Generation IV Reactor Systems and Fuel Cycles (Horizon 2030): Technological Breakthroughs in Nuclear Fission (Int'l RD&DD)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to GE Hitachi
Overview of ABWR Safety Features INPRO Dialogue Forum November 19-23, 2013 J. Alan Beard Principal Engineer Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved GE Hitachi nuclear alliance and businesses Wilmington, NC Tokyo, Japan Wilmington, NC Wilmington, NC Peterborough, ON USA USA Yokosuka, Japan Canada •Nuclear Power Plants: ABWR, •Uranium •Nuclear Fuel Fabrication ESBWR and PRISM Enrichment ….BWR and CANDU •Nuclear Services … Third •CANDU Services •Advanced Programs … Generation •Fuel Engineering and Support Recycling Technology Services •GENUSA European Fuel Joint Venture Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved 2 BWR legacy around the world Dodewaard - Netherlands KKM - Switzerland K6/K7 - Japan Dresden 1 – USA KRB - Germany Lungmen - Taiwan Santa María de Garoña - Spain Vallecitos – USA Garigliano - Italy Laguna Verde - Mexico Tarapur 1&2 – India Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved 3 Recent project experience Kashiwazaki-Kariwa 6/7 ABWR COD 1996/1997 Hamaoka-5 ABWR COD 2005 Shika-2 ABWR Continuously building for 58 years COD 2006 Images copyright TEPCO, Hokuriku Electric Power, Chugoku Electric Power, and J-Power; Provided by Hitachi GE Nuclear Energy Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved 4 Current project status Ohma ABWR Ohma 1 • 38% complete Shimane 3 • 94% complete Under Construction • Approaching fuel load Shimane-3 ABWR Lungmen 1&2 • 94% complete • Startup and Pre-Op -
WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? a Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development
WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? A Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development AN ENERGY INNOVATION REFORM PROJECT REPORT PREPARED BY THE ENERGY OPTIONS NETWORK TABLE OF CONTENTS Executive Summary 1 1. Study Motivation and Objectives 6 Why Care about Advanced Nuclear Costs? 7 Origins of This Study 8 A Standardized Framework for Cost Analysis 8 2. Results 9 3. Study Methodology 14 EON Model 15 Company Preparedness and Strategies 19 Limits of This Analysis 20 Certainty Levels for Advanced Nuclear Cost Estimates 20 Realistic Considerations That May Influence Cost 21 4. Advanced Nuclear’s Design and Delivery Innovations 22 Context: The Cost of Conventional Nuclear 23 Design Considerations for Conventional Nuclear Reactors 24 Safety Enhancements of Advanced Nuclear 24 Overview of Reactor Designs 25 Delivery Issues with Conventional Nuclear Power 27 Innovations in the Delivery of Advanced Nuclear Technologies 28 Design Factors That Could Increase Advanced Nuclear Costs 30 5. Conclusions 31 6. References 32 Appendix A: Nuclear Plant Cost Categories 34 Appendix B: Operating Costs for a Nuclear Plant 35 Appendix C: Cost Category Details and Modeling Methodology 36 Appendix D: External Expert Review of Draft Report 43 THE FUTURE OF NUCLEAR TECHNOLOGY: A STANDARDIZED COST ANALYSIS EXECUTIVE SUMMARY Advanced nuclear technologies are controversial. Many people believe they could be a panacea for the world’s energy problems, while others claim that they are still decades away from reality and much more complicated and costly than conventional nuclear technologies. Resolving this debate requires an accurate and current understanding of the increasing movement of technology development out of national nuclear laboratories and into private industry. -
Progress in Nuclear Energy 105 (2018) 83–98
Progress in Nuclear Energy 105 (2018) 83–98 Contents lists available at ScienceDirect Progress in Nuclear Energy journal homepage: www.elsevier.com/locate/pnucene Technology perspectives from 1950 to 2100 and policy implications for the T global nuclear power industry Victor Nian Energy Studies Institute, National University of Singapore, Singapore ARTICLE INFO ABSTRACT Keywords: There have been two completed phases of developments in nuclear reactor technologies. The first phase is the Nuclear industry trends demonstration of exploratory Generation I reactors. The second phase is the rapid scale-up of Generation II Nuclear energy policy reactors in North America and Western Europe followed by East Asia. We are in the third phase, which is the ff Technology di usion construction of evolutionary Generation III/III+ reactors. Driven by the need for safer and more affordable New user state nuclear reactors post-Fukushima, the nuclear industry has, in parallel, entered the fourth phase, which is the International cooperation development of innovative Generation IV reactors. Through a comprehensive review of the historical reactor Advanced reactor development technology developments in major nuclear states, namely, USA, Russia, France, Japan, South Korea, and China, this study presents a projection on the future potentials of advanced reactor technologies, with particular focus on pressurized water reactors, high temperature reactors, and fast reactors, by 2100. The projected potentials provide alternative scenarios to develop insights that complement the established technology roadmaps. Findings suggest that there is no clear winner among these technologies, but fast reactors could demonstrate a new and important decision factor for emerging markets. Findings also suggest small modular reactors, espe- cially those belonging to Generation IV, as a transitional technology for developing domestic market and in- digenous technology competence for emerging nuclear states. -
A Comparison of Advanced Nuclear Technologies
A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department. -
Fast-Spectrum Reactors Technology Assessment
Clean Power Quadrennial Technology Review 2015 Chapter 4: Advancing Clean Electric Power Technologies Technology Assessments Advanced Plant Technologies Biopower Clean Power Carbon Dioxide Capture and Storage Value- Added Options Carbon Dioxide Capture for Natural Gas and Industrial Applications Carbon Dioxide Capture Technologies Carbon Dioxide Storage Technologies Crosscutting Technologies in Carbon Dioxide Capture and Storage Fast-spectrum Reactors Geothermal Power High Temperature Reactors Hybrid Nuclear-Renewable Energy Systems Hydropower Light Water Reactors Marine and Hydrokinetic Power Nuclear Fuel Cycles Solar Power Stationary Fuel Cells U.S. DEPARTMENT OF Supercritical Carbon Dioxide Brayton Cycle ENERGY Wind Power Clean Power Quadrennial Technology Review 2015 Fast-spectrum Reactors Chapter 4: Technology Assessments Background and Current Status From the initial conception of nuclear energy, it was recognized that full realization of the energy content of uranium would require the development of fast reactors with associated nuclear fuel cycles.1 Thus, fast reactor technology was a key focus in early nuclear programs in the United States and abroad, with the first usable nuclear electricity generated by a fast reactor—Experimental Breeder Reactor I (EBR-I)—in 1951. Test and/or demonstration reactors were built and operated in the United States, France, Japan, United Kingdom, Russia, India, Germany, and China—totaling about 20 reactors with 400 operating years to date. These previous reactors and current projects are summarized in Table 4.H.1.2 Currently operating test reactors include BOR-60 (Russia), Fast Breeder Test Reactor (FBTR) (India), and China Experimental Fast Reactor (CEFR) (China). The Russian BN-600 demonstration reactor has been operating as a power reactor since 1980. -
Generation IV Nuclear Energy Systems: Ten-Year Program Plan
GENERATION IV NUCLEAR ENERGY SYSTEMS TEN-YEAR PROGRAM PLAN Fiscal Year 2005 Volume I Released March 2005 Office of Advanced Nuclear Research DOE Office of Nuclear Energy, Science and Technology DISCLAIMER The Generation IV Nuclear Energy Systems Ten-Year Program Plan describes the updated system and crosscutting program plans that were in force at the start of calendar year 2005. However, the Generation IV research & development (R&D) plans continue to evolve, and this document will be updated annually or as needed. Even as this Program Plan is being released, several system R&D plans are still under development, most in collaboration with international, university, and industry partners. Consequently, the Program Plan should be viewed as a work in progress. For current information regarding this document or the plans described herein, please contact: David W. Ostby, Technical Integrator Generation IV program Idaho National Laboratory P.O. Box 1625 2525 N. Fremont Idaho Falls, ID 83415-3865 USA Tel: (208) 526-1288 FAX: (208) 526-2930 Email: [email protected] GENERATION IV NUCLEAR ENERGY SYSTEMS TEN-YEAR PROGRAM PLAN Fiscal Year 2005 Volume I March 2005 Idaho National Laboratory Idaho Falls, Idaho 83415 Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 i This page intentionally left blank. ii EXECUTIVE SUMMARY As reflected in the U.S. National Energy Policy [1], nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. -
2019 ANS Annual Meeting Official Program
Annual Meeting 2019 Official Program THE VALUE OF NUCLEAR June 9-13, 2019 Minneapolis, MN, USA Hyatt Regency Minneapolis Annual 2019 THE VALUE OF NUCLEAR Our most sincere thanks to our sponsors for their support of the 2019 Annual Meeting. ELITE SPONSORSHIP GOLD SPONSORSHIP SILVER SPONSORSHIP BRONZE SPONSORSHIP Table of Contents GENERAL MEETING INFORMATION Meeting Officials ..............................................................................2 Daily Schedule .................................................................................3-6 General Information .........................................................................7-10 PLENARY, SPECIAL SESSIONS & EVENTS ANS President’s Opening Reception ..................................................11 Opening Plenary Session ..................................................................11 OPD Dinner .....................................................................................11 ANS President’s Special Session .......................................................12 New-Supply Chain Special Session .....................................................12 General Chair’s Special Session ........................................................13 Focus on Communications Workshop .................................................13 ANS Annual Business Meeting ..........................................................13 Technical Tour: Monticello Nuclear Generating Plant ............................13 Technical Tour: Prairie Island Nuclear Generating Station ....................13 -
2015 Technology Roadmap: Nuclear Energy
2050 2045 E s n e e v r i g t c y e 2040 T p 2035 ec rs hn olog y P e Technology Roadmap Nuclear Energy 2015 edition Secure Sustainable Together For further information on the Energy Technology Roadmaps project and to download other roadmaps, go to www.iea.org/roadmaps. © OECD/IEA and OECD/NEA, 2015 Please note that this publication is subject to specific restrictions that limit its use and distribution. The terms and conditions are available online at www.iea.org/about/copyright.asp. Foreword Current trends in energy supply and use are capital-intensive infrastructure projects more unsustainable. Without decisive action, energy- challenging, especially in liberalised electricity related emissions of carbon dioxide will nearly markets. As a follow-up to this Roadmap, the NEA double by 2050 and increased fossil energy is initiating a highly technical survey to identify the demand will heighten concerns over the security critical research and development efforts that are of supplies. We can change our current path, but needed to enable countries to consider advanced this will take an energy revolution in which low- nuclear energy technologies as they attempt to carbon energy technologies will have a crucial role reduce their reliance on fossil fuels. to play. Energy efficiency, many types of renewable energy, carbon capture and storage, nuclear power Each country must decide what energy mix is and new transport technologies will all require optimal for its national circumstances. However, widespread deployment if we are to sharply reduce the fundamental advantages provided by nuclear greenhouse gas (GHG) emissions. -
New Nuclear Power Industry Procurement Markets
Research Monograph 2014-01 2014 Edited by Edited Geoffrey Rothwell Geoffrey and Nam Ilchong New Nuclear Power Industry Procurement Markets: International Edited by Ilchong Nam and Experiences Geoffrey Rothwell korea develoPMeNt INstItute International Experiences International Markets: Procurement Industry Power Nuclear New ISBN 978-89-8063-902-1 연구시리즈_남일총_Procurement_최종.indd 1 2014.12.23 2:22:19 PM Research- Monograph 2014-01 New Nuclear Power Industry Procurement Markets: International Experiences Edited by Ilchong Nam and Geoffrey Rothwell ⓒ December 2014 Korea Development Institute 15, Giljae-gil, Sejong-si 339-007, Korea ISBN 978-89-8063-902-1 (93320) Price: =8,600 ▌ Preface ▌ Despite the uncertainties about the cost and nuclear reactor melt- downs, nuclear power remains one of the major energy sources in many industrialized countries. Nuclear power is one of the major low carbon energy sources that many developing countries hope to de- pend on in the future. Ensuring the safety and efficiency of nuclear power generation is vital to the economic performance of many countries and their citizens. Efficiency and safety of this technology depends on many factors. One of the crucial safety and efficiency factors of nuclear power generation is the performance of the pro- curement market in which parts, components, and services to build and operate nuclear power plants are traded. In particular, perfor- mance of the market in which safety related parts and components are traded is crucial to the efficiency and safety of nuclear power generation. Despite the importance of the procurement market for nuclear power generation, there have been few economic studies on this issue. -
Nuclear Energy Research and Development Roadmap: Future Pathways
Nuclear Energy Research and Development Roadmap: Future Pathways Nuclear Energy Research and Development Roadmap: Future Pathways Executive Summary Introduction Successive UK Governments have declared secure, low carbon, affordable energy as a long term objective. Various legislative instruments and mechanisms have been put in place over the last decade to facilitate delivery of this objective, including the Climate Change Act (2008) and, more recently, Electricity Market Reform (2011 White Paper). There will be many challenges associated with the potential future deployment of nuclear energy in the UK’s energy mix on a long-term timescale. Studies carried out over the last decade, both within Government and the Learned Societies, include consideration of futures with a nuclear contribution to electricity generation capacity of up to 75 gigawatts (GW) by around the middle of the 21st century; they also include scenarios with much lower contributions from nuclear energy. The potential growth of the nuclear sector in the UK will not be driven by technology alone. A complex mix of Government policy, relative cost of nuclear power, market decisions and public opinion will influence the rate and direction of growth in the decades to come. It is this level of unpredictability that obliges Government to keep a wide range of technological options open for the future and therefore to maintain an agile and flexible Research and Development (R&D) capability. The aim of carrying out nuclear R&D programmes is to ensure that the UK is able to make informed decisions on future nuclear options. This includes having the capability and capacity to expand or contract the contribution of nuclear energy if required, realise industrial benefits, develop and exploit intellectual property (IP) internationally, and be seen as a credible international partner, which may include hosting international facilities. -
New Reactor Concepts for New Generation of Nuclear Power Plants in the Usa: an Overview
Fifth Yugoslav Nuclear Society Conference YUNSC - 2004 ████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████ NEW REACTOR CONCEPTS FOR NEW GENERATION OF NUCLEAR POWER PLANTS IN THE USA: AN OVERVIEW JASMINA VUJIĆ, EHUD GREENSPAN and MIODRAG MILOŠEVIĆ* Department of Nuclear Engineering, University of California, Berkeley, CA, USA [email protected], [email protected] *VINCA Institute of Nuclear Sciences, Belgrade, Serbian and Montenegro [email protected] ABSTRACT With the growing demands for more reliable energy sources, there is an international interest in the development of new nuclear energy systems to be deployed between 2010 and 2030, that will improve safety and reliability, decrease proliferation risks, improve radioactive waste management and lower cost of nuclear energy production. Six nuclear energy systems were selected as candidates for this Generation IV initiative. In this paper we will explore each of these concepts, as well as several of more advanced concepts. Key words: Generation IV, nuclear energy systems, non-proliferation 1. INTRODUCTION Just a few years ago, many analysts were projecting the decline of nuclear power. Reality has proven these projections to be wrong. The reasons for revival of nuclear energy are very clear: • nuclear plants have performed exceedingly well. As a group, U.S. nuclear utilities have improved the availability of their -
THE FUTURE of NUCLEAR ENERGY to 2030 and ITS IMPLICATIONS for SAFETY, SECURITY and NONPROLIFERATION Part 1 – the Future of Nuclear Energy to 2030
THE FUTURE OF NUCLEAR ENERGY TO 2030 AND IT’S IMPLICATIONS FOR SAFETY, SECURITY AND NON PROLIFERATION: PART 2 – THE FUTURE OF NUCLEAR ENERGY TO 2030 TO THE FUTURE OF NUCLEAR ENERGY 2 – PART AND NON PROLIFERATION: SECURITY FOR SAFETY, AND IT’S IMPLICATIONS 2030 TO THE FUTURE OF NUCLEAR ENERGY THE FUTURE OF NUCLEAR ENERGY TO 2030 AND ITS IMPLICATIONS FOR SAFETY, SECURITY AND NONPROLIFERATION Part 1 – The Future of Nuclear Energy to 2030 57 Erb Street West TREVOR FINDLAY Waterloo, Ontario N2L 6C2, Canada tel +1 519 885 2444 fax +1 519 885 5450 www.cigionline.org CIGIONLINE.ORG Addressing International Governance Challenges The Future of Nuclear Energy to 2030 and its Implications for Safety, Security and Nonproliferation Part 1 – The Future of Nuclear Energy to 2030 Trevor Findlay CIGI’s Nuclear Energy Futures Project is conducted in partnership with the Canadian Centre for Treaty Compliance (CCTC) at the Norman Paterson School of International Affairs, Carleton University, Ottawa. The project is chaired by CIGI Distinguished Fellow Louise Fréchette and directed by CIGI Senior Fellow Trevor Findlay, director of CCTC. CIGI gratefully acknowledges the Government of Ontario’s contribution to this project. The opinions expressed in this report are those of the author(s) and do not necessarily reflect the views of The Centre for International Governance Innovation, its Board of Directors and/or Board of Governors, or the Government of Ontario. Copyright © 2010 The Centre for International Governance Innovation (CIGI), Waterloo, Ontario, Canada (www.cigionline.org). This work is licensed under a Creative Commons Attribution — Noncommercial — No Derivatives License.