NUCLEAR TECHNOLOGY REVIEW 2012 NUCLEAR TECHNOLOGY REVIEW 2012 International Atomic Energy Agency International Atomic Energy

Total Page:16

File Type:pdf, Size:1020Kb

NUCLEAR TECHNOLOGY REVIEW 2012 NUCLEAR TECHNOLOGY REVIEW 2012 International Atomic Energy Agency International Atomic Energy NUCLEAR TECHNOLOGY REVIEW 2012 NUCLEAR TECHNOLOGY REVIEW 2012 International Atomic Energy Agency www.iaea.orgAtoms for Peace International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone:Atoms for(+43-1) Peace 2600-0 @ Fax: (+43-1) 2600-7 Email: [email protected] NUCLEAR TECHNOLOGY REVIEW 2012 The following States are Members of the International Atomic Energy Agency: AFGHANISTAN GHANA NIGERIA ALBANIA GREECE NORWAY ALGERIA GUATEMALA OMAN ANGOLA HAITI PAKISTAN ARGENTINA HOLY SEE PALAU ARMENIA HONDURAS PANAMA AUSTRALIA HUNGARY PAPUA NEW GUINEA AUSTRIA ICELAND PARAGUAY AZERBAIJAN INDIA PERU BAHRAIN INDONESIA PHILIPPINES BANGLADESH IRAN, ISLAMIC REPUBLIC OF POLAND BELARUS IRAQ PORTUGAL BELGIUM IRELAND QATAR BELIZE ISRAEL REPUBLIC OF MOLDOVA BENIN ITALY ROMANIA BOLIVIA JAMAICA RUSSIAN FEDERATION BOSNIA AND HERZEGOVINA JAPAN SAUDI ARABIA BOTSWANA JORDAN SENEGAL BRAZIL KAZAKHSTAN SERBIA BULGARIA KENYA SEYCHELLES BURKINA FASO KOREA, REPUBLIC OF SIERRA LEONE BURUNDI KUWAIT SINGAPORE CAMBODIA KYRGYZSTAN SLOVAKIA CAMEROON LAO PEOPLE’S DEMOCRATIC SLOVENIA CANADA REPUBLIC SOUTH AFRICA CENTRAL AFRICAN LATVIA SPAIN REPUBLIC LEBANON SRI LANKA CHAD LESOTHO SUDAN CHILE LIBERIA CHINA LIBYA SWEDEN COLOMBIA LIECHTENSTEIN SWITZERLAND CONGO LITHUANIA SYRIAN ARAB REPUBLIC COSTA RICA LUXEMBOURG TAJIKISTAN CÔTE D’IVOIRE MADAGASCAR THAILAND CROATIA MALAWI THE FORMER YUGOSLAV CUBA MALAYSIA REPUBLIC OF MACEDONIA CYPRUS MALI TUNISIA CZECH REPUBLIC MALTA TURKEY DEMOCRATIC REPUBLIC MARSHALL ISLANDS UGANDA OF THE CONGO MAURITANIA UKRAINE DENMARK MAURITIUS UNITED ARAB EMIRATES DOMINICA MEXICO UNITED KINGDOM OF DOMINICAN REPUBLIC MONACO GREAT BRITAIN AND ECUADOR MONGOLIA NORTHERN IRELAND EGYPT MONTENEGRO UNITED REPUBLIC EL SALVADOR MOROCCO OF TANZANIA ERITREA MOZAMBIQUE UNITED STATES OF AMERICA ESTONIA MYANMAR URUGUAY ETHIOPIA NAMIBIA UZBEKISTAN FINLAND NEPAL VENEZUELA FRANCE NETHERLANDS VIETNAM GABON NEW ZEALAND YEMEN GEORGIA NICARAGUA ZAMBIA GERMANY NIGER ZIMBABWE The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. NUCLEAR TECHNOLOGY REVIEW 2012 INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2012 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). The copyright has since been extended by the World Intellectual Property Organization (Geneva) to include electronic and virtual intellectual property. Permission to use whole or parts of texts contained in IAEA publications in printed or electronic form must be obtained and is usually subject to royalty agreements. Proposals for non-commercial reproductions and translations are welcomed and considered on a case-by-case basis. Enquiries should be addressed to the IAEA Publishing Section at: Marketing and Sales Unit, Publishing Section International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria fax: +43 1 2600 29302 tel.: +43 1 2600 22417 email: [email protected] http://www.iaea.org/books © IAEA, 2012 Printed by the IAEA in Austria September 2012 IAEA/NTR/2012 EDITORIAL NOTE This report does not address questions of responsibility, legal or otherwise, for acts or omissions on the part of any person. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. CONTENTS EXECUTIVE SUMMARY. 1 A. POWER APPLICATIONS . 7 A.1. Nuclear power today. 7 A.2. Projected growth for nuclear power . 13 A.3. Fuel cycle . 16 A.3.1. Uranium resources and production . 16 A.3.2. Conversion, enrichment and fuel fabrication . 19 A.3.3. Back end of the nuclear fuel cycle . 22 A.3.4. Radioactive waste management and decommissioning . 23 A.4. Safety . 29 B. ADVANCED FISSION AND FUSION . 32 B.1. Advanced fission. 32 B.1.1. Water cooled reactors . 32 B.1.2. Fast neutron systems . 33 B.1.3. Gas cooled reactors . 35 B.1.4. Small and medium sized reactors (SMRs) . 36 B.1.5. INPRO and GIF . 38 B.2. Fusion . 40 C. ACCELERATOR AND RESEARCH REACTOR APPLICATIONS . 43 C.1. Accelerators . 43 C.2. Research reactors . 44 D. FOOD AND AGRICULTURE . 49 D.1. Animal production and health. 49 D.2. Soil and water management . 50 D.2.1. Estimating water losses and their impacts on salinity under flood irrigation systems through the use of stable isotopes. 51 D.2.2. Area-wide soil moisture measurement using cosmic-ray neutrons . 51 D.2.3. Plutonium (239Pu and 240Pu) — potential use of a fallout radionuclide for soil erosion and land degradation assessment . 53 D.3. Agricultural remediation practices and technologies for mitigating the impacts of radiation contamination . 53 D.4. Alternatives to gamma irradiation for the sterile insect technique . 56 E. HUMAN HEALTH . 58 E.1. Nutrition . 58 E.1.1. Quality of growth during first 1000 days affects a person’s health later in life . 58 E.2. Advances in radiation medicine for cancer treatment. 60 E.2.1. Modern radiotherapy calls for quality data management . 60 E.2.2. Current trends in cancer management with radiotherapy . 61 E.2.3. Diagnostic imaging and treatment of breast cancer . 65 F. ENVIRONMENT . 69 F.1. Rapid radioanalytical methods can make a difference in assessing radioactive pollution in emergency situations. 69 G. WATER RESOURCES . 72 G.1. Trends in access to stable isotope data . 72 G.2. Groundwater dating . 73 H. RADIOISOTOPE PRODUCTION AND RADIATION TECHNOLOGY . 75 H.1. Radioisotopes and radiopharmaceuticals . 75 H.1.1. Recent developments in generator produced PET radionuclides. 75 H.1.2. Development of microfluidic-based synthesis systems for PET tracers. 75 H.1.3. Multi-particle cyclotrons for isotope production . 76 H.2. Radiation technology applications . 77 H.2.1. Gamma-irradiated vaccine shows potential in the battle against malaria . 77 H.2.2. Radiation-grafted membranes help to clean contaminated water in the Fukushima area. 77 H.2.3. Electron beam technology for producing bioethanol from agroindustrial residue . 79 H.3. Radiation technologies used in mining. 80 ANNEX I: DEVELOPING ALTERNATIVES TO GAMMA IRRADIATION FOR THE STERILE INSECT TECHNIQUE . 81 ANNEX II: IMAGING FOR BREAST CANCER HELPS IN DIAGNOSIS AND TREATMENT. 92 ANNEX III: RADIATION TECHNOLOGY APPLICATIONS IN MINING AND MINERAL PROCESSING . 109 ANNEX IV: TECHNOLOGY OPTIONS FOR A COUNTRY’S FIRST NUCLEAR POWER PLANT. 123 ANNEX V: THE ROLE OF RESEARCH REACTORS IN INTRODUCING NUCLEAR POWER . 141 ANNEX VI: THE USE AND MANAGEMENT OF SEALED RADIOACTIVE SOURCES . 154 EXECUTIVE SUMMARY In 2011, nuclear energy continued to play an important role in global electricity production despite the accident at the Fukushima Daiichi nuclear power plant (NPP). Total generating nuclear power capacity was slightly lower than in previous years due to the permanent shutdown of 13 reactors in 2011, including 8 in Germany and 4 in Japan in the wake of the accident. However, there were 7 new grid connections compared to 5 in 2010, 2 in 2009 and none in 2008. Significant growth in the use of nuclear energy worldwide is still anticipated — between 35% and 100% by 2030 — although the Agency projections for 2030 are 7–8% lower than projections made in 2010. The factors that have contributed to an increased interest in nuclear power did not change: an increasing global demand for energy, concerns about climate change, energy security and uncertainty about fossil fuel supplies. Most of the growth is still expected in countries that already have operating NPPs, especially in Asia, with China and India remaining the main centres of expansion while the Russian Federation will also remain a centre of strong growth. The 7–8% drop in projected growth for 2030 reflects an accelerated phase-out of nuclear power in Germany, some immediate shutdowns and a government review of the planned expansion in Japan, as well as temporary delays in expansion in several other countries. Measures taken by countries as a result of the Fukushima Daiichi nuclear accident have been varied. A number of countries announced reviews of their programmes. Belgium, Germany and Switzerland took additional steps to phase out nuclear power entirely while others re-emphasized their expansion plans. Many Member States carried out national safety assessment reviews in 2011 (often called ‘stress tests’), and commitments were made to complete any remaining assessments promptly and to implement the necessary corrective action. In countries considering the introduction of nuclear power, interest remained strong. Although some countries indicated that they would delay decisions to start nuclear power programmes,
Recommended publications
  • Nuclear Power Plants
    ONE STOP MONITORING SOLUTIONS | HYDROLOGY | GEOTECHNICAL | STRUCTURAL | GEODECTIC APPLICATION NOTE ONLINE MONITORING OF NUCLEAR POWER PLANTS 1 INTRODUCTION Geotechnical and geodetic monitoring is an integral part for ensuring that nuclear safety-related facilities meet design objectives. Due to the highly regulated environment of a Nuclear Power Plant (NPP), an acceptable instrumentation plan has to be developed for monitoring the performance of foundations, excavation support systems, containment, power plant and other facilities at the site. The instrumentation and monitoring of these critical structures are performed during construction and over the life of the facility. This application note has been developed mainly for India where a large number of nuclear power plants are envisaged to be set-up by NPCIL (PHWR 700) with indigenous technology and in association with the Russians (VVER 1000), Americans (AP 1000) and French (EPR 1650). Encardio-rite, in association with SITES, France is best placed anywhere in the World to provide a comprehensive total solution with leading technology for the safety Instrumentation & Monitoring of Nuclear Power Plants. SITES France, a partner of Encardio-rite through an agreement, is a leading Organization in the World in Structural Health Monitoring of Nuclear Power Plants Encardio-rite well proven digital sensors and automatic dataloggers provide comprehensive monitoring through an Advanced Data Management System which can be installed in a control room with use of minimal cables. The Data Management System (Drishti from Encardio-rite and Simon-e from SITES) have powerful tools for retrieving data from automatic data loggers, archiving the data in a SQL database, performing the required calculations on the data and presenting the processed data in tabular and most suitable graphical forms for easy interpretation of the logged data and generating alarm messages.
    [Show full text]
  • Press Release
    Press release The ATMEA1 reactor pre-qualified in Argentina Paris, July 12, 2012 The national utility Nucleoeléctrica Argentina (NA-SA) has informed ATMEA that it had pre-qualified the ATMEA1 technology for the next Request For Proposals that will be issued for the construction of its fourth nuclear power plant. By pre-selecting the ATMEA1 technology, NA-SA acknowledges that the ATMEA1 reactor is a qualified design that could meet the most stringent safety requirements and fit needs of the NA-SA. “After Jordan pre-selection of the ATMEA1 design last May and as confirmed by the recent positive statement of the French Safety Authority ASN on the ATMEA1 reactor’s safety options, this NA-SA decision confirms the trust being placed in the ATMEA1 technology. I’m confident that its design will fulfil stringent Argentina’s requirements, with its highest safety level as a Generation III+ reactor, its proven technology and its superior operation performance”, outlined Philippe Namy, ATMEA President. In 2006, Argentina announced the reactivation of a strategic plan for the country’s nuclear power sector, including the construction of a fourth nuclear reactor. The ATMEA1 reactor is a pressurized water reactor of 1,100 MWe, intended for any types of electrical networks and in particular for medium power grids. It was designed and developed by ATMEA, the 50/50 Joint Venture created in 2007 by Mitsubishi Heavy Industries and AREVA. Taking support on these two parent companies, ATMEA capitalizes on their experience of about 130 nuclear power plants which are operating in the world for around 50 years, and representing approximately 3300 cumulative reactor years of operation.
    [Show full text]
  • Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates
    PNNL-25978 Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates November 2016 SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) DISCLAIMER NOTICE This report was prepared under contract with the U.S. Department of Energy (DOE), as an account of work sponsored by Alberta Innovates (“AI”). Neither AI, Pacific Northwest National Laboratory (PNNL), DOE, the U.S. Government, nor any person acting on their behalf makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by AI, PNNL, DOE, or the U.S. Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of AI, PNNL, DOE or the U.S. Government. Deployability of Small Modular Nuclear Reactors for Alberta Applications SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) November 2016 Prepared for Alberta Innovates (AI) Pacific Northwest National Laboratory Richland, Washington 99352 Executive Summary At present, the steam requirements of Alberta’s heavy oil industry and the Province’s electricity requirements are predominantly met by natural gas and coal, respectively. On November 22, 2015 the Government of Alberta announced its Climate Change Leadership Plan to 1) phase out all pollution created by burning coal and transition to more renewable energy and natural gas generation by 2030 and 2) limit greenhouse gas (GHG) emissions from oil sands operations.
    [Show full text]
  • Progress in Nuclear Energy 105 (2018) 83–98
    Progress in Nuclear Energy 105 (2018) 83–98 Contents lists available at ScienceDirect Progress in Nuclear Energy journal homepage: www.elsevier.com/locate/pnucene Technology perspectives from 1950 to 2100 and policy implications for the T global nuclear power industry Victor Nian Energy Studies Institute, National University of Singapore, Singapore ARTICLE INFO ABSTRACT Keywords: There have been two completed phases of developments in nuclear reactor technologies. The first phase is the Nuclear industry trends demonstration of exploratory Generation I reactors. The second phase is the rapid scale-up of Generation II Nuclear energy policy reactors in North America and Western Europe followed by East Asia. We are in the third phase, which is the ff Technology di usion construction of evolutionary Generation III/III+ reactors. Driven by the need for safer and more affordable New user state nuclear reactors post-Fukushima, the nuclear industry has, in parallel, entered the fourth phase, which is the International cooperation development of innovative Generation IV reactors. Through a comprehensive review of the historical reactor Advanced reactor development technology developments in major nuclear states, namely, USA, Russia, France, Japan, South Korea, and China, this study presents a projection on the future potentials of advanced reactor technologies, with particular focus on pressurized water reactors, high temperature reactors, and fast reactors, by 2100. The projected potentials provide alternative scenarios to develop insights that complement the established technology roadmaps. Findings suggest that there is no clear winner among these technologies, but fast reactors could demonstrate a new and important decision factor for emerging markets. Findings also suggest small modular reactors, espe- cially those belonging to Generation IV, as a transitional technology for developing domestic market and in- digenous technology competence for emerging nuclear states.
    [Show full text]
  • Safety, Safeguards and Security in Indian Civil Nuclear Facilities
    NSSPI-12-010 SAFETY, SAFEGUARDS AND SECURITY IN INDIAN CIVIL NUCLEAR FACILITIES Ankush Batra* and Paul Nelson April 5, 2012 * Visiting Scholar from the School of Nuclear Energy, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India. Currently affiliated with PM-Dimensions Pvt. Ltd. Comments, criticisms, discussion, questions and suggestions regarding this report are welcome. Respondents are kindly requested to provide same in the form of electronic mail addressed to [email protected]. ii EXECUTIVE SUMMARY There have recently been many calls, especially from within the International Atomic Energy Agency (IAEA), for states interested in civil nuclear energy programs not only to focus upon the “3Ss” of safety, safeguards and security, but to exploit commonalities between these important concerns in order to make this focus practically realizable. Much of the emphasis upon the 3Ss has occurred within the context of states having or considering developing new civil nuclear programs. The study described in this report considers the issue of integrating the 3Ss for the unique case of India, as a state that has long had a civil nuclear energy program, but which has only recently become well integrated within the international market for nuclear materials and technology. This study begins with a review of calls for achieving synergies between the 3Ss, as arising from the IAEA and elsewhere, along with reasons for India to be interested in such synergies. India plans sharp expansion of its domestic nuclear-power industry, based upon imports of uranium enabled by its 2008 agreement with the Nuclear Suppliers Group, and has an announced intent to export some of its considerably developed pressurized heavy-water reactor technology.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • Trends in International Nuclear Markets and Impending Issues for Japan
    Trends in International Nuclear Markets and Impending Issues for Japan Nuclear Renaissance and the U.S.-Japan Alliance: Finding New Markets and Preventing Proliferation The Brookings Institution, Center for Northeast Asian Policy Studies Hokkaido University, Slavic Research Center October 30, 2009 The Brookings Institution Tatsujiro Suzuki Visiting Professor, Univ. of Tokyo Associate Vice President Central Research Institute of Electric Power Industry(CRIEPI) [email protected] Current Status of Global Nuclear Energy • At the April of 2009, 436 nuclear power plants in operation in with a total net installed capacity of 370.2 GW(e) . •~80% of its capacity is in OECD countries • 5 units(3.9GW) in long term shutdown (2006) • 45 units(40 GW) under construction, 25 of which is in Asia(2008) • Supply ~16% of global electricity generation Source: International Atomic Energy Agency.(2009) and Mycle Schneider, Steve Thomas, Antony Froggatt and Doug Koplow, “The World Nuclear Industry Status Report 2009," August 2009. Source: Mycle Schneider et.al “The World Nuclear Industry Status Report 2009,” August 2009. http://www.bmu.de/files/english/pdf/application/pdf/welt_statusbericht_atomindustrie_0908_en_bf.pdf OECD/IEA’s nuclear power growth estimate up to 2030: 416GW~519GW Source: International Panel on Fissile Materials (IPFM), “Global Fissile Material Report 2007”, p.84. (original data from International Energy Agency, “World Energy Outlook 2006,” p. 362) Global Nuclear Capacity Projection Need for Replacement Orders Source: Mycle Schneider et.al “The World Nuclear Industry Status Report 2009,” August 2009. http://www.bmu.de/files/english/pdf/application/pdf/welt_statusbericht_atomindustrie_0908_en_bf.pdf Global Nuclear Power Scenario to meet Climate Change Challenge (MIT, 2003) Source:MIT Interdisciplinary Study, “The Future of Nuclear Power,” 2003.
    [Show full text]
  • Specials Steels and Superalloys for Nuclear Industry
    Specials Steels and Superalloys for Nuclear Industry Enhancing your performance or almost 60 years Aubert & Duval has been a key partner for the development Aubert & Duval: Your partner F of forged and rolled products, especially those customized for the nuclear market. to energize your success With full vertical integration from melting, to remelting, hot converting and machining (rough machining through to near-net-shape parts), Aubert & Duval offers wide-ranging cutting edge capabilities for nuclear application. Equipment Process flow . MELTING Melting furnaces (EAF, AOD, LF) Melting up to 60 tons Vacuum Induction Melting (VIM) HPS NiSA up to 20 tons Remelting furnaces (ESR, VAR) up to 30 tons powder atomization (Gaz, VIM) . FORGING Open-die forging presses Remelting Powder atomization from 1,500 to 10,000 tons Closed-die forging presses from 4,500 to 65,000 tons . ROLLING MILL HPS 7-200 mm diameter bars High Performance Steels: Conversion . HEAT TREATMENT A range of alloyed steels with Solution and ageing furnaces tightly controlled characteristics HPS Ti NiSA AL PM Horizontal and vertical quenching offering optimum value for equipment customers. TESTING Forging Closed-die Hot Isostatic Immersion UT up to 13 tons and/or rolling Forging Forging Pressing (HIP) ©Valinox-Franck Dunouau (28,000 lbs) Automated contact UT up to 20 tons NiSA Aubert & Duval has also put in place over many decades dedicated skills to co-design re-engineered Nickel-base Superalloys: Nickel-based superalloys: materials metallurgical solutions with our clients. keeping high surface integrity while Sales of alloys and superalloys have progressively expanded across a broad spectrum of primary withstanding severe mechanical circuit contractors and their subcontractors.
    [Show full text]
  • Status of Small and Medium Sized Reactor Designs
    STATUS OF SMALL AND MEDIUM SIZED REACTOR DESIGNS A Supplement to the IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org @ September 2012 STATUS OF SMALL AND MEDIUM SIZED REACTOR DESIGNS A Supplement to the IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org FOREWORD There is renewed interest in Member States grids and lower rates of increase in demand. in the development and application of small They are designed with modular technology, and medium sized reactors (SMRs) having an pursuing economies of series production, factory equivalent electric power of less than 700 MW(e) fabrication and short construction times. The or even less than 300 MW(e). At present, most projected timelines of readiness for deployment new nuclear power plants under construction of SMR designs generally range from the present or in operation are large, evolutionary designs to 2025–2030. with power levels of up to 1700 MW(e), The objective of this booklet is to provide building on proven systems while incorporating Member States, including those considering technological advances. The considerable initiating a nuclear power programme and those development work on small to medium sized already having practical experience in nuclear designs generally aims to provide increased power, with a brief introduction to the IAEA benefits in the areas of safety and security, non- Advanced Reactors Information System (ARIS) proliferation, waste management, and resource by presenting a balanced and objective overview utilization and economy, as well as to offer a of the status of SMR designs. variety of energy products and flexibility in This report is intended as a supplementary design, siting and fuel cycle options.
    [Show full text]
  • Advances in Small Modular Reactor Technology Developments
    Advances in Small Modular Reactor Technology Developments Advances in Small Modular Reactor Technology Developments Technology in Small Modular Reactor Advances A Supplement to: IAEA Advanced Reactors Information System (ARIS) 2018 Edition For further information: Nuclear Power Technology Development Section (NPTDS) Division of Nuclear Power IAEA Department of Nuclear Energy International Atomic Energy Agency Vienna International Centre PO Box 100 1400 Vienna, Austria Telephone: +43 1 2600-0 Fax: +43 1 2600-7 Email: [email protected] Internet: http://www.iaea.org Printed by IAEA in Austria September 2018 18-02989E ADVANCES IN SMALL MODULAR REACTOR TECHNOLOGY DEVELOPMENTS 2018 Edition A Supplement to: IAEA Advanced Reactors Information System (ARIS) http://aris.iaea.org DISCLAIMER This is not an official IAEA publication. The material has not undergone an official review by the IAEA. The views expressed do not necessarily reflect those of the International Atomic Energy Agency or its Member States and remain the responsibility of the contributors. Although great care has been taken to maintain the accuracy of information contained in this publication, neither the IAEA nor its Member States assume any responsibility for consequences which may arise from its use. The use of particular designations of countries or territories does not imply any judgement by the publisher, the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA.
    [Show full text]
  • Radioactive Seed Localization of Breast Lesions: an Adequate Localization Method Without Seed Migration
    ORIGINAL ARTICLE Radioactive Seed Localization of Breast Lesions: An Adequate Localization Method without Seed Migration Tanja Alderliesten, PhD,* Claudette E. Loo, MD,* Kenneth E. Pengel, MSc,* Emiel J. Th. Rutgers, MD, PhD, Kenneth G. A. Gilhuijs, PhD,* and Marie-Jeanne T. F. D. Vrancken Peeters, MD, PhD *Department of Radiology; and Department of Surgery, The Netherlands Cancer Institute – Antoni van Leeuwenhoek Hospital (NKI-AVL), Amsterdam, The Netherlands n Abstract: Preoperative localization is important to optimize the surgical treatment of breast lesions, especially in nonpal- pable lesions. Radioactive seed localization (RSL) using iodine-125 is a relatively new approach. To provide accurate guid- ance to surgery, it is important that the seeds do not migrate after placement. The aim of this study was to assess short-term and long-term seed migration after RSL of breast lesions. In 45 patients, 48 RSL procedures were performed under ultrasound or stereotactic guidance. In the first 12 patients, the lesion was localized with two markers: an iodine-125 seed and a refer- ence marker. In 33 patients, 36 RSL procedures were performed using a single iodine-125 seed. All patients received control mammograms after seed placement and prior to surgery. In the patients with two markers, migration was defined as the differ- ence in the largest distance between the markers observed in the mammograms. For single-marked lesions, migration was assessed by comparing distances between anatomical landmarks in the mammograms. RSL was successful in all patients. Seeds were in-situ for 59.5 days on average (3–136 days). The detection rate during surgery was 100%.
    [Show full text]
  • Global Nuclear Markets – Market Arrangements and Service Agreements
    INL/EXT-16-38796 Global Nuclear Markets – Market Arrangements and Service Agreements Brent Dixon Leilani Beard June 2016 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. INL/EXT-16-38796 Global Nuclear Markets – Market Arrangements and Service Agreements Brent Dixon Leilani Beard June 2016 Idaho National Laboratory Nuclear Systems Design & Analysis Division Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Office of Energy Policy and Systems Analysis Under U.S. Department of Energy-Idaho Operations Office Contract DE-AC07-05ID14517 Forward The U.S. Department of Energy’s Office of Energy Policy and Systems Analysis (EPSA) requested an assessment of global nuclear markets, including the structure of nuclear companies in different countries and the partnerships between reactor vendors and buyers.
    [Show full text]