Gamma-Ray Logging Workshop

Total Page:16

File Type:pdf, Size:1020Kb

Gamma-Ray Logging Workshop Borehole logging methods for exploration and evaluation of uranium deposits . Philip H. Odd, Robert F. Bmullad and Carl P. Lathan rej~rinkttlfnlm Mining and Groundwater Geophysiall967 Borehole logging methods for exploration and evaluation of uranium deposits Philip H. Dodd, Robert F. Droullard and Carl P. Lathan US.Atomic Energy Commhwn GmrPd Jtinct&n, Colorado Abstract, Mole 1- is thc geophysical methad mast exten&@ RkmB. La dipgraphie tks sondagas eat fa rnithode &pftytgquw la pLfS wrt in the Udtrrd States for exploratio~md edwtim of wanhi dpandue aux Ems-Unis pour l'expbfrrtim et 1'6duatlm dei gimnents &pod&. dammow lop, Cornrndj suppkrnentd with a singbz-pobt d'wmiurn. X&s diagmnmas de rayons gamma, mrsmmeat compl&tegar msfstailee log, mtlysupply about 80 percent of the bask data for om wt mnum &e r&gfivi& P point unique, fwmissmtt 3Jmkment regerve cWtioRad mu& of the w~kr6.p~&ngk inf~nnatio~ environ 80 p, 100 des donnh de hnse pour k cdcul des &saw de Tmck-mounted 'rotmy eqnipmcnt is EMhmody emphy&& rnbai rst une born parti des rewignernents g6ologiquss des mucites holes usually hwre a nominai betuof 4 112 inches range from 22 t~ sou+&-ntes. 2500 ktin depth, are seldom d,and may be f&d with ais at water. Ott utih BR gb6M we foreuse mr un mion;lea emus ont aCaBbraBw and quantkitive analysis of ths grass natural mma-ray lw un dinmh de 4 112 po., urn prafgndkur Be 25 i 25QO pi,, sont tarant to obtain equhplmrt @a& aad thichess of om hesections m bdm tubgs et sont soit vlC &it rempk dba. &ha prtrpathallty between the waun&r the log curve and the praduct La oallbratbn at i'malyse qurtrrtihtive d'en@strement bnat mmrd de of the moan Wujvflen t mde and thickness dl? a mdiwtive layer. wens gmffla effect& paw &tamher, la qadi& iquivnlente st R-k density md idaced paramekrs arc dlated from gamma- l'&&smr &.s.inkcsecti~nsde mhefai.sont fondis sw. la pxqaortionaaiIt6 gsmma &- A diremnt technique permits canpllation of natural enhe la stlhee WSe. sws.la mark du diagromme et Itr pra&it I fadfoactivity to obtain density data from ore zone. Calibration and l'&paimuret dc la qu9th kquivatentes may ennes d'une ccwche radioactive. mmctian Factors for nonstandard E.onditians an demmrtnwl for e& h &ades rod= et les pmitrescmnmei sont caleul6s & pa& pmb in fuU-scale mbdd ha%% GAB- arid RHOLOG, Computer ilcs emgistremeats $ammqanm Use technique & tUf&ncu met progrnms wdtten in FORTRAN JI for the 1BM TO90 computar, are wed to d'mulsr In radbactiud naftrrelle paw obhir ks dm& dnnstmiefques qumtltativel~ analyze pmmw ad mrnagamma I* to obtain des zunes min&&kr#& Les fackurs de &bra& et da ebtredm pour des cquivdent &ad%, tttlcew and bulk den~ty. eonditi~afmormdes 5wt diterminds pour chyr WnUage- daw les tmus mreat hvestiptfwls indie& that mtud gamma-ray spec- d'sPeslEP 3 &dIe rk#U?re- Lzs pr-es CAMLOG et MOWQ oEws significant additional techniqum for expt0ma"on and evahution. en FORTRAN II pour k caluhldce fsh4 7090 servent P&w So~iodidedetectors mQsinde w rnulikharmet puk beigbt m1y;tcis quantitative das di-es de rayray pmaet dea diagrammes gamma- ukd in canjunction 4th the hsic sign J conditioning and &&I pulse gamma afm d'obfenb h qualid, l'ipalsreur eZ la den&& brute iquivdata& counting systcm, supplemented with automatic gain or spe#um stw La rechetcb en mrs indiquent que la spectrosopie uxrayons bikers, to make in&m or diffeientd meastuemenb of the -my gamma nsturels offre de nouveUes Wmiqws supplhsntnires gpilr aneigizs. Germ Ehawcte~ikticphoto paks of hUium208, bismutb214, llexploration et I'&dwdon d~ gknmk Dm d6t~~tr.wd7Mm & and potassium4 m b adeqwu4 diEemtbd h spite bf extensive dim et Qs appareiIs b'analyse de tendun d'imputsion i ~~nauxsimples Wtedng in the formation md bomholrt. oti multiples smt u4iliks ~~njomtmuntavw vn sys6m de con-nm- ment des signaux & hse et de dcul num6nlque par Lnpuldon mp1b par une 8mpW1anaukatique w des. slatriltsafews I qatn arm de pouvoit effemer des mestires int&@es ou didirenWlss des beq@ &s mans mma. ceriaines paintes phowgraphiqw mmt&stiqtw du Ldiurn-208, #u bismuth-224 et du potmiw-40 peumt etie Men difsirenciles en dipit d'urte diffhsirm pr~ngnckdans la fonnah et dans le mdage. Natural gamma-my logging ta debut uranium ore ws fmt Borehale measuterhents, though fraught with problems and investigated in 1945. Subsequent improvements in methods and pitfdh, offer more than campensating technical md economic equipment by government and industry have established geo- ndvantages. These indude reduced coring, sampling and analytical physical logging as a major part of most exploration and costs; continuous dara from which a rnulti~udeof sample intwvds evaluation programs. Some 80 percent or more of the basic may be dected and statistically investigated; rdatively larger engineering and gedcrgid information used by the uranium sample volume; cerhh data may be obtained Prom previwsIy mining industry and the Atamic Energy Commission to calculate drilled and casd holes; samples are relatively undisturbed; and are reserves, prsdic t ex tensions of deposits and for mine planning analog records, free of subjective observations, are immediately is derived from logs of noncoted holes. With the resurgenee of available for qualitative evaluation and correlation. exploration, particularly as d-r, more widely spaced and Contemporaty Io@g props for uranium evaluation and costly holes are drilled, the capabilities to extract mminforma- exptoratioa commmfy include anatog records of naturd gross tion from the hole wll significantly assist in the economic search gamma-ray, single-paint resistance, spontaneous potential (SP) for new dktricts, new favorable environments, and the rams and directional measurements. Thm tecords ,are produced by and resources required by the growing demands of the nuclear tmckmounted units operated by mining or sewice companies fuel industry. Some major companies and individuals elect to log with semi- portable equipment, without powered winches and often without mplontioa holes per day or as many as SO shallow holes in the, benefd of chart mcorders. It is pdbiu to obtain adequate results case of open-pit ding sites. Portable equipment, if properly for many applications with portabh-instruments if these are wdi &signed and operated, can meet many of the I~ggingrequihs- Midand &&fully opemted, However, much of fie p0rhb18 merits, and hdeed may be necessary for certain rugged terrain or hstmmmCation is poor and operated by untrained persomet for underground long-hole low. wkich dtsin less than adequate data for qumtibtivu analysis, The holes may be air-Eilled, water-med, ar partially water- Though not in general USB at this time, suitable caliper tools fdIed; md the inledace is seldurn encounkredat the same depth are avabbie adthe caliper 1% b paobbly the bet method for m w~~sivemeasurements in the same hole. Heavy muds are obtaining the hole-siza corrections required for quantitative log seldom used, mud cake is generally thb, mvaion by ftesh ddlling mdy&i Although the feasibhi of gamma-gamma lowfor water mybe pronounced, anand the fomtiodwaters are usually radioactive minerals, includiing om zones, has been dsmoastrated fresb to slightly saiine. Hence fluid densiQ may be askedto be by Do& and DmuZtard (13651, den&y~orosity measurements 1.0. T~Eintensity of mturd gamma dinti00 ~angesfrom the haw not hen adopted by industry. Resigtivity and induced equivalent of a few ppm uranium from the intrindc utmium, pohrbtion [IF) logs are being tested in rhe field but are nut yet thorium and patawium in the rocks, throu* several hundred routine or dwelopd to full cspabitiky. equivalent ppm in momalous and minetalized rock, to extreme -tic sucegtibility , neutron-neubn, induction and high-grade zones oonWng several pacent Wum and its perhaps wen neutron actiwtion or photon fluorescence log&% ~ammaiemitthg decay products. This great range in natural apperrr to warrant research 'aad development for the radioactive $maactivity causes revere problem in irrrstrumentation d&gn miaeral industry. and lagging prmedures. This pqer presents a review of a current multipurpose loggins A range in magnitude of gmms activity of 10s cannot be sy%€m, the principles and m&& for calibration, and quan- adequately spanned by a &I& detector. To resolve slight titative dysis of natural grm gamma-ray md gmmqamma miatinmi of tirhology or to quantitatively aadyze dight aensiZy logs anomalies equivalent to a few ppm uranium requirts a wisitive Some pralimhury observations and ~opentsalso are in- detector, yielding at least SO to 1Oll counts per second [cps) to tr&hced conaexnfng current mlts from a small project recently achieve adequate statistical precision at ~eawnablelagging speck initiated by the Grand Junctim 0%- of the U,S. Atomio Energy This same detmor would generate several hundredthuusnd cps CoRunissbn to inveswte techniques aad applications of in-hole In a high-grab ore zone of appreciable thickness, which signG mtud gamm~ayspectmscupy to tsplofation and evhtion of cantly exceeds the capability of current logging instrumentation. mmhm resources. Conversely, a detector with adequate sensitivity to maamre ore-grade materials without averloEtding the pulse-trand&on even General ~onditionsand problems which and counting insmktionat perhaps 50,000 or 106,000 cps would yield too low a count rate from normal IWolo&c units iirfluence fogging ' tr, achieve an adequate contrast and statistical precision at The majorily af producing udkdeposits in ttre United Rate% operatidlogging speeds. , an8 hence the current exploration targ~ts,have relatively d ts dimnttnuous substratified confiptions and occur in sdhent- A shilar grbb1gn exists pnm~madensity to-. I€ an optimum combination of detector mnaifMty, source strength ary rock which are ofkn poorly indurated. Ore bodies are found spacing is selected adequate statistical accuracy in am, the unit3 and far below md sttide water-t9ble.
Recommended publications
  • Radioactive Seed Localization of Breast Lesions: an Adequate Localization Method Without Seed Migration
    ORIGINAL ARTICLE Radioactive Seed Localization of Breast Lesions: An Adequate Localization Method without Seed Migration Tanja Alderliesten, PhD,* Claudette E. Loo, MD,* Kenneth E. Pengel, MSc,* Emiel J. Th. Rutgers, MD, PhD, Kenneth G. A. Gilhuijs, PhD,* and Marie-Jeanne T. F. D. Vrancken Peeters, MD, PhD *Department of Radiology; and Department of Surgery, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, The Netherlands n Abstract: Preoperative localization is important to optimize the surgical treatment of breast lesions, especially in nonpal- pable lesions. Radioactive seed localization (RSL) using iodine-125 is a relatively new approach. To provide accurate guid- ance to surgery, it is important that the seeds do not migrate after placement. The aim of this study was to assess short-term and long-term seed migration after RSL of breast lesions. In 45 patients, 48 RSL procedures were performed under ultrasound or stereotactic guidance. In the first 12 patients, the lesion was localized with two markers: an iodine-125 seed and a refer- ence marker. In 33 patients, 36 RSL procedures were performed using a single iodine-125 seed. All patients received control mammograms after seed placement and prior to surgery. In the patients with two markers, migration was defined as the differ- ence in the largest distance between the markers observed in the mammograms. For single-marked lesions, migration was assessed by comparing distances between anatomical landmarks in the mammograms. RSL was successful in all patients. Seeds were in-situ for 59.5 days on average (3–136 days). The detection rate during surgery was 100%.
    [Show full text]
  • Nuclear Technology Reivew for 2002
    GC GC(46)/INF/5 16 July 2002 International Atomic Energy Agency GENERAL Distr. GENERAL CONFERENCE Original: ENGLISH Forty-sixth regular session Item 15 of the provisional agenda (GC(46)/1) NUCLEAR TECHNOLOGY REVIEW 2002 1. In response to requests by Member States, the Secretariat produces a comprehensive Nuclear Technology Review every two years, with a shorter supplement in the intervening years. The present report is the second comprehensive compilation giving a global perspective on nuclear technologies for both power and non-power applications. 2. The NTR-2002 contains an Executive Summary and then reviews the following areas: Fundamentals of Nuclear Development; Nuclear Power, Fuel Cycle and Waste Management; Applications for Food, Water and Health; and Applications for Environment and Sustainable Industrial Processes. 3. The document has been modified to take account, to the extent possible, of specific comments by the Board and other comments received from Member States. For reasons of economy, this document has been printed in a limited number. Delegates are kindly requested to bring their copies of documents to meetings. GC(46)/INF/5 Page 2 NUCLEAR TECHNOLOGY REVIEW 2002 Table of Contents EXECUTIVE SUMMARY 4 PART I. FUNDAMENTALS OF NUCLEAR DEVELOPMENT 7 I-1. NUCLEAR, ATOMIC AND MOLECULAR DATA 7 I-2. RESEARCH REACTORS, ACCELERATORS AND RADIOISOTOPES 9 I-2.1. Research Reactors 9 I-2.2. Accelerators 11 I-2.3. Radioisotopes 13 I-3. NUCLEAR INSTRUMENTATION 14 I-4. NUCLEAR FUSION 15 PART II. NUCLEAR POWER, FUEL CYCLE AND WASTE MANAGEMENT 17 II-1. THE GLOBAL NUCLEAR POWER PICTURE 17 II-1.1.
    [Show full text]
  • Intraoperative Gamma Probe Detection of Bone Invasive
    Intraoperative and Postoperative Gamma Detection of Somatostatin Receptors in Bone Invasive “En Plaque” Meningiomas Emmanuel GAY, MD; Jean Philippe VUILLEZ, MD, PhD; Olivier PALOMBI, MD; Pierre Yves BRARD, MD; Pierre BESSOU, MD and Jean Guy PASSAGIA, MD. Department of Neurosurgery (EG, OP, JGP), Department of Nuclear Medecine (JPhV, PYB) and Departement of Neuroradiology (PB), University Hospital Grenoble, France. This is a non-final version of an article published in final form in Neurosurgery: July 2005 - Volume 57 - Issue 1 - pp 107-113 E. GAY Corresponding author: Emmanuel GAY, MD Department of Neurosurgery (Pr A.L. Benabid) CHU Grenoble BP217 38043 Grenoble Cedex 09 FRANCE Tel: 33 476 76 54 71 Fax: 33 476 76 58 13 Email: [email protected] 2 E. GAY Intraoperative and Postoperative Gamma Detection… Abstract: Objective: Scintigraphy with radiolabeled somatostatin analogue ([111In-DTPA] octreotide), detects the somatostatin receptors that are found in vitro in all meningiomas. Previous studies have proved the benefit of radioimmunoguided surgery with a handheld gamma probe, for the assessment and the removal of neuroendocrine tumors. We conducted a study to determine whether intraoperative radiodetection of somatostastin receptors is feasible and could increase the probability of complete meningioma resection, especially for bone invasive “en plaque” meningiomas that are difficult to control surgically. Methods: Eighteen patients with “en plaque” sphenoid wing and skull convexity meningiomas were studied for pre and post-operative somatostatin receptor scintigraphy. In 10 of them, intraoperative radiodetection using a handheld gamma probe was performed 24 hours after the intravenous administration of [111In-DTPA] octreotide. This procedure was combined with a computer-aided navigation system.
    [Show full text]
  • (EANM) Acceptance Testing for Nuclear Medicine Instrumentation
    Eur J Nucl Med Mol Imaging (2010) 37:672–681 DOI 10.1007/s00259-009-1348-x GUIDELINES Acceptance testing for nuclear medicine instrumentation Ellinor Busemann Sokole & Anna Płachcínska & Alan Britten & on behalf of the EANM Physics Committee Published online: 5 February 2010 # EANM 2010 Keywords Quality control . Quality assurance . requirement that acceptance testing be performed should Acceptance testing . Nuclear medicine instrumentation . be included in the purchase agreement of an instrument. Gamma camera . SPECT. PET. CT. Radionuclide calibrator. This agreement should specify responsibilities regarding Thyropid uptake probe . Nonimaging intraoperative probe . who does acceptance testing, the procedure to be followed Gamma counting system . Radiation monitors . when unsatisfactory results are obtained, and who supplies Preclinical PET the required phantoms and software. A specific time slot must be allocated for performing acceptance tests. Introduction Acceptance and reference tests These recommendations cover acceptance and reference tests that should be performed for acceptance testing of Acceptance tests are performed to verify that the instrument instrumentation used within a nuclear medicine department. performs according to its specifications. Each instrument is These tests must be performed after installation and before supplied with a set of basic specifications. These have been the instrument is put into clinical use, and before final produced by the manufacturer according to standard test payment for the device. These recommendations
    [Show full text]
  • Paper RADIOACTIVE SEED LOCALIZATION with I for NONPALPABLE LESIONS PRIOR to BREAST LUMPECTOMY AND/OR EXCISIONAL BIOPSY
    Paper RADIOACTIVE SEED LOCALIZATION WITH 125I FOR NONPALPABLE LESIONS PRIOR TO BREAST LUMPECTOMY AND/OR EXCISIONAL BIOPSY: METHODOLOGY, SAFETY, AND EXPERIENCE OF INITIAL YEAR Lawrence T. Dauer,*† Cynthia Thornton,† Daniel Miodownik,* Daniel Boylan,* Brian Holahan,* Valencia King,‡ Edi Brogi,§ Monica Morrow,** Elizabeth A. Morris,† and Jean St. Germain* INTRODUCTION AbstractVThe use of radioactive seed localization (RSL) as an alternative to wire localizations (WL) for nonpalpable breast IMPROVEMENTS IN imaging techniques and increasing rates lesions is rapidly gaining acceptance because of its advantages of screening mammograms have resulted in the increased for both the patient and the surgical staff. This paper exam- ines the initial experience with over 1,200 patients seen at a detection of nonpalpable breast lesions that require locali- comprehensive cancer center. Radiation safety procedures for zation prior to surgery to allow excision for complete his- radiology, surgery, and pathology were implemented, and ra- tological evaluation or as part of breast-conserving therapy dioactive material inventory control was maintained using an (Harris et al. 1981; Homer 1983; Cady et al. 1996; Montrey intranet-based program. Surgical probes allowed for discrimina- tion between 125I seed photon energies from 99mTc administered for et al. 1996; Bartelink et al. 2001; Skinner et al. 2001; Hooley sentinel node testing. A total of 1,127 patients (median age et al. 2012; Nederend et al. 2012). Breast image-guided of 57.2 y) underwent RSL procedures with 1,223 seeds im- localization is performed on nonpalpable lesions after Y planted. Implanted seed depth ranged from 10.3 107.8 mm. marker clips are left in the breast following image-guided The median length of time from RSL implant to surgical excision was 2 d.
    [Show full text]
  • Radioactive Materials Transportation and Incident Response
    RADIOACTIVE MATERIALS TRANSPORTATION AND INCIDENT RESPONSE U.S. Department of Energy Transportation Emergency Preparedness Program Q&A About Incident Response 04/12 QA Phone Number Radio Frequency Law Enforcement ____________________________________ RADIOACTIVE Fire ___________________________________________ MATERIALS Medical ____________________________________________ TRANSPORTATION AND INCIDENT RESPONSE State Radiological Assistance ___________________________ Local Government Official ______________________________ Local Emergency Management Agency ___________________ State Emergency Management Agency ___________________ HAZMAT Team ______________________________________ Water Pollution Control ________________________________ CHEMTEL (Toll-free US & Canada) 1-800-255-3924 _________ CHEMTREC (Toll-free US & Canada) 1-800-424-9300 _______ CHEMTREC (Outside US) 1-703-527-3887 ________________ National Response Center (Toll-free US & Canada) 1-800-424-8802 ____________ In Washington, D.C. 1-202-267-2675 _____________________ Military Shipments (DoD) Call Collect 1-703-697-0218 _______ Other: ______________________________________________ Other: ______________________________________________ QQ&A About Incident Response NOTES TABLE OF CONTENTS What is radiation?.................................................................................... 2 ______________________________________________ What is radiation exposure? .................................................................... 3 ______________________________________________
    [Show full text]
  • Spectral Gamma Probe Analyses the Energy Spectrum of Gamma Radiation from Naturally Occurring Or Man-Made Isotopes in the Formation Surrounding a Borehole
    PROBES SPECTRAL GAMMA The Spectral Gamma probe analyses the energy spectrum of gamma radiation from naturally occurring or man-made isotopes in the formation surrounding a borehole. The probe corrects for temperature drift in real-time by matching the acquired spectrum to the base spectra of the main Probe Head natural emitters (potassium, uranium and thorium) determined during the tool master calibration. Available outputs are full-spectrum (static mode only) and continuous log measurements of elemental concentrations. Borehole corrections are available for casing thickness, borehole diameter, formation density and mud/fluid radioactivity for both centralized and side-walled tool positions. Principle of Measurement: Gamma photons produced by the decay of naturally occurring potassium, uranium, thorium and/or unstable man-made isotopes in the formation are detected by a large-volume gamma scintillation counter and converted to electrical pulses. The amplitude of the pulses depends on the photon energy. An analyzer within the probe separates the pulses into channels according to their amplitudes. Count-rates from groups of channels are converted in real-time by the surface software to concentrations of the originating elements using predetermined algorithms. SPECIFICATION: Features Large-volume scintillation detector for high sensitivity Temperature compensation ensures freedom from drift Measurements Uranium (ppm) Thorium (ppm) Potassium (%) Gross Gamma Full spectrum display 100keV – 3MeV Applications Minerals / Water / Engineering 1.72m Shale/Clay typing (67.7”) Correlation in complex situations Mineral detection Radioactive waste pollution measurement Lithology determination Operating Conditions Borehole type: open/cased, water/air filled Recommended Logging Speed: 1m/min Specifications Diameter: 48mm or 60mm Length: 1.72m (for both types) Weight: 7kg (60mm version) Temperature: 0-70°C Max.
    [Show full text]
  • Wprobe: Exploring New Frontiers in Radioguided Cancer Surgery
    Wireless gamma probe for radioguided Sentinel lymph Node (SLN) Localization WProbe: Exploring new frontiers in radioguided cancer surgery Precise . Comfortable . Easy Since 2007 ONCOVISION has been fully committed to help you improve your high standards in Minimally Invasive Radio- guided Surgery (MIRS) with an innovative radioguided technological platform that is revolutionizing the surgical management of malignancies such us breast cancer, melanoma, gynecological, urological and colorectal cancers, and parathyroid diseases. Sentinella and WProbe provide you the perfect combination, to be used together or independently, to guide you through even the most complex Sentinel Lymph Node (SLN) localizations in the management of your cancer patients9. What is radioguided surgery and how does it work? The concept of the Sentinel Lymph Node However, the latest breakthrough in radiosurgery (SLN) as the first node to have metastatic is Sentinella, an intraoperative portable involvement if there has been lymphatic spread gammacamera (intraoperative imaging) that brings was proposed by Dr. R. Cabañas in 1977. real time imaging and greater sensitivity to the The first accepted technique to identify the SLN was OR improving the SNL technique and allowing using blue dye (intraoperative visualization); soon, the surgeon to visualize and reach out even the however, the use of radionuclides and intraoperative most hidden and deep hot nodes in cancer gamma probes (intraoperative counting) came procedures. The use of Sentinella is quickly on board as a complementary yet more reliable expanding to additional sophisticated and complex technique3. indications6. The intraoperative gamma probe technology with WProbe, is based on the injection in the tumor site of a radiopharmaceutical agent that emits gamma rays while it drains towards the lymphatic system.
    [Show full text]
  • Real-Time Measurement of Radionuclides in Soil
    1 Welcome – Thanks for joining us. ITRC’s Internet-based Training Program Real-Time Measurement of Radionuclides in Soil Real-Time Measurement of Radionuclides in Soil: Technology and Case Studies This training is co-sponsored by the US EPA Office of Superfund Remediation and Technology Innovation Presentation Overview: U.S. Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) sites and some Superfund and U.S. Department of Defense (DOD) sites are contaminated with radionuclides. Radioactive contamination is also an issue potentially faced by Homeland Security. Characterization of radionuclides is an expensive and time- consuming process. Using real-time technologies to complete initial screening and characterization of radionuclide contamination results in more timely and cost-effective characterizations. Real-time technologies can also direct excavation resulting in more timely and cost-effective cleanups. The result is earlier protection of human health and the environment. This training introduces state regulators, environmental consultants, site owners, and community stakeholders to ITRC's Technology Overview document Real-Time Measurement of Radionuclides in Soil: Technology and Case Studies (RAD-4, 2006), created by ITRC's Radionuclides Team. This training provides information on the basics of real- time measurement systems (detector types and platforms, location control and mapping technologies, surface and subsurface applications and limitations), how the technologies and data are used (characterization, remediation
    [Show full text]
  • NUCLEAR TECHNOLOGY REVIEW 2012 NUCLEAR TECHNOLOGY REVIEW 2012 International Atomic Energy Agency International Atomic Energy
    NUCLEAR TECHNOLOGY REVIEW 2012 NUCLEAR TECHNOLOGY REVIEW 2012 International Atomic Energy Agency www.iaea.orgAtoms for Peace International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone:Atoms for(+43-1) Peace 2600-0 @ Fax: (+43-1) 2600-7 Email: [email protected] NUCLEAR TECHNOLOGY REVIEW 2012 The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NIGERIA ALBANIA GREECE NORWAY ALGERIA GUATEMALA OMAN ANGOLA HAITI PAKISTAN ARGENTINA HOLY SEE PALAU ARMENIA HONDURAS PANAMA AUSTRALIA HUNGARY PAPUA NEW GUINEA AUSTRIA ICELAND PARAGUAY AZERBAIJAN INDIA PERU BAHRAIN INDONESIA PHILIPPINES BANGLADESH IRAN, ISLAMIC REPUBLIC OF POLAND BELARUS IRAQ PORTUGAL BELGIUM IRELAND QATAR BELIZE ISRAEL REPUBLIC OF MOLDOVA BENIN ITALY ROMANIA BOLIVIA JAMAICA RUSSIAN FEDERATION BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BULGARIA KENYA SEYCHELLES BURKINA FASO KOREA, REPUBLIC OF SIERRA LEONE BURUNDI KUWAIT SINGAPORE CAMBODIA KYRGYZSTAN SLOVAKIA CAMEROON LAO PEOPLE’S DEMOCRATIC SLOVENIA CANADA REPUBLIC SOUTH AFRICA CENTRAL AFRICAN LATVIA SPAIN REPUBLIC LEBANON SRI LANKA CHAD LESOTHO SUDAN CHILE LIBERIA CHINA LIBYA SWEDEN COLOMBIA LIECHTENSTEIN SWITZERLAND CONGO LITHUANIA SYRIAN ARAB REPUBLIC COSTA RICA LUXEMBOURG TAJIKISTAN CÔTE D’IVOIRE MADAGASCAR THAILAND CROATIA MALAWI THE FORMER YUGOSLAV CUBA MALAYSIA REPUBLIC OF MACEDONIA CYPRUS MALI TUNISIA CZECH REPUBLIC MALTA TURKEY DEMOCRATIC REPUBLIC MARSHALL ISLANDS UGANDA OF THE CONGO
    [Show full text]
  • SNMMI Nuclear Medicine Technology Competency Based Curriculum
    Nuclear Medicine Technology Competency- Based Curriculum Guide 5th Edition Introduction Competency-based education in nuclear medicine technology focuses on those elements necessary to become an entry-level nuclear medicine technologist. Emphasizing competencies communicates entry-level knowledge, skills, attitudes, and behaviors that the nuclear medicine technology curriculum must address and that employers can expect of graduates. Competency- based education allows more flexibility in pedagogical approaches to achieve these essential competencies. The competencies are divided into eight sections: 1. Radiation Safety 2. Instrumentation, Quality Control and Quality Assurance 3. Radiopharmacy and Pharmacology 4. Diagnostic and Therapeutic Procedures 5. Patient Care 6. Professionalism and Interpersonal Communication Skills 7. Organization Systems-Based Practice 8. Research Methodology Each section lists the competencies that must be achieved by the entry level nuclear medicine technologist. The rigor of the nuclear medicine technologist entry-level competencies is such that a significant body of knowledge, skills, and experience is necessary to achieve them. This level of rigor is consistent with the Society of Nuclear Medicine and Molecular Imaging—Technologist Section’s (SNMMI-TS) recommendation that the entry-level degree for a nuclear medicine technologist should be at the baccalaureate level. The content listed under the competencies is intended to be used as a guide for what may be included in a program’s curriculum to achieve minimal competency in each area. The specific content listed should be used at the program’s discretion to meet individual curricular and accreditation needs. The content in its entirety is not considered mandatory, and other pedagogies may equally meet each program’s needs.
    [Show full text]
  • Simultaneous Acquisition of Ultrasound and Gamma Signals with a Single-Channel Readout
    sensors Communication Simultaneous Acquisition of Ultrasound and Gamma Signals with a Single-Channel Readout Muhammad Nasir Ullah 1,2,3, Yuseung Park 2,4 , Gyeong Beom Kim 2,4, Chanho Kim 2 , Chansun Park 1,2 , Hojong Choi 3,* and Jung-Yeol Yeom 1,2,4,5,* 1 Global Health-Tech Research Center, Korea University, 145 Anam-ro, Seoul 02841, Korea; [email protected] (M.N.U.); [email protected] (C.P.) 2 Department of Bioengineering, Korea University, 145 Anam-ro, Seoul 02841, Korea; [email protected] (Y.P.); [email protected] (G.B.K.); [email protected] (C.K.) 3 Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology, 350-27 Gumi-daero, Gumi 39253, Korea 4 Interdisciplinary Program in Precision Public Health, Korea University, 145 Anam-ro, Seoul 02841, Korea 5 School of Biomedical Engineering, Korea University, 145 Anam-ro, Seoul 02841, Korea * Correspondence: [email protected] (H.C.); [email protected] (J.-Y.Y.); Tel.: +82-54-478-7782 (H.C.); +82-2-3290-5662 (J.-Y.Y.) Abstract: We propose an integrated front-end data acquisition circuit for a hybrid ultrasound (US)- gamma probe. The proposed circuit consists of three main parts: (1) a preamplifier for the gamma probe, (2) a preprocessing analog circuit for the US, and (3) a digitally controlled analog switch. By exploiting the long idle time of the US system, an analog switch can be used to acquire data of both systems using a single output channel simultaneously. On the nuclear medicine (NM) gamma probe side, energy resolutions of 18.4% and 17.5% were acquired with the standalone system and with the proposed switching circuit, respectively, when irradiated with a Co-57 radiation source.
    [Show full text]