unity. cause unreliable circuit operation and damage to the semi- conductor device. A Both turn-on and turn-off protection may be necessary A for reliability. Sometimes the thyristor must function with a I IA BP PE range of load values. The type of thyristors used, circuit V PNP configuration, and load characteristics are influential. I CJ I I 1 P J CP NB CJ Snubber design involves compromises. They include N C C I J CN I2 dv I G P cost, voltage rate, peak voltage, and turn-on stress. Practi- J dt B cal solutions depend on device and circuit physics. -
Minimizing Switching Ringing at TPS53355 and TPS53353 Family Devices
Application Report SLUA831A–July 2017–Revised November 2018 Minimizing Switching Ringing at TPS53355 and TPS53353 Family Devices Benyam Gebru ABSTRACT The system reliability of a high efficiency DC/DC converter with a fast slew rate is improved when switch node ringing is reduced. This document describes switching ringing reduction methods and lab bench test results with the 30-A TPS53355, and also applies to the pin compatible 20-A TPS53353. Both devices are well-suite for rack server, single board computer, and hardware accelerator applications that benefit from the fast transient response time of D-CAPTM control, or when multi-layer ceramic capacitors are undesirable for the output filter. Contents 1 Introduction ................................................................................................................... 2 2 Proper Measurement Method of Switch Ringing ........................................................................ 2 3 Minimize the Switch Ringing by Adding RC Snubber and Bootstrap Circuit......................................... 5 4 Practical Design.............................................................................................................. 8 5 Adding Bootstrap Resistor ................................................................................................ 11 6 Effects of Snubber on the Efficiency Performance .................................................................... 12 7 Summary ................................................................................................................... -
ON Semiconductor Is Depicted in Figure 29
ON Semiconductor Is Now To learn more about onsemi™, please visit our website at www.onsemi.com onsemi and and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. -
Single and Dual RC Snubbers
RC Snubbers Single and dual RC snubbers Description: A range of RC snubbers suitable for a broad range of circuit protection applications. The RC snubbers are mounted in a potted box with 6.3mm push on tabs for easy connection to the circuit. The devices have 80mm fixing centers so can be easily mounted alongside industry standard thyristor and diode modules. The range of RC snubbers are suitable for 50Hz/60Hz operation with resistive loads. Images shown are computer generated, for accurate package information please see product drawing Product Highlights Applications 80mm fixing centres Thyristor protection in AC and DC circuits Compact package Diode Protection 440Vrms rating (690Vrms available upon request) Output filters Component Data: Product Reference Maximum varistor energy (J) l voltage 10% 10% - - 10/1000us 2ms Configuration Resistance Value (Ohms) +/ Max. Power Dissipation (W) Capacitance Value (uf) +/ Maximum working voltage (Vrms) Dimension figure. Circuit configuration Varistor nomina (Vrms) ECLRC440 Single RC 56 10 0.22 440 N/A 1 A ECLRC440-2 Dual RC 56 10 0.22 440 N/A 2 B Humidity max. 50% RH @ 35 C / 90% RH @ 20 C Pollution degree: III Isolation: 2500Vrms / 1min Operation temperature: -25C to 80C Mounting position: Any Approx weight: 70grms (single) / 76grms (Dual) (1) The voltages shown are for general phase control applications in W1C circuits. (2) Typical voltage for general purpose rectifier circuits ATTENTION: for continuous operation near to 90 deg phase angle a larger power loss will occur, please consult the factory in these circumstances to see if the device is suitable for the application [email protected] Data can be changed without notice. -
Lossless Active Snubber for Half-Bridge Output Rectifiers
Europaisches Patentamt 19 European Patent Office Office europeen des brevets © Publication number: 0 614 267 A1 12 EUROPEAN PATENT APPLICATION (2j) Application number : 94301445.6 6i) Int. CI.5 : H02M 7/06 (22) Date of filing : 01.03.94 (§) Priority : 05.03.93 US 27031 @ Inventor : Tsai, Fu Sheng 105 Bartlett Street @ Date of publication of application : Northboro, Massachusetts 01532 (US) 07.09.94 Bulletin 94/36 Inventor : Dhaval, Dalai B. 70-9 Commons Drive Shrewsbury, Massachusetts 01545 (US) @ Designated Contracting States : DE FR GB IT (74) Representative : Goodman, Christopher et al Eric Potter & Clarkson © Applicant : DIGITAL EQUIPMENT St. Mary's Court CORPORATION St. Mary's Gate 146 Main Street Nottingham NG1 1LE (GB) Maynard, Massachusetts 01745 (US) @) Lossless active snubber for half-bridge output rectifiers. (57) A bridge-type primary switching circuit (12) is represented by a pulsed voltage source (VSW). The primary switched waveform is transformed to secondary circuit (14) using a transformer (T1) with the required turns ratio N and a cen- ter-tapped secondary winding (16). Half-bridge rectifier (18) formed by diodes (DR1) and (DR2) rectifies the secondary waveform and feeds the waveform through a low-pass filter (LF) and (CF) to obtain the desired DC output voltage. The snubber circuit (20) is represented by switch-diode-capacitor combinations (SA- DS1-CS1) and (SB-DS2-CS2) across each rec- tifier (DR1) and (DR2). Capacitances (CS1) and (CS2) are selected large enough such that their voltages remain essentially constant during a switching cycle. The controlled switches (SA) and (SB) are turned ON with a specific delay after the primary voltage reaches a magnitude close to the input voltage in order to allow the rectifier diodes (DR1) and (DR2) to be commu- tated. -
Electronic Devices & Circuits
COURSE MATERIAL ELECTRONIC DEVICES & CIRCUITS (15A04301) LECTURE NOTES B.TECH (II - YEAR & I - SEM) Prepared by: Ms. J.V. Pesha, Assistant Professor Department of Electronics and Communication Engineering VEMU INSTITUTE OF TECHNOLOGY (Approved By AICTE, New Delhi and Affiliated to JNTUA, Ananthapuramu) Accredited By NAAC & ISO: 9001-2015 Certified Institution Near Pakala, P. Kothakota, Chittoor- Tirupathi Highway Chittoor, Andhra Pradesh - 517 112 Web Site: www.vemu.org COURSE MATERIAL JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR II B.Tech I-Sem (E.C.E) T Tu C 3 1 3 (15A04301) ELECTRONIC DEVICES AND CIRCUITS Course Outcome: C212_1: Explain the characteristics and applications of the diode and special purpose electronic Devices. C212_2: Analyze various rectifiers and filters for the construction of a regulated power supply. C212_3: Demonstrate the construction, Working and Characteristics of BJT, JFET, and MOSFET in various modes and Compensation of a BJT. C212_4: Design and Analyze DC bias Circuitry of BJT and FET. C212_5: Analysis of Small Signal Model for BJT and FET amplifier. UNIT- I: Junction Diode Characteristics : Open circuited P-N junction, Biased P-N Junction, P-N Junction diode, Current Components in PN junction Diode, Diode Equation, V-I Characteristics, Temperature dependence on V-I characteristics, Diode resistance, Diode Capacitance, Energy band diagram of P-N junction Diode. Special Semiconductor Diodes: Zener Diode, Breakdown Mechanisms, Zener Diode applications, LED, LCD, Photo Diode, Varactor Diode, Tunnel Diode, -
Snubber Circuits
Lecture Notes Snubber Circuits William P. Robbins Dept. of Electrical and Computer Engineering University of Minnesota Outline A. Overview of Snubber Circuits B. Diode Snubbers C. Turn-off Snubbers D. Overvoltage Snubbers E. Turn-on Snubbers F. Thyristor Snubbers Snubbers -1 1 W.P. Robbins Overview of Snubber Circuits for Hard-Switched Converters Function: Protect semiconductor devices by: Types of Snubber Circuits • Limiting device voltages during turn-off transients 1. Unpolarized series R-C snubbers • Used to protect diodes and thyristors • Limiting device currents during turn-on transients 2. Polarized R-C snubbers • Limiting the rate-of-rise (di/dt) of currents through • Used as turn-off snubbers to shape the turn-on the semiconductor device at device turn-on switching trajectory of controlled switches. • Used as overvoltage snubbers to clamp voltages applied to controlled switches to safe values. • Limiting the rate-of-rise (dv/dt) of voltages across • Limit dv/dt during device turn-off the semiconductor device at device turn-off 3. Polarized L-R snubbers • Shaping the switching trajectory of the device as it • Used as turn-on snubbers to shape the turn-off turns on/off switching trajectory of controlled switches. • Limit di/dt during device turn-on Snubbers - 2 W.P. Robbins Need for Diode Snubber Circuit di Df Vd = d t L L σ + σ R Io s I t o i Df (t) D I Vd f Cs rr - Sw v (t) t Df Vd • Lσ = stray inductance • S w closes at t = 0 • Diode voltage di L σ without snubber Lσ • Rs - Cs = snubber circuit d t diLσ • Diode breakdown if V + L > BV d σ dt BD Snubbers - 3 W.P. -
Sized 200 Uf Timing Capacitor. the Sche- Delay Time
fit your needs. It was 100,000 -ohms in the author's model giving him a minimum time HOUR MASTER delay of 30 seconds. Capacitor Cl may also be changed in value to modify the sized 200 uF timing capacitor. The sche- delay time. With a 200 uF capacitor and matic shows how it's done. Diac D1 and a 10 megohm pot, the maximum delay is Triac Q3 form a standard AC phase con- well over an hour and over a half -hour trol which can be turned off through the with a 5 megohm pot. contacts of relay K1. For use as a speed Getting Busy. The author's model was control, R4, a 250,000 -ohm linear pot, is housed in a 61/4 -in. x 33ús -in. x 17A3 -in. added as shown to points A and B. With plastic case with an aluminum panel used mode switch S3 in the out position. you as the top plate of the unit. You may have a regular speed control. When battery want to start by drilling holes in the cover switch S2 is closed, the timing circuit is for switches, pot(s), and socket. Be sure t armed. By pressing time -start switch S1, to add an extra hole for potentiometer R4 timing capacitor Cl is charged by the bat- if you want the speed control feature. tery; when Si is released, Cl slowly dis- Go to work on the circuit board; you charges through time -set pot R1 and can use about a 2 -in. x 41/2 -in. -
Questions for Electronics
www.YoYoBrain.com - Accelerators for Memory and Learning Questions for electronics Category: Default - (192 questions) What electronic device is a breakover diode diac made to trigger triacs in phase-controlled circuits 3 basic options for converting single phase to static, rotary, and electronic 3 phase power Define: static phase converter simplest/lowest cost option for converting single to 3 phase electricity Nothing more than a capacitor and a potential relay comprising a starter circuit Define: rotary phase converter consists of a 3-phase motor and some way of starting it, be it a rope and pulley or a well-designed static converter automatic start circuit converts single phase to 3 phase electricity Define: variable frequency drive a box of solid-state electronics that convert 3-phase 60 Hz AC to variable frequency 3-phase. Allows motors to be driven at different speeds Define: polarized plug a plug that must be plugged in correctly to reference line on ac plug or it will harm the equipment Define: Shockley diode special purpose diode with more 2 PN junctions (four-layer diode) uses a trigger voltage to switch the diode on What is the purpose of SSIFET transistors used in microwave frequency circuits Define: latching relay a relay where one control pulse closes the switch contacts and it remains closed until another signal tells it to release Define: component placement diagram used to show where components are layed out on circuit board Define: cold solder joints a rough and grainy solder joint; source of many problems on circuits -
Power-Devices.Pdf
Power Devices Outline 1.1 Need for semiconductor power devices, 1.2 Power MOSFET (Qualitative) 1.3 Introduction to family of thyristors. 1.4 Silicon Controlled Rectifier (SCR)- structure, I-Vcharacteristics, Turn-On and Turn-Off characteristics, ratings 1.5 Gate-triggering circuits. 1.6 Diac and Triac- Basic structure, working and V-I characteristics. 1.7 Application of Diac as a triggering device for Triac. 1.1 Need for semiconductor power devices 1) The concept and features Power electronic devices: are the electronic devices that can be directly used in the power processing circuits to convert or control electric power. Vacuum devices: Mercury arc rectifier thyratron, etc. seldom In broad sense in use today Power electronic devices Semiconductor devices: major power electronic devices Very often: Power electronic devices= Power semiconductor devices Major material used in power semiconductor devices——Silicon Features of power electronic devices a) The electric power that power electronic device deals with is usually much larger than that the information electronic device does. b) Usually working in switching states to reduce power losses On-state Voltage across the device is 0 p=vi=0 V=0 Off-state Current through the device is 0 p=vi=0 i=0 c)Need to be controlled by information electronic circuits. d)Very often, drive circuits are necessary to interface between information circuits and power circuits. e)Dissipated power loss usually larger than information electronic devices —special packaging and heat sink are necessary. 2) Configuration of systems using power electronic devices Power electronic system: Electric isolation: optical, magnetic Control circuit (in a broad sense) detection circuit Power circuit (power Control stage, main circuit) circuit drive circuit Protection circuit is alsocircuit very often used in power electronic system especially for the expensive power semiconductors.