Regulation of Cell Polarity by Exocyst-Mediated Trafficking

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of Cell Polarity by Exocyst-Mediated Trafficking Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Regulation of Cell Polarity by Exocyst-Mediated Trafficking Noemi Polgar and Ben Fogelgren Department of Anatomy, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii 96813 Correspondence: [email protected] One requirement for establishing polarity within a cell is the asymmetric trafficking of intra- cellular vesicles to the plasma membrane. This tightly regulated process creates spatial and temporal differences in both plasma membrane composition and the membrane-associated proteome. Asymmetric membrane trafficking is also a critical mechanism to regulate cell differentiation, signaling, and physiology. Many eukaryotic cell types use the eight-protein exocyst complex to orchestrate polarized vesicle trafficking to certain membrane locales. Members of the exocyst were originally discovered in yeast while screening for proteins required for the delivery of secretory vesicles to the budding daughter cell. The same eight exocyst genes are conserved in mammals, in which the specifics of exocyst-mediated traf- ficking are highly cell-type-dependent. Some exocyst members bind to certain Rab GTPases on intracellular vesicles, whereas others localize to the plasma membrane at the site of exocytosis. Assembly of the exocyst holocomplex is responsible for tethering these vesicles to the plasma membrane before their soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated exocytosis. In this review, we will focus on the role and regulation of the exocyst complex in targeted vesicular trafficking as related to the establish- ment and maintenance of cellular polarity. We will contrast exocyst function in apicobasal epithelial polarity versus front–back mesenchymal polarity, and the dynamic regulation of exocyst-mediated trafficking during cell phenotype transitions. symmetric membrane trafficking is a critical man 1979; Novick et al. 1980). Differential sed- Amechanism by which cell polarity is estab- imentation in a density gradient enabled the lished and maintained. It is becoming evident identification of abnormally heavy yeast cells that a large variety of eukaryotic cells can use the harboring mutations in genes critical for the octameric exocyst protein complex as a “Swiss budding of the daughter cell. Later, eight of army knife” to execute a diverse number of po- the identified genes, Sec3, Sec5, Sec6, Sec8, larized trafficking processes. Members of the Sec10, Sec15, Exo70, and Exo84 (also called exocyst complex were first identified as regula- EXOC1–8, respectively) were shown to encode tors of polarized exocytosis in the budding yeast proteins that copurified with each other, and Saccharomyces cerevisiae, during a genetic this interacting complex was named the exocyst screen of secretory mutants (Novick and Schek- (Terbush et al. 1996; Guo et al. 1999a). This 750- Editor: Keith E. Mostov Additional Perspectives on Cell Polarity available at www.cshperspectives.org Copyright # 2017 Cold Spring Harbor Laboratory Press; all rights reserved Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a031401 1 Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press N. Polgar and B. Fogelgren kDa holocomplex is highly conserved through- bly (Fig. 1). The exocyst belongs to the family of out the eukaryotic kingdoms and null mutants complexes associated with tethering containing of individual subunits have shown early lethal- helical rods (CATCHR), in which the subunits ity in multicellular organisms (Friedrich et al. show generally low sequence homology, but 1997; Murthy et al. 2003; Fogelgren et al. 2015; have conserved helical bundles packed together Mizuno et al. 2015). into long rod-like structures (Chia and Gleeson Studies of the molecular mechanisms of 2014). Quick-freeze/deep-etch electron mi- exocyst function have been aided by emerging croscopy studies suggested that the exocyst knowledge of the exocyst’s structure and assem- subunits assemble in a side-by-side fashion, A Primary cilium B ERK1/2 Tight junction Rab11 P Crumbs complex GTP Sec15 Rabin8 PAR complex Vesicle Rab8 GTP Sec10 Adherens junction Vesicle Rab8-GDP Scribble complex C Sec15 Sec8 Exocyst Vesicle Exo84 Sec6 Sec5 Desmosome Sec10 Par GTPases complex PIPK1γ Cytoplasm Exo70 Sec3 Site of exocytosis Figure 1. Exocyst function in epithelial polarity. (A) The Rab11–Rabin8–Rab8 cascade facilitates Sec15 binding to the secretory vesicle. (B)PIPKg activity leads to a localized accumulation of the membrane phospholipid phosphatidylinositol(4,5)-bisphosphate (PtdIns(4,5)P2) (marked turquoise). By binding these phospholipids, Exo70 and Sec3 act as spatial landmarks for exocytosis at the plasma membrane. (C) The exocyst complex regulates polarity establishment and maintenance in association with GTPases, membrane phospholipids, and polarity complexes, and by trafficking secretory vesicles to several different membrane domains of epithelial cells. 2 Advanced Online Article. Cite this article as Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a031401 Downloaded from http://cshperspectives.cshlp.org/ on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Cell Polarity and Exocyst-Mediated Trafficking forming a T- or Y-shaped complex, in which the branes at the site of exocytosis independently of amino-terminal arms are responsible for mem- actin polymerization, and Exo70 could arrive to brane tethering and regulatory interactions and polarized sites via both actin-dependent and the carboxy-terminal domains pack together in -independent routes (Finger et al. 1998; Boyd parallel (Hsu et al. 1998; Matern et al. 2001; et al. 2004; Zajac et al. 2005; Liu and Novick Munson and Novick 2006). Early work in yeast 2014). Other studies of yeast and mammalian implicated Sec15 as the subunit that directly vesicle trafficking, however, suggest that the bound Rab GTPases on the surface of secretory exocyst holocomplex, including Sec3 and vesicles (Salminen and Novick 1989; Guo et al. Exo70, can be present on secretory vesicles 1999b), and Sec3 as the plasma-membrane- and that the polarized subcellular localization bound subunit and the spatial landmark for of Sec3 is dependent on an intact secretory exocyst-destined exocytosis (Finger et al. pathway and actin polymerization (Roumanie 1998). Subunit interactions of the exocyst com- et al. 2005; Bendezu and Martin 2011; Bendezu plex have been extensively studied using various et al. 2012). In addition, AP-1B, a vesicle-asso- methods in yeast and in mammals. These stud- ciated clathrin adaptor protein, which is re- ies revealed and confirmed stronger pairwise sponsible for basolateral protein sorting in ep- interactions, such as those between Sec3– ithelia, facilitated the recruitment of both Exo70 Sec5, Sec6–Sec8, and Sec10–Sec15 (Guo et al. and Sec8 to the secretory vesicle (Folsch et al. 1999a,b; Matern et al. 2001; Vegaand Hsu 2001; 2003). This finding supports the model in Munson and Novick 2006; Katoh et al. 2015; which all exocyst subunits—both Exo70- and Heider et al. 2016). Some exocyst interaction– Sec8-containing subcomplexes—are present based models proposed two four-subunit sub- on the vesicle. complex-architectures for both yeast and mam- To fulfill its tethering function following malian complexes. Here, the core module of vesicle delivery, the exocyst has to interact with Sec3, Sec5, Sec6, and Sec8 is connected to the the target membrane. This interaction is medi- vesicle-attached subcomplex of Sec10, Sec15, ated through direct binding of Sec3 and Exo70 Exo70, and Exo84 mainly through the Sec8– subunits with phosphatidylinositol(4,5)-bis- Sec10 interaction (Katoh et al. 2015; Heider phosphate (PtdIns(4,5)P2) located primarily et al. 2016). This supports previous cell frac- on the inner leaflet of the plasma membrane tionation studies showing distinct distribution (He et al. 2007; Liu et al. 2007; Zhang et al. of Sec10–Exo84 and Sec5–Sec6 cofractions in 2008; Shewan et al. 2011; Pleskot et al. 2015). rat pheochromocytoma cells (Moskalenko et al. The first studies of the exocyst in polarized ep- 2003). In mammals, several of the subunits are ithelial cells implicated the exocyst in mainly predicted to have different isoforms as a result basolateral vesicle trafficking to sites of cell– of alternative splicing (UniProt Consortium cell contacts (Grindstaff et al. 1998; Lipschutz 2015). Discussed later in this review, alternative et al. 2000). Yet, the finding that members of splicing of the exocyst genes might be a major the exocyst complex can directly bind with regulatory mechanism by which cells control PtdIns(4,5)P2, which can be located on the api- polarity and phenotype. cal surface of polarized mammalian epithelial cells (Di Paolo and De Camilli 2006; Gassama- Diagne et al. 2006; Martin-Belmonte et al. Exocyst in Trafficking and Plasma-Membrane 2007), suggested the potential that the exocyst Targeting may also take part in apical delivery under cer- Initial studies in budding yeast suggested that tain conditions. Although this exocyst–phos- six of the exocyst subunits traveled to the cell pholipid interaction may be crucial for exocytic membrane associated with exocytic vesicles events, the spatial and temporal control of exo- along actin cables, transported by the type V cyst-mediated exocytosis also hinges
Recommended publications
  • Genetic Analysis of Retinopathy in Type 1 Diabetes
    Genetic Analysis of Retinopathy in Type 1 Diabetes by Sayed Mohsen Hosseini A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Medical Science University of Toronto © Copyright by S. Mohsen Hosseini 2014 Genetic Analysis of Retinopathy in Type 1 Diabetes Sayed Mohsen Hosseini Doctor of Philosophy Institute of Medical Science University of Toronto 2014 Abstract Diabetic retinopathy (DR) is a leading cause of blindness worldwide. Several lines of evidence suggest a genetic contribution to the risk of DR; however, no genetic variant has shown convincing association with DR in genome-wide association studies (GWAS). To identify common polymorphisms associated with DR, meta-GWAS were performed in three type 1 diabetes cohorts of White subjects: Diabetes Complications and Control Trial (DCCT, n=1304), Wisconsin Epidemiologic Study of Diabetic Retinopathy (WESDR, n=603) and Renin-Angiotensin System Study (RASS, n=239). Severe (SDR) and mild (MDR) retinopathy outcomes were defined based on repeated fundus photographs in each study graded for retinopathy severity on the Early Treatment Diabetic Retinopathy Study (ETDRS) scale. Multivariable models accounted for glycemia (measured by A1C), diabetes duration and other relevant covariates in the association analyses of additive genotypes with SDR and MDR. Fixed-effects meta- analysis was used to combine the results of GWAS performed separately in WESDR, ii RASS and subgroups of DCCT, defined by cohort and treatment group. Top association signals were prioritized for replication, based on previous supporting knowledge from the literature, followed by replication in three independent white T1D studies: Genesis-GeneDiab (n=502), Steno (n=936) and FinnDiane (n=2194).
    [Show full text]
  • G Protein Regulation of MAPK Networks
    Oncogene (2007) 26, 3122–3142 & 2007 Nature Publishing Group All rights reserved 0950-9232/07 $30.00 www.nature.com/onc REVIEW G Protein regulation of MAPK networks ZG Goldsmith and DN Dhanasekaran Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA, USA G proteins provide signal-coupling mechanisms to hepta- the a-subunits has been used as a basis for the helical cell surface receptors and are criticallyinvolved classification of G proteins into Gs,Gi,Gq and G12 in the regulation of different mitogen-activated protein families in which the a-subunits that show more than kinase (MAPK) networks. The four classes of G proteins, 50% homology are grouped together (Simon et al., defined bythe G s,Gi,Gq and G12 families, regulate 1991). In G-protein-coupled receptor (GPCR)-mediated ERK1/2, JNK, p38MAPK, ERK5 and ERK6 modules by signaling pathways, ligand-activated receptors catalyse different mechanisms. The a- as well as bc-subunits are the exchange of the bound GDP to GTP in the a-subunit involved in the regulation of these MAPK modules in a following which the GTP-bound a-subunit disassociate context-specific manner. While the a- and bc-subunits from the receptor as well as the bg-subunit. The GTP- primarilyregulate the MAPK pathwaysvia their respec- bound a-subunit and the bg-subunit stimulate distinct tive effector-mediated signaling pathways, recent studies downstream effectors including enzymes, ion channels have unraveled several novel signaling intermediates and small GTPase, thus regulating multiple signaling including receptor tyrosine kinases and small GTPases pathways including those involved in the activation of through which these G-protein subunits positivelyas well mitogen-activated protein kinase (MAPK) modules as negativelyregulate specific MAPK modules.
    [Show full text]
  • Stranded DNA and Sensitizes Human Kidney Renal Clear Cell Carcinoma
    RESEARCH ARTICLE Exosome component 1 cleaves single- stranded DNA and sensitizes human kidney renal clear cell carcinoma cells to poly(ADP-ribose) polymerase inhibitor Qiaoling Liu1†, Qi Xiao1†, Zhen Sun1†, Bo Wang2†, Lina Wang1, Na Wang1, Kai Wang1, Chengli Song1*, Qingkai Yang1* 1Institute of Cancer Stem Cell, DaLian Medical University, Dalian, China; 2Department of General Surgery, Second Affiliated Hospital, DaLian Medical University, Dalian, China Abstract Targeting DNA repair pathway offers an important therapeutic strategy for Homo sapiens (human) cancers. However, the failure of DNA repair inhibitors to markedly benefit patients necessitates the development of new strategies. Here, we show that exosome component 1 (EXOSC1) promotes DNA damages and sensitizes human kidney renal clear cell carcinoma (KIRC) cells to DNA repair inhibitor. Considering that endogenous source of mutation (ESM) constantly assaults genomic DNA and likely sensitizes human cancer cells to the inhibitor, we first analyzed the statistical relationship between the expression of individual genes and the mutations for KIRC. Among the candidates, EXOSC1 most notably promoted DNA damages and subsequent mutations via preferentially cleaving C site(s) in single-stranded DNA. Consistently, EXOSC1 was more *For correspondence: significantly correlated with C>A transversions in coding strands than these in template strands in [email protected] human KIRC. Notably, KIRC patients with high EXOSC1 showed a poor prognosis, and EXOSC1 (CS); sensitized human cancer cells to poly(ADP-ribose) polymerase inhibitors. These results show that [email protected] (QY) EXOSC1 acts as an ESM in KIRC, and targeting EXOSC1 might be a potential therapeutic strategy. †These authors contributed equally to this work Competing interests: The Introduction authors declare that no DNA damages and subsequent mutations are central to development, progression, and treatment competing interests exist.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • 679514V2.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/679514; this version posted August 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The large GTPase, mGBP-2, regulates Rho family GTPases to inhibit migration and invadosome formation in Triple-Negative Breast Cancer cells. Geoffrey O. Nyabuto, John P. Wilson, Samantha A. Heilman, Ryan C. Kalb, Ankita V. Abnave, and Deborah J. Vestal* Department of Biological Sciences, University of Toledo, Toledo, OH, USA 43606 *Corresponding author: Deborah J. Vestal, Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., MS 1010, Toledo, OH 43606. Phone: 1-419-383-4134. FAX: 1-419-383-6228. Email: [email protected]. Running title: mGBP-2 inhibits breast cancer cell migration. Key words: Guanylate-Binding Protein, Triple-Negative Breast Cancer, migration, CDC42, Rac1. This work was supported by funding from the University of Toledo to D.J.V. Disclosure of Potential Conflicts of Interest No potential conflicts of interest were disclosed. 1 bioRxiv preprint doi: https://doi.org/10.1101/679514; this version posted August 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Breast cancer is the most common cancer in women. Despite advances in early detection and treatment, it is predicted that over 40,000 women will die of breast cancer in 2019. This number of women is still too high. To lower this number, more information about the molecular players in breast cancer are needed.
    [Show full text]
  • Investigating Novel Binding Partners of Exocyst Member Sec8 in the Fission
    Identifying novel interaction partners of the exocyst member Sec8 in the fission yeast Schizosaccharomyces pombe Submitted by Lauren Adams to the University of Exeter as a thesis for the degree of Masters by Research in Biological Sciences In September 2017 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: ………………………………………………………….. 1 Acknowledgements I would like to thank Dr Helen Dawe and Dr Isabelle Jourdain for being utterly brilliant supervisors. I would also like to thank Connor Horton for his continued assistance, Dr Kate Heesom (Proteomics Facility, University of Bristol), Tina Schrader (University of Exeter) for kindly providing the Mitotracker stain, and the Biosciences Department (University of Exeter) for partially funding this project. 2 Abstract The exocyst is a complex of proteins classically known for its role in tethering secretory vesicles during exocytosis, but it has since been shown to participate in a whole host of other cellular processes. Several human patients have been discovered in whom mutations in the exocyst appear to cause disease, but the underlying mechanisms are still poorly understood. This highlights an urgent need to better characterise these proteins. The exocyst complex is conserved in the fission yeast Schizosaccharomyces pombe, which is an ideal model eukaryote in which to examine conserved biological mechanisms.
    [Show full text]
  • Role of Rho Family Gtpases in Epithelial Morphogenesis
    Downloaded from genesdev.cshlp.org on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Role of Rho family GTPases in epithelial morphogenesis Linda Van Aelst1,3 and Marc Symons2 1Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 2Center for Oncology and Cell Biology, North Shore-Long Island Jewish Research Institute and Department of Surgery, North Shore-Long Island Jewish Medical Center, Manhasset, New York 11030, USA Epithelial cell sheets line the organ and body surfaces will also discuss the participation of these GTPases in and the specialized barrier functions of these epithelia epithelial remodeling during wound-healing and epithe- regulate the exchange of substances with the outside en- lial-mesenchymal transitions. vironment and between different body compartments. As other members of the Ras superfamily, Rho Epithelia play a role in a wide range of physiological GTPases cycle between a GDP-bound (inactive) state processes such as digestion, excretion, and leukocyte and a GTP-bound (active) state. In the active state, these trafficking. In addition, during development, some epi- GTPases relay signals from growth factors, cytokines, thelia form transient primitive structures, including the and adhesion molecules to regulate a wide range of bio- neural tube and somites, which are essential for the de- logical processes, including actin cytoskeleton organiza- velopment of more complex organs. tion, transcriptional regulation, and vesicle trafficking The establishment and maintenance of epithelial cell (Van Aelst and D’Souza-Schorey 1997; Hall 1998). polarity is critical for the development and functioning The nucleotide state of Rho family proteins is con- of multicellular organisms (Nelson 2000).
    [Show full text]
  • Identification of Protein Features Encoded by Alternative Exons Using Exon Ontology
    Downloaded from genome.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Identification of protein features encoded by alternative exons using Exon Ontology Léon-Charles Tranchevent,1 Fabien Aubé,1 Louis Dulaurier,1 Clara Benoit-Pilven,1 Amandine Rey,1 Arnaud Poret,1 Emilie Chautard,2 Hussein Mortada,1 François-Olivier Desmet,1 Fatima Zahra Chakrama,1 Maira Alejandra Moreno-Garcia,1 Evelyne Goillot,3 Stéphane Janczarski,1 Franck Mortreux,1 Cyril F. Bourgeois,1,4 and Didier Auboeuf1,4 1Université Lyon 1, ENS de Lyon, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, F-69007, Lyon, France; 2Laboratoire de Biométrie et Biologie Évolutive, Université Lyon 1, UMR CNRS 5558, INRIA Erable, Villeurbanne, F-69622, France; 3Institut NeuroMyoGène, CNRS UMR 5310, INSERM U1217, Université Lyon 1, Lyon, F-69007 France Transcriptomic genome-wide analyses demonstrate massive variation of alternative splicing in many physiological and pathological situations. One major challenge is now to establish the biological contribution of alternative splicing var- iation in physiological- or pathological-associated cellular phenotypes. Toward this end, we developed a computational approach, named Exon Ontology, based on terms corresponding to well-characterized protein features organized in an ontology tree. Exon Ontology is conceptually similar to Gene Ontology-based approaches but focuses on exon-encod- ed protein features instead of gene level functional annotations. Exon Ontology describes the protein features encoded by a selected list of exons and looks for potential Exon Ontology term enrichment. By applying this strategy to exons that are differentially spliced between epithelial and mesenchymal cells and after extensive experimental validation, we demonstrate that Exon Ontology provides support to discover specific protein features regulated by alternative splic- ing.
    [Show full text]
  • Comparison of the Chromosome Structures Between the Chicken
    http://www.jstage.jst.go.jp/browse/jpsa doi:10.2141/ jpsa.0130090 Copyright Ⓒ 2014, Japan Poultry Science Association. Comparison of the Chromosome Structures between the Chicken and Three Anserid Species, the Domestic Duck (Anas platyrhynchos), Muscovy Duck (Cairina moschata), and Chinese Goose (Anser cygnoides), and the Delineation of their Karyotype Evolution by Comparative Chromosome Mapping Fhamida B. Islam1, Yoshinobu Uno1, Mitsuo Nunome1, Osamu Nishimura2, 3, Hiroshi Tarui4, Kiyokazu Agata3 and Yoichi Matsuda1, 5 1 Laboratory of Animal Genetics, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan 2 Genome Resource and Analysis Unit, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan 3 Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan 4 Division of Genomic Technologies, Center for Life Science Technology, RIKEN, Yokohama 230-0045, Japan 5 Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan To better understand the process of karyotype evolution in Galloanserae (Galliformes and Anseriformes), we performed comparative chromosome painting with chicken chromosome-specific DNA probes and FISH mapping of the 18S-28S ribosomal RNA (rRNA) genes, telomeric (TTAGGG)n repeats, and cDNA clones of 37 genes for three anserid species, the domestic duck (Anas platyrhynchos), Muscovy duck (Cairina moschata), and Chinese goose (Anser cygnoides). Each chicken probe of chromosomes 1-9 and the Z chromosome painted a single pair of chromosomes in the three species except for the chromosome 4 probe, which painted acrocentric chromosome 4 and a pair of microchromosomes. The 18S-28S rRNA genes were localized to four pairs of microchromosomes in the domestic duck and Muscovy duck, and eight pairs of microchromosomes in the Chinese goose.
    [Show full text]
  • Small Gtpases of the Ras and Rho Families Switch On/Off Signaling
    International Journal of Molecular Sciences Review Small GTPases of the Ras and Rho Families Switch on/off Signaling Pathways in Neurodegenerative Diseases Alazne Arrazola Sastre 1,2, Miriam Luque Montoro 1, Patricia Gálvez-Martín 3,4 , Hadriano M Lacerda 5, Alejandro Lucia 6,7, Francisco Llavero 1,6,* and José Luis Zugaza 1,2,8,* 1 Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain; [email protected] (A.A.S.); [email protected] (M.L.M.) 2 Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain 3 Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 180041 Granada, Spain; [email protected] 4 R&D Human Health, Bioibérica S.A.U., 08950 Barcelona, Spain 5 Three R Labs, Science Park of the UPV/EHU, 48940 Leioa, Spain; [email protected] 6 Faculty of Sport Science, European University of Madrid, 28670 Madrid, Spain; [email protected] 7 Research Institute of the Hospital 12 de Octubre (i+12), 28041 Madrid, Spain 8 IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain * Correspondence: [email protected] (F.L.); [email protected] (J.L.Z.) Received: 25 July 2020; Accepted: 29 August 2020; Published: 31 August 2020 Abstract: Small guanosine triphosphatases (GTPases) of the Ras superfamily are key regulators of many key cellular events such as proliferation, differentiation, cell cycle regulation, migration, or apoptosis. To control these biological responses, GTPases activity is regulated by guanine nucleotide exchange factors (GEFs), GTPase activating proteins (GAPs), and in some small GTPases also guanine nucleotide dissociation inhibitors (GDIs).
    [Show full text]
  • A Regulator of Innate Immune Responses
    (19) TZZ ¥_T (11) EP 2 942 357 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 11.11.2015 Bulletin 2015/46 C07K 14/47 (2006.01) A61K 38/00 (2006.01) C12N 15/113 (2010.01) (21) Application number: 15169327.2 (22) Date of filing: 04.08.2009 (84) Designated Contracting States: (72) Inventor: Barber, Glen N. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Palmetto Bay, FL 33157 (US) HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR (74) Representative: Inspicos A/S Kogle Allé 2 (30) Priority: 04.08.2008 US 129975 P P.O. Box 45 2970 Hørsholm (DK) (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC: Remarks: 09805473.7 / 2 324 044 This application was filed on 27-05-2015 as a divisional application to the application mentioned (71) Applicant: Barber, Glen N. under INID code 62. Palmetto Bay, FL 33157 (US) (54) STING (STIMULATOR OF INTEFERON GENES), A REGULATOR OF INNATE IMMUNE RESPONSES (57) Novel molecules termed STING which include STING compositions are useful for the treatment of an nucleic acids, polynucleotides, oligonucleotides, pep- immune-related disorder, including treating and prevent- tides, mutants, variants and active fragments thereof, ing infection by modulating immunity. modulate innate and adaptive immunity in a subject. EP 2 942 357 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 942 357 A1 Description RELATED APPLICATIONS 5 [0001] This application claims priority under 35 USC § 119 to U.S.
    [Show full text]
  • RABIF/MSS4 Is a Rab-Stabilizing Holdase Chaperone Required for GLUT4 Exocytosis
    RABIF/MSS4 is a Rab-stabilizing holdase chaperone required for GLUT4 exocytosis Daniel R. Gulbransona, Eric M. Davisa, Brittany A. Demmitta,b, Yan Ouyanga, Yihong Yec, Haijia Yua,d,1, and Jingshi Shena,1 aDepartment of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309; bInstitute for Behavioral Genetics, University of Colorado, Boulder, CO 80309; cLaboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; and dJiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China Edited by Jennifer Lippincott-Schwartz, Howard Hughes Medical Institute, Ashburn, VA, and approved August 21, 2017 (received for review July 7, 2017) Rab GTPases are switched from their GDP-bound inactive confor- anabolic hormone insulin facilitates glucose uptake by acutely mation to a GTP-bound active state by guanine nucleotide exchange relocating GLUT4 from intracellular compartments to the cell factors (GEFs). The first putative GEFs isolated for Rabs are RABIF surface (6, 20, 21, 23). Upon the termination of insulin signaling, (Rab-interacting factor)/MSS4 (mammalian suppressor of Sec4) and GLUT4 is retrieved from the plasma membrane through endocy- its yeast homolog DSS4 (dominant suppressor of Sec4). However, tosis and returns to intracellular storage vesicles (6). Importantly, the biological function and molecular mechanism of these molecules the components of GLUT4 exocytosis are also involved in the remained unclear. In a genome-wide CRISPR genetic screen, we regulation of other exocytic pathways such as insulin secretion and isolated RABIF as a positive regulator of exocytosis.
    [Show full text]