Digital Radio Mondiale – Written Evidence (DAD0015)

Total Page:16

File Type:pdf, Size:1020Kb

Digital Radio Mondiale – Written Evidence (DAD0015) Digital Radio Mondiale – written evidence (DAD0015) We in the global not-for profit Digital Radio Mondiale (DRM) Consortium* welcome the examination and report on the impact of digital technologies on the democratic processes in the country. While this call for evidence will perhaps automatically point towards IP and social media, our contention is that radio has always been a great aggregator and influencer of the national political discourse and, therefore, digital radio should be fully included in this examination. We consider that digital radio, as an integrator of audio, video and internet information with the possibility of allowing immediate reaction and participation through publicised mobile and IP addresses, has a crucial and positive role to play in deepening democracy. In this context we would like to make the case for digital radio, but not just for DAB, the standard supported and introduced at great cost and at slow speed in the UK over the last 20 odd years. We would urge you to consider afresh and with an open mind in your deliberations all the possible solutions, including the only all frequencies, efficient, open digital standard, the Digital Radio Mondiale (DRM). In tandem with DAB (for Band III only), DRM for all frequency bands and areas not covered at present by DAB would offer a strong, unique, comprehensive platform that would be available and affordable for all the UK citizens, whether they live in the big cities or on far away Scottish islands or less populated Welsh valleys. With only 38.3% of digital listening delivered by DAB, and relatively small figures for apps (10%) and TV (5%), it is clear that DRM has a big role to play. After all, DRM can digitise efficiently FM, longwave, shortwave and mediumwave. One of the most popular national radio programmes is BBC Radio5 Live on mediumwave and DAB+ cannot replicate its current reach. With DRM in mediumwave this would be easily possible. DRM and its sister open standards DAB/DAB+ have been developed by roughly the same engineers in the UK, France, US and Germany and are complementary, as together they could offer audio and data covering 100% of the country. However, DAB is only used in the VHF band III. It was first rolled out in the UK in 1995 and is quite successful in many parts of the UK but not everywhere. DAB is a standard devised mainly for major players and not for the small commercial and community stations or sparsely populated areas. Small scale DAB trials are continuing, and licenses are being requested. Fundamentally, (even small-scale) DAB+ multiplexes are not spectrum efficient and do not offer the level of localism and differentiation that is the mark of a vibrant and diverse radio offer, engaging equally and comprehensively all listeners at national and local level. 1 DRM works very efficiently in all the radio spectrum bands (also used in the UK) without using the multiplex solution: The configuration for the AM bands is intended for broadcasts on short, medium and long wave up to 30 MHz and offering FM like quality sound over large territories within a country. With only a few AM DRM digital transmitters the coverage of an entire country is possible. In addition, it offers more programme choice, as three audio programmes and one data channel can be used on one single frequency (compared to analogue today with just one programme). The configuration for the VHF bands above 30 MHz is tailored for local (cities) and regional coverage with broadcaster-controlled transmissions. As in digital AM, the VHF solution also offers three audio programmes and one data channel on one VHF frequency, instead of one programme in analogue today. DRM is being used successfully by the BBC World Service. It is being rolled out in India as the standard of choice (DRM signals are already available to 600 million people). In India there are over 1.5 million cars that have been sold in the past 18 months with DRM receivers incorporated and at no cost to the buyers at all. (Incidentally, all major car manufacturers have a DRM solution which is often a software update away). Chipsets to produce DAB/DRM receivers, whether for cars or home, exist today. A DAB-DRM solution would offer the following practical advantages to strengthen a healthy, active, digitally literate democracy: Full country coverage without gaps now (before the near and undefined future when broadband and 5G are fully and nationally rolled-out). Choice of information from national to regional and local, as radio’s great strength is to offer the wider picture while ensuring the much-cherished localism – this leads to engagement, participation and stronger democratic processes. A national digital radio parliamentary channel with local opt-outs would definitely deepen the engagement of the politicians and of the population in the democratic process. Using the DRM technology this could be easily done (and at not great additional cost as digital means compression and being able to run several channels in parallel, where at the moment there is only one analogue programme, be it BBC or commercial). A digital radio is a “visual radio”. While DAB has hardly exploited the great chance of using a much bigger screen (LED, colour), DRM can offer this possibility in full. The screen information reinforces or complements the audio programmes. The screen can be used as a place of presenting graphics, pictures, polls, maps. It can be an information board, a school blackboard, a community board, a dictionary, a guide or a teaching aid. Information can be presented in one or several languages (dialects), engaging, informing and teaching people who might otherwise be excluded from the day-today activities of their community and the democratic process 2 In DRM, one current frequency (used for one analogue audio programme) can be used to carry up to three audio channels and a lot of data. This makes multi-lingual channels easy and cheap to fit in. As a “one-to-many” (as opposed to the “one-to-one” IP solutions) radio, in general, and digital radio, gives equal and more widespread access to the democratic processes preserving the anonymity and privacy of the listeners. As radio does not have “a back-channel” as such, like social media, for example, the digital screen can offer ways to participate in the democratic debates, discussions or polls by linking or using other platforms like mobiles or social media. This creates a self-controlled way of participating and gives a participant the chance to engage or not and also to formulate a response or reaction in a more controlled fashion. The broadcaster can also be the curator of reactions and unfilgtered or offensive contributions can be easily excluded. So, while listening remains anonymous, engaging becomes a transparent and conscious, responsible activity. Digital radio and its visual/screen are a unique and excellent way of giving sections of the population, i.e. disabled groups of people, people who do not speak the language at all or very well a chance to be informed and engage fully in the debate, widening the process. This cannot happen with analogue radio. In conclusion we think that democracy in an integrated, convergent advance technological society could be enhanced by a few visionary decisions: 1. Recommend digital radio as a main platform for enhancing and deepening democracy in the country. DRM could easily complement DAB and ensure full coverage of the entire country including Scotland and Wales supporting OFCOM and broadcasters, like the BBC, in relaying a rich content bouquet (audio and visual) to the remotest parts of the UK and providing equal access for all. 2. Chipsets and modules supporting both DRM and DAB standards exist already, as do receivers. And it would be a pity if old entrenched ideas, narrow commercial interests were to impede the adoption of new solutions. After all the aim of any review and political decision must be to future-proof radio in the UK and ensure its digital future (no matter which platforms and technologies will be deployed) strengthening the democratic benefits this brings to all UK listeners/citizens. 3. Enforcing the role of radio in the pursuit of genuine democracy would offer another counterweight to “false and quick news”, adding a dose of thought and real engagement on the part of the citizens. 4. Use digital/visual radio as a way of curating best internet and social media information and reactions (RSS feeds can be put on the wider digital screens) 3 5. Create a digital radio parliamentary channel with regional and local opt- outs, giving every listener a chance to be part of the “UK townhall debate” 6. Support digital radio and not “one digital radio technology” for the UK and make receivers with wide screen available to schools, hospitals, communities all over the country We would be very happy to make presentations, answer questions, demonstrate the advantages of DRM, its versality and suitability and contribution to an enhanced, healthy UK democracy. * Digital Radio Mondiale™ (DRM) standard is the global, all frequency broadcasting bands, green, cost and spectrum efficient, and openly standardised digital broadcasting system. DRM is the complete, internationally recognised solution for digitising radio recommended by both international organisations such as ITU and ETSI. The main objective of the DRM Consortium is to make the global and open DRM digital radio standard accepted and used at local, regional, national and international level (more details at our website: www.drm.org). The DRM (Digital Radio Mondiale) Consortium is an international not-for-profit organisation made up of over 100 members, including broadcasters (BBC – broadcasting externally in DRM, too, Radio France, All India Radio, Pakistan Broadcasting Corporation, Radio Republik Indonesia, Voice of Nigeria etc.), network providers (Encompass Media Services in the UK, Sentech in South Africa, BECIL in India), transmitter and receiver manufacturers (Ampegon, Nautel, RFmondial, Communications Systems Inc.), universities, broadcasting unions and research Institutes (such as Fraunhofer IIS in Germany, the Technical University Budapest), and many more.
Recommended publications
  • Overview of Sensors for Applications
    OVERVIEW OF SENSORS FOR APPLICATIONS Deepak Putrevu Head, MTDD/AMHTDG EM SPECTRUM Visible 0.4-0.7μm Near infrared (NIR) 0.7-1.5μm Optical Infrared Shortwave infrared (SWIR) 1.5-3.0μm Mid-wave infrared (MWIR) 3.0-8.0μm (OIR) Region Longwave IR(LWIR)/Thermal IR(TIR) 8.0-15μm Far infrared (FIR) Beyond15μm Gamma Rays X Rays UV Visible NIR SWIR Thermal IR Microwave P-band: ~0.25 – 1 GHz Microwave Region L-band: 1 -2 GHz S-band: 2-4 GHz •Sensors are 24x365 C-band: 4-8 GHz •Signal data characteristics X-band: 8-12 GHz unique to the microwave region of the EM spectrum Ku-band: 12-18 GHz K-band: 18-26 GHz •Response is primarily governed by geometric Ka-band: 26-40 GHz structures and hence V-band: 40 - 75 GHz complementary to optical W-band: 75-110 GHz imaging mm-wave: 110 – 300GHz Basic Interactions between Electromagnetic Energy and the Earth’s Surface Incident Power reflected, ρP Reflectivity: The fractional part of the radiation, P incident radiation that is reflected by the surface. Power absorbed, αP Absorptivity: the fractional part of the = Power emitted, εP incident radiation that is absorbed by the surface. Power transmitted, τP Emissivity: The ratio of the observed flux emitted by a body or surface to that of a P= Pr + Pt + Pa blackbody under the same condition. 푃 푃 푃 푟 + 푡 + 푎 = 1 푃 푃 푃 Transmissivity: The fractional part of the ρ + τ + α =1 radiation transmitted through the medium. At thermal equilibrium, absorption and emission are the same.
    [Show full text]
  • Es 201 980 V3.2.1 (2012-06)
    ETSI ES 201 980 V3.2.1 (2012-06) ETSI Standard Digital Radio Mondiale (DRM); System Specification 2 ETSI ES 201 980 V3.2.1 (2012-06) Reference RES/JTC-DRM-26 Keywords broadcasting, digital, DRM, radio ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. The copyright and the foregoing restriction extend to reproduction in all media. © European Telecommunications Standards Institute 2012.
    [Show full text]
  • DRM 2020 Review
    DRM 2020 Review DIGITAL radio for all www.drm.org Contents Foreword ................................................................................................................................ 3 Section 2 ­ DRM Technically Better Than Ever ................................................. 12 Section 1 – Global DRM Reaches Beyond India • DRM Simplified ­ ETSI Reccommendations India Update.......................................................................................................................... 5 • DRM for FM – An Even More Efficient Solution Now Available • Latest Digital Radio Mondiale (DRM) Developments in India • Digital Radio ­ Digital Radio ­ European Electronic Communications Code • DRM Consortium Announces Creation of DRM Automotive Workgroup Sends Powerful Message to Countries Adopting DRM Globally for India • DRM – Key Member of the Digital Radio Standards Family • DRM Gospell Receivers Available to Buy in India Through Antriksh • DRM Handbook Updated Digital Solutions • Over to Your: Your Questions on DRM Answered Pakistan .................................................................................................................................. 9 Section 3 – DRM Showcases Reach Further in 2020..................................... 14 • Pakistan Digitisation and Automotive Policy Plans • DRM Holds Virtual General Assembly • IBC – Best DRM IBC event in its History Indonesia................................................................................................................................ 9 • DRM
    [Show full text]
  • Digital Radio Broadcasting Network in the Arctic Region
    ______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION Digital Radio Broadcasting Network in the Arctic Region Oleg Varlamov, Vladimir Varlamov, Anna Dolgopyatova Moscow Technical University of Communications and Informatics Moscow, Russia [email protected], [email protected], [email protected] Abstract—Successful economic development of the Arctic 81°), where the geostationary orbit (GEO) is observed very low zone is impossible without creating a continuous information field above the horizon and only a small portion of it is visible, that covers its entire territory and is available not only at where the satellites of the required operator are not always stationary objects, but primarily in moving vehicles - ships, cars, present, providing information fields using satellites located on airplanes, etc. This information field must consist from the GEO is not possible. Approximately from 81 ° to the poles transmission of audio information (broadcasting programs), data (weather maps, ice conditions, etc.), navigation signals, alerts and GEO from the surface of the Earth is not visible even information about emergencies, and must be reserved from theoretically. different sources. As a backup system (and in the coming years, The most promising for the formation of the main the main one) it is advisable to use single-frequency digital information field in the Arctic zone can be considered satellite broadcasting networks of the Digital Radio Mondiale standard in the low frequency range. This is the most economical system for systems in highly elliptical (HEO) or low Earth (LEO) orbits. covering remote areas. For the use of these systems, have all the At the same time, the high cost of such systems, the long period necessary regulatory framework and standard high-efficiency of infrastructure deployment and the limited lifespan, combined radio transmitters.
    [Show full text]
  • DRM Implementation Guide
    digital radio for all DIGITAL radio mondiale DRM Introduction and Implementation Guide Revision 3 www.drm.org February 2018 D E T A D P U digital radio for all DIGITAL radio mondiale IMPRESSUM The DRM Digital Broadcasting System Introduction and Implementation Guide Copyright: DRM Consortium, Postal Box 360, CH – 1218 Grand-Saconnex, Geneva, Switzerland All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Published and produced by the DRM Consortium Editors: Nigel Laflin, Lindsay Cornell Date of Publication: Revision 3, February 2018 Designed by: Matthew Ward For inquiries and orders contact: [email protected] www.drm.org Registered address: DRM Consortium, PO BOX 360, CH – 1218, Grand-Saconnex, Geneva, Switzerland @drmdigitalradio www.facebook.com/digitalradiomondiale.drm 2 The DRM Digital Broadcasting System Introduction and Implementation Guide PREFACE This guide is aimed at the management of broadcasting organisations in areas of policy making as well as in programme making and technical planning. It explains in some detail the advantages gained by radio broadcasters introducing the DRM ® Digital Radio Mondiale™ technology and some of the technical and commercial considerations they need to take into account in formulating a strategy for its introduction. The guide is a development of the previous ‘Broadcast User Guide’ and includes information on latest system and regulatory aspects for the introduction of the various DRM system variants. It also includes links to reports and articles on an extensive range of highly successful real-life trials. Digital Radio Mondiale (DRM) is the universal, openly standardised digital broadcasting system for all broadcasting frequencies up to 300 MHz, including the AM bands (LF, MF, HF) and VHF bands I, II (FM band) and III.
    [Show full text]
  • High-Frequency Radiowa Ve Probing of the High-Latitude Ionosphere
    RAYMOND A. GREENWALD HIGH-FREQUENCY RADIOWAVE PROBING OF THE HIGH-LATITUDE IONOSPHERE During the past several years, a program of high-frequency radiowave studies of the high-latitude ionosphere has been developed in the APL Space Department. Studies are now being conducted on the formation and motion of high-latitude ionospheric electron density irregularities, using a sophisti­ cated high-frequency radar system installed at Goose Bay, .Labrador. The radar antenna is also being used to receive signals from a beacon transmitter located at Thule, Greenland. This information is providing a better understanding of the spatial and temporal variability of high-latitude propagation channels and their relationship to disturbances in the magnetosphere-ionosphere system . INTRODUCTION turbances prior to their impingement on the magneto­ At altitudes above 100 kilometers, the atmosphere sphere is quite limited. Therefore, we still have only of the earth gradually changes from a predominantly limited success in forecasting sudden changes in the neutral medium to an increasingly ionized gas or plas­ high-latitude ionosphere and consequently in high­ ma. The ionization is caused chiefly by a combination latitude radiowave propagation. of solar extreme ultraviolet radiation and, at high lati­ In order for space scientists to obtain a better un­ tudes, particle precipitation from the earth's magne­ derstanding of the various interactions occurring tosphere. Because of its ionized nature between 100 among the solar wind, the magnetosphere, and the ion­ and 1000 kilometers, this part of the atmosphere is osphere, active measurement programs are conduct­ commonly referred to as the ionosphere. In this re­ ed in all three regions.
    [Show full text]
  • Portable Shortwave Receivers
    Portable Shortwave Receivers ● Longwave, AM, FM and Shortwave ELITE SATELLIT ● VHF Air Band ● HD Radio Reception ● RDS Display ● Superior Sensitivity and Selectivity ● Dual Conversion Design ● Huge 5.7 Inch Backlit Display ● Drift-free Digital Phase Lock Loop ● Direct Frequency and Band Entry ● Single Sideband Synchronous Detector ● Selectable Bandwidths ● High Dynamic Range ● Dual Programmable Clocks ● Dual Event Programmable Timers ● Stereo Line Level Input ● Stereo Line Level Output ● Earphone Jack ● Separate Bass and Treble Controls ● Adjustable AGC: Fast or Slow ● Telescopic Antenna AM/FM/SW ● Battery (4xD) or Included AC Adapter ● Scan and Search ● 1700 Total Memories (500 alphanumeric) ● Deluxe Carry Bag The Elite Satellit is simply the finest full-sized portable in the world. The Elite Satellit is an elegant confluence of performance, features and capabilities. The look, feel and finish of this radio is superb. The solid, quality feel is second to none. The digitally synthesized, dual conversion shortwave tuner covers all long wave, mediums wave (AM) and shortwave frequencies. HD Radio improves audio fidelity and adds additional programming without a subscription fee. Adjacent frequency interference can be minimized or eliminated with a choice of three bandwidths [7.0, 4.0, 2.5 kHz]. The sideband selectable Synchronous AM Detector further minimizes adjacent frequency interference and reduces fading distortion of AM signals. IF Passband Tuning is yet another advanced feature that functions in AM and SSB modes to reject interference. AGC is selectable at fast or slow. High dynamic range permits the detection of weak signals in the presence of strong signals. All this coupled with great sensitivity will bring in stations from every part of the globe.
    [Show full text]
  • Hans Knot International Radio Report April 2016 Welcome to Another
    Hans Knot International Radio Report April 2016 Welcome to another edition of the International Radio Report. Thanks all for your e mails, memories, photos, questions and more. Part of the report is what was left after the March edition was totally filled and so let’s go with this edition in which first there’s space for a story I wrote last months after again doing some research: ‘Ronan O’Rahilly, Georgie Fame and the Blue Fames. Where it really went wrong!’ On this subject I’ve written before but let’s go back in time and also add some new facts to it: ‘Was Ronan O’Rahilly the manager of Georgie Fame?’ I can tell you there was a problem with an important instrument. When in April 1964 Granada Television came with an edition of the ‘World in action’ series, which was a production from Michael Hodges, they informed the television public about a new form of Piracy, the watery pirates. Two radio ships bringing music and entertainment under the names of Radio Caroline and Radio Atlanta. Radio Caroline was the first 20th century Pirate off the British coast with programs, at that stage, for 12 hours a day. Interviews with the Caroline people were made in the offices of Queen Magazine in the city of London and included – among others – Jocelyn Stevens and the then 23-year old Irish Ronan O’Rahilly. During this documentary it became known, which we would also read in several newspapers in the then following weeks, that Ronan O’Rahilly had started his radiostation Caroline as he couldn’t get his artists played on stations like Radio Luxembourg.
    [Show full text]
  • Downloaded 09/25/21 09:30 PM UTC
    1434 JOURNAL OF HYDROMETEOROLOGY VOLUME 9 NASA Cold Land Processes Experiment (CLPX 2002/03): Local Scale Observation Site ϩ JANET HARDY,* ROBERT DAVIS,* YEOHOON KOH,* DON CLINE, KELLY ELDER,# RICHARD ARMSTRONG,@ HANS-PETER MARSHALL,@ THOMAS PAINTER,& ϩϩ GILLES CASTRES SAINT-MARTIN,** ROGER DEROO,** KAMAL SARABANDI,** TOBIAS GRAF, ϩϩ TOSHIO KOIKE, AND KYLE MCDONALD## *Cold Regions Research and Engineering Laboratory, Engineer Research and Development Center, U.S. Army Corps of Engineers, Hanover, New Hampshire ϩNOAA/NWS/National Operational Hydrologic Remote Sensing Center, Chanhassen, Minnesota #USDA Forest Service, Fort Collins, Colorado @University of Colorado, Boulder, Colorado &University of Utah, Salt Lake City, Utah **University of Michigan, Ann Arbor, Michigan ϩϩUniversity of Tokyo, Tokyo, Japan ##NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (Manuscript received 12 January 2007, in final form 19 March 2008) ABSTRACT The local scale observation site (LSOS) is the smallest study site (0.8 ha) of the 2002/03 Cold Land Processes Experiment (CLPX) and is located within the Fraser mesocell study area. It was the most intensively measured site of the CLPX, and measurements here had the greatest temporal component of all CLPX sites. Measurements made at the LSOS were designed to produce a comprehensive assessment of the snow, soil, and vegetation characteristics viewed by the ground-based remote sensing instruments. The objective of the ground-based microwave remote sensing was to collect time series of active and passive microwave spectral signatures over snow, soil, and forest, which is coincident with the intensive physical characterization of these features. Ground-based remote sensing instruments included frequency modulated continuous wave (FMCW) radars operating over multiple microwave bandwidths; the Ground-Based Mi- crowave Radiometer (GBMR-7) operating at channels 18.7, 23.8, 36.5, and 89 GHz; and in 2003, an L-, C-, X- and Ku-band scatterometer radar system.
    [Show full text]
  • AN1597 Longwave Radio Data Decoding Using an HC11 and an MC3371
    Freescale Semiconductor, Inc... microprocessor used for decoding is the MC68HC(7)11 while microprocessor usedfordecodingisthe MC68HC(7)11 2023. and 1995 between distinguish Itisnotpossible to 2022. and thiscanbeusedtocalculate ayearintherange1995to beworked out cyclecan,however, leap–year/year–start–day data.Thepositioninthe28–year available andcannotbeuniquelydeterminedfromthe transmitted and yeartype)intoday–of–monthmonth.Theisnot dateinformation(day–of–week,weeknumber transmitted the form.Themicroprocessorconverts hexadecimal displayed whilst allincomingdatacanbedisplayedin In thisapplication,timeanddatecanbepermanently standards. Localtimevariation(e.g.BST)isalsotransmitted. provides averyaccurateclock,traceabletonational Freescale AMCU ApplicationsEngineering Topping Prepared by:P. This documentcontains informationonaproductunder development. This to thecompanyleasingitforuseinaspecificapplication. available blocks areusedcommerciallywhereeachblockis other 0isusedfortimeanddate(andfillerdata)whilethe Type purpose.There are16datablocktypes. used foradifferent countriesbuthasamuchlowerdatarateandis European with theRDSdataincludedinVHFradiosignalsmany aswelltheaudiosignal.Thishassomesimilarities data using an HC11 and Longwave an Radio MC3371 Data Decoding Figure 1showsablock diagramoftheapplication; Figure data is transmitted every minuteontheand Time The BBC’s Radio4198kHzLongwave transmittercarries The BBC’s Ltd.,EastKilbride RF AMPLIFIERDEMODULATOR FM BF199 FILTER/INT.: LM358 FILTER/INT.: AMP/DEMOD.: MC3371 LOCAL OSC.:MC74HC4060
    [Show full text]
  • World Receiver Yacht Boy 400 Pe Important Notice
    WORLD RECEIVER YACHT BOY 400 PE IMPORTANT NOTICE NEED HELP? QUICK SETUP CALL OUR SHORTWAVE HOTLINE (But please read the rest of the manual later!) 1. Insert batteries or connect the included AC adaptor. If, after reading this owner’s manual, you need help learning to operate your YACHT BOY 400 PROFESSIONAL EDITION, call us toll free, Monday through Friday, 8:30 a.m. to 4:30 p.m., 2. Set the DX/LOCAL switch to DX (left side of radio). PST at: 1-800-872-2228 from the U.S. 3. Turn the SSB switch OFF (right side of radio). 1-800-637-1648 from Canada OWNER’S RECORD 4. Fully extend the telescopic antenna. This model is the GRUNDIG YACHT BOY 400 PROFES- 5. With the radio off, press and release the AM button once. SIONAL EDITION, herin after referred to as the YB400PE. The serial number is located on the sticker inside the battery compartment. Refer to this number whenever you call GRUNDIG 6. Immediately press and release the STEP button. regarding this product. “10KHz” now appears in the right side of the display, and will disappear in a few seconds. (See page 4 for more information about this procedure. 7. Turn the radio on by pressing the ON/OFF button. 1 TABLE OF CONTENTS SUBJECT PAGE GRUNDIG TOLL-FREE PHONE NUMBER………………………………………………………….............................. 1 TABLE OF CONTENTS………………………………………………………….……………………............................ 2 YOUR RADIO AT-A-GLANCE………………………………………………….……………………............................. 3 INITIAL SETUP…………………………………………………………………..……………………............................ 4 SUPPLYING POWER…………………………………………………………….……………………............................ 5 GENERAL RADIO OPERATION………………………………………………..……………………............................. 6-8 SHORTWAVE RADIO OPERATION…………………………………………...……………………............................... 9-10 STORING STATIONS INTO MEMORY………………………………………..…………………….............................. 11-12 USING CLOCK, ALARM, AND SLEEP TIMER FEATURES..............................……………………............................
    [Show full text]
  • Quick Start Pl-990
    TECSUN PL-990 QUICK START FM-stereo / Longwave / Medium Wave / Shortwave-SSB Audio Player TIME Clock time User Manual Page 7 ANT. GAIN DX / Local Gain Selection User Manual Page 17 AUDIO PLAYBACK CONTROLS User Manual Page 20 SNOOZE DISPLAY (top side) User Manual Pages 19, 21, 24 and 25 ● Time setting (24-hour clock) DX: For distant or weak stations. This device supports 16bit / 44.1kHz audio files in FLAC / WAV / APE / ● Snooze: When the power on alarm time is reached (TIMER A / TIMER B), quick press the button to 1. Press and hold [ TIME ] until the clock flashes. NORM: Standard WMA and MP3 formats. temporarily turn off the device; it will turn on again after 5 minutes. 2. Use the numeric keys to enter the time (4 digits). LOCAL: For near or strong stations. [ ] Play/Pause: Quick press ● Display: While listening to radio, quick press to switch between Signal Strength/Signal-to-Noise Ratio, alarm time, ● With the device on, quick press to switch between clock and radio / audio player display. Repeat track: Press and hold clock time and memory location information. ● Display: While listening to the audio player, quick press to display the current album number and the total number of ANT. SWITCH Antenna Selection User Manual Page 8 [ ] Previous: Quick press twice Restart track: Quick press tracks within the album. Quick press again to display the total number of albums and audio tracks. INT.: Whip antenna TIMER A, TIMER B Auto Turn On (Alarm) User Manual Pages 22, 23 Rewind: Press and hold ● Keylock: Press and hold, causing the “ “ icon to appear on the display.
    [Show full text]