Progress in Nuclear Energy 105 (2018) 83–98
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spent Nuclear Fuel Pools in the US
Spent Nuclear Fuel Pools in the U.S.: Reducing the Deadly Risks of Storage front cover WITH SUPPORT FROM: WITH SUPPORT FROM: By Robert Alvarez 1112 16th St. NW, Suite 600, Washington DC 20036 - www.ips-dc.org May 2011 About the Author Robert Alvarez, an Institute for Policy Studies senior scholar, served as a Senior Policy Advisor to the Secre- tary of Energy during the Clinton administration. Institute for Policy Studies (IPS-DC.org) is a community of public scholars and organizers linking peace, justice, and the environment in the U.S. and globally. We work with social movements to promote true democracy and challenge concentrated wealth, corporate influence, and military power. Project On Government Oversight (POGO.org) was founded in 1981 as an independent nonprofit that investigates and exposes corruption and other misconduct in order to achieve a more effective, accountable, open, and ethical federal government. Institute for Policy Studies 1112 16th St. NW, Suite 600 Washington, DC 20036 http://www.ips-dc.org © 2011 Institute for Policy Studies [email protected] For additional copies of this report, see www.ips-dc.org Table of Contents Summary ...............................................................................................................................1 Introduction ..........................................................................................................................4 Figure 1: Explosion Sequence at Reactor No. 3 ........................................................4 Figure 2: Reactor No. 3 -
Nuclear Power Plants
ONE STOP MONITORING SOLUTIONS | HYDROLOGY | GEOTECHNICAL | STRUCTURAL | GEODECTIC APPLICATION NOTE ONLINE MONITORING OF NUCLEAR POWER PLANTS 1 INTRODUCTION Geotechnical and geodetic monitoring is an integral part for ensuring that nuclear safety-related facilities meet design objectives. Due to the highly regulated environment of a Nuclear Power Plant (NPP), an acceptable instrumentation plan has to be developed for monitoring the performance of foundations, excavation support systems, containment, power plant and other facilities at the site. The instrumentation and monitoring of these critical structures are performed during construction and over the life of the facility. This application note has been developed mainly for India where a large number of nuclear power plants are envisaged to be set-up by NPCIL (PHWR 700) with indigenous technology and in association with the Russians (VVER 1000), Americans (AP 1000) and French (EPR 1650). Encardio-rite, in association with SITES, France is best placed anywhere in the World to provide a comprehensive total solution with leading technology for the safety Instrumentation & Monitoring of Nuclear Power Plants. SITES France, a partner of Encardio-rite through an agreement, is a leading Organization in the World in Structural Health Monitoring of Nuclear Power Plants Encardio-rite well proven digital sensors and automatic dataloggers provide comprehensive monitoring through an Advanced Data Management System which can be installed in a control room with use of minimal cables. The Data Management System (Drishti from Encardio-rite and Simon-e from SITES) have powerful tools for retrieving data from automatic data loggers, archiving the data in a SQL database, performing the required calculations on the data and presenting the processed data in tabular and most suitable graphical forms for easy interpretation of the logged data and generating alarm messages. -
Light Water Reactor System Designed to Minimize Environmental Burden of Radioactive Waste
Hitachi Review Vol. 63 (2014), No. 9 602 Featured Articles Light Water Reactor System Designed to Minimize Environmental Burden of Radioactive Waste Tetsushi Hino, Dr. Sci. OVERVIEW: One of the problems with nuclear power generation is the Masaya Ohtsuka, Dr. Eng. accumulation in radioactive waste of the long-lived TRUs generated as Kumiaki Moriya byproducts of the fission of uranium fuel. Hitachi is developing a nuclear reactor that can burn TRU fuel and is based on a BWR design that is Masayoshi Matsuura already in use in commercial reactors. Achieving the efficient fission of TRUs requires that the spectrum of neutron energies in the nuclear reactor be modified to promote nuclear reactions by these elements. By taking advantage of one of the features of BWRs, namely that their neutron energy spectrum is more easily controlled than that of other reactor types, the new reactor combines effective use of resources with a reduction in the load on the environment by using TRUs as fuel that can be repeatedly recycled to burn these elements up. This article describes the concept behind the INTRODUCTION RBWR along with the progress of its development, NUCLEAR power generation has an important role to as well as its specifications and features. play in both energy security and reducing emissions of carbon dioxide. One of its problems, however, is the accumulation in radioactive waste from the long- RBWR CONCEPT lived transuranium elements (TRUs) generated as Plutonium Breeding Reactor byproducts of the fission of uranium fuel. The TRUs The original concept on which the RBWR is based include many different isotopes with half-lives ranging was the plutonium generation boiling water reactor from hundreds to tens of thousands of years or more. -
Safety Analysis for Boiling Water Reactors
Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Safety Analysis for Boiling Water Reactors A Summary GRS - 98 Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbH Safety Analysis for Boiling Water Reactors A Summary E. Kersting J. von Linden D. Müller-Ecker W. Werner Translation by F. Janowski July 1993 GRS - 98 ISBN 3-923875-48-7 Note This report is the translation of GRS-95 "Sicherheitsanalyse für Siedewasserreaktoren - Zusammenfassende Darstellung". Recent analysis results - concerning the chapters on accident management, fire and earthquake - that were not included in the German text have been added to this translation. In cases of doubt, GRS-102 (main volume) is the factually correct version. Keywords Safety analysis, PSA, boiling water reactor, accidents, event-sequence analysis, systems analysis, fault-tree analysis, reliability data, accident management Abstract After completing the German Risk Study for pressurised water reactors, the Gesell schaft für Anlagen- und Reaktorsicherheit (GRS) has now conducted for the first time a probabilistic safety analysis for boiling water reactors (BWR) on behalf of the Federal Minister for Research and Technology (BMFT). Reactor safety is constantly developed in line with research findings and operating experience. Thus reactor safety is a dynamic process in which safety analyses play an important role. Probabilistic safety analyses determine the frequency of certain events (e.g. leaks in pipes) and the failure probabilities of the safety systems needed to control such events. The failure of safety systems initially leads to a hazard to the cooling of the reactor core. When such hazard states occur, there are accident management measures which can still be carried out in order to prevent core melt. -
Self-Sustaining Thorium Boiling Water Reactors
Project No. 11-3023 Self-Sustaining Thorium Boiling Water Reactors Reactor Concepts Dr. Ehud Greenspan University of California-Berkeley In collaboration with: Massachusetts Institute of Technology University of Michigan Brookhaven National Laboratory Brian Robinson, Federal POC Temitope Taiwo, Technical POC NEUP Project # 11-3023 September 2011 to December 2014 Self-sustaining thorium boiling water reactors Summary Report Ehud Greenspan, Phillip M. Gorman, Sandra Bogetic, Jeffrey E. Seifried, Guanheng Zhang, Christopher R. Varela, Massimiliano Fratoni and Jasmina L. Vujic UC Berkeley, [email protected] Thomas Downar, Andrew Hall, Andrew Ward, Michael Jarrett, Aaron Wysocki and Yunlin Xu University of Michigan, [email protected] Mujid Kazimi, Koroush Shirvan and Alexander Mieloszyk MIT, [email protected] Michael Todosow, Nicholas Brown and Lap Cheng BNL, [email protected] 28 February 2015 1 Table of Contents Overview Page Executive summary 3 1. Introduction 7 2. The RBWR cores 7 2.1 Hitachi RBWR cores 7 2.2 Independent evaluation of the Hitachi designs 14 2.3 The incentive for thorium-based RBWR 15 2.4 The thorium-based RBWR core designs 17 3. Development of computational methods for RBWR type cores 19 3.1 3-D core simulator 20 3.2 Monte-Carlo based coupled neutronics - TH - depletion analysis capability 21 3.3 Stability and safety analysis capability 21 3.4 Fuel performance analysis capability 22 3.5 Thermal hydraulic correlations for tight lattice high void cores 24 4. Feasibility of fuel-self-sustaining RBWR-Th cores 24 4.1 Study strategy 24 4.2 RBWR-Th core designs 26 4.3 RBWR-Th safety and stability 30 4.4 RBWR-Th fuel performance 31 5. -
Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates
PNNL-25978 Deployability of Small Modular Nuclear Reactors for Alberta Applications Report Prepared for Alberta Innovates November 2016 SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) DISCLAIMER NOTICE This report was prepared under contract with the U.S. Department of Energy (DOE), as an account of work sponsored by Alberta Innovates (“AI”). Neither AI, Pacific Northwest National Laboratory (PNNL), DOE, the U.S. Government, nor any person acting on their behalf makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by AI, PNNL, DOE, or the U.S. Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of AI, PNNL, DOE or the U.S. Government. Deployability of Small Modular Nuclear Reactors for Alberta Applications SM Short B Olateju (AI) SD Unwin S Singh (AI) A Meisen (AI) November 2016 Prepared for Alberta Innovates (AI) Pacific Northwest National Laboratory Richland, Washington 99352 Executive Summary At present, the steam requirements of Alberta’s heavy oil industry and the Province’s electricity requirements are predominantly met by natural gas and coal, respectively. On November 22, 2015 the Government of Alberta announced its Climate Change Leadership Plan to 1) phase out all pollution created by burning coal and transition to more renewable energy and natural gas generation by 2030 and 2) limit greenhouse gas (GHG) emissions from oil sands operations. -
Report on Technical Feasibility of Fusion Energy to the Special Committee for the ITER Project
March 8, ASDEX Upgrade Seminar Report on Technical Feasibility of Fusion Energy to the Special Committee for the ITER Project M. Kikuchi Former member of subcommittee for Fusion Development Strategy under Fusion Council Structure of Fusion Program Promotion in Japan (before May 17,2000) Special committee for the ITER Project Chair: Prof. H. Yoshikawa Atomic Energy Fusion ITER/EDA Technical Commission Council Subcommittee Chair: Prof. N. Inoue Chair: Prof. M. Wakatani Planning and Promotion Subcommittee Chair: Prof. K. Miya Subcommittee for Fusion Development Strategy Chair: Prof. N. Inoue 1 Charge to Subcommittee for Fusion Development Strategy (3) Technical feasibility of the fusion energy (4) Extension of the program and basic supporting research For topic (3) above, the Special Committee additionally requested an evaluation of the feasibility of fusion energy as a safe and reliable energy source from the aspects of technical potential, management capability, and characteristics of Japanese industrial structure. Two other subcommittes are formed for answering (1) Survey of long term demand and supply of energy sources (2) Feasibility study of alternative energy sources (5) Distribution of resources for research (6) International relations. 2 Members of Subcommittee for Fusion Development Strategy (April 2000) Nobuyuki Inoue (Chairman) Chairman of Fusion Council Professor, Institute of Advanced Energy, Kyoto University) Katsunori Abe Professor, Graduate School of Engineering, Tohoku University Kunihiko Okano Research Fellow, Komae Research -
WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? a Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development
WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? A Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development AN ENERGY INNOVATION REFORM PROJECT REPORT PREPARED BY THE ENERGY OPTIONS NETWORK TABLE OF CONTENTS Executive Summary 1 1. Study Motivation and Objectives 6 Why Care about Advanced Nuclear Costs? 7 Origins of This Study 8 A Standardized Framework for Cost Analysis 8 2. Results 9 3. Study Methodology 14 EON Model 15 Company Preparedness and Strategies 19 Limits of This Analysis 20 Certainty Levels for Advanced Nuclear Cost Estimates 20 Realistic Considerations That May Influence Cost 21 4. Advanced Nuclear’s Design and Delivery Innovations 22 Context: The Cost of Conventional Nuclear 23 Design Considerations for Conventional Nuclear Reactors 24 Safety Enhancements of Advanced Nuclear 24 Overview of Reactor Designs 25 Delivery Issues with Conventional Nuclear Power 27 Innovations in the Delivery of Advanced Nuclear Technologies 28 Design Factors That Could Increase Advanced Nuclear Costs 30 5. Conclusions 31 6. References 32 Appendix A: Nuclear Plant Cost Categories 34 Appendix B: Operating Costs for a Nuclear Plant 35 Appendix C: Cost Category Details and Modeling Methodology 36 Appendix D: External Expert Review of Draft Report 43 THE FUTURE OF NUCLEAR TECHNOLOGY: A STANDARDIZED COST ANALYSIS EXECUTIVE SUMMARY Advanced nuclear technologies are controversial. Many people believe they could be a panacea for the world’s energy problems, while others claim that they are still decades away from reality and much more complicated and costly than conventional nuclear technologies. Resolving this debate requires an accurate and current understanding of the increasing movement of technology development out of national nuclear laboratories and into private industry. -
Safety, Safeguards and Security in Indian Civil Nuclear Facilities
NSSPI-12-010 SAFETY, SAFEGUARDS AND SECURITY IN INDIAN CIVIL NUCLEAR FACILITIES Ankush Batra* and Paul Nelson April 5, 2012 * Visiting Scholar from the School of Nuclear Energy, Pandit Deendayal Petroleum University, Gandhinagar, Gujarat, India. Currently affiliated with PM-Dimensions Pvt. Ltd. Comments, criticisms, discussion, questions and suggestions regarding this report are welcome. Respondents are kindly requested to provide same in the form of electronic mail addressed to [email protected]. ii EXECUTIVE SUMMARY There have recently been many calls, especially from within the International Atomic Energy Agency (IAEA), for states interested in civil nuclear energy programs not only to focus upon the “3Ss” of safety, safeguards and security, but to exploit commonalities between these important concerns in order to make this focus practically realizable. Much of the emphasis upon the 3Ss has occurred within the context of states having or considering developing new civil nuclear programs. The study described in this report considers the issue of integrating the 3Ss for the unique case of India, as a state that has long had a civil nuclear energy program, but which has only recently become well integrated within the international market for nuclear materials and technology. This study begins with a review of calls for achieving synergies between the 3Ss, as arising from the IAEA and elsewhere, along with reasons for India to be interested in such synergies. India plans sharp expansion of its domestic nuclear-power industry, based upon imports of uranium enabled by its 2008 agreement with the Nuclear Suppliers Group, and has an announced intent to export some of its considerably developed pressurized heavy-water reactor technology. -
A Comparison of Advanced Nuclear Technologies
A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department. -
Fast-Spectrum Reactors Technology Assessment
Clean Power Quadrennial Technology Review 2015 Chapter 4: Advancing Clean Electric Power Technologies Technology Assessments Advanced Plant Technologies Biopower Clean Power Carbon Dioxide Capture and Storage Value- Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells U.S. DEPARTMENT OF Supercritical Carbon Dioxide Brayton Cycle ENERGY Wind Power Clean Power Quadrennial Technology Review 2015 Fast-spectrum Reactors Chapter 4: Technology Assessments Background and Current Status From the initial conception of nuclear energy, it was recognized that full realization of the energy content of uranium would require the development of fast reactors with associated nuclear fuel cycles.1 Thus, fast reactor technology was a key focus in early nuclear programs in the United States and abroad, with the first usable nuclear electricity generated by a fast reactor—Experimental Breeder Reactor I (EBR-I)—in 1951. Test and/or demonstration reactors were built and operated in the United States, France, Japan, United Kingdom, Russia, India, Germany, and China—totaling about 20 reactors with 400 operating years to date. These previous reactors and current projects are summarized in Table 4.H.1.2 Currently operating test reactors include BOR-60 (Russia), Fast Breeder Test Reactor (FBTR) (India), and China Experimental Fast Reactor (CEFR) (China). The Russian BN-600 demonstration reactor has been operating as a power reactor since 1980. -
Generation IV Nuclear Energy Systems: Ten-Year Program Plan
GENERATION IV NUCLEAR ENERGY SYSTEMS TEN-YEAR PROGRAM PLAN Fiscal Year 2005 Volume I Released March 2005 Office of Advanced Nuclear Research DOE Office of Nuclear Energy, Science and Technology DISCLAIMER The Generation IV Nuclear Energy Systems Ten-Year Program Plan describes the updated system and crosscutting program plans that were in force at the start of calendar year 2005. However, the Generation IV research & development (R&D) plans continue to evolve, and this document will be updated annually or as needed. Even as this Program Plan is being released, several system R&D plans are still under development, most in collaboration with international, university, and industry partners. Consequently, the Program Plan should be viewed as a work in progress. For current information regarding this document or the plans described herein, please contact: David W. Ostby, Technical Integrator Generation IV program Idaho National Laboratory P.O. Box 1625 2525 N. Fremont Idaho Falls, ID 83415-3865 USA Tel: (208) 526-1288 FAX: (208) 526-2930 Email: [email protected] GENERATION IV NUCLEAR ENERGY SYSTEMS TEN-YEAR PROGRAM PLAN Fiscal Year 2005 Volume I March 2005 Idaho National Laboratory Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 i This page intentionally left blank. ii EXECUTIVE SUMMARY As reflected in the U.S. National Energy Policy [1], nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S.