Creeper Mussel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biodiversity Work Group Report: Appendices
Biodiversity Work Group Report: Appendices A: Initial List of Important Sites..................................................................................................... 2 B: An Annotated List of the Mammals of Albemarle County........................................................ 5 C: Birds ......................................................................................................................................... 18 An Annotated List of the Birds of Albemarle County.............................................................. 18 Bird Species Status Tables and Charts...................................................................................... 28 Species of Concern in Albemarle County............................................................................ 28 Trends in Observations of Species of Concern..................................................................... 30 D. Fish of Albemarle County........................................................................................................ 37 E. An Annotated Checklist of the Amphibians of Albemarle County.......................................... 41 F. An Annotated Checklist of the Reptiles of Albemarle County, Virginia................................. 45 G. Invertebrate Lists...................................................................................................................... 51 H. Flora of Albemarle County ...................................................................................................... 69 I. Rare -
Natural Resources Technical Report
TRANSFORM 66 OUTSIDE the Beltway I-66 CORRIDOR 66 IMPROVEMENTS PROJECT Multimodal Solutions - 495 to Haymarket Tier 2 Draft Environmental Assessment 193 Town of Natural Resources TechnicalTown of Report Middleburg Herndon LOUDOUN FAUQUIER 50 267 Washington Dulles McLean International Airport 309 28 286 Tysons Corner West Falls Church 7 Chantilly Dunn Loring FALLS 123 CHURCH 29 Vienna LOUDOUN Fair Lakes 50 FAIRFAX CO. 66 15 FAIRFAX CITY Centreville 286 29 236 Manassas National Battlefield Park Haymarket Fairfax Station Springfield 66 Gainesville 234 28 MANASSAS PARK PRINCE WILLIAM 29 FAUQUIER 234 123 286 215 Ft. Belvoir MANASSAS MAY 12, 2015 Tier 2 Draft Environmental Assessment Natural Resources Technical Report Draft – May 12, 2015 I-66 Corridor Improvements Project – Natural Resources Technical Report May 12, 2015 Table of Contents Chapter 1 – Introduction .......................................................................................................................... 1-1 1.1 Project Description ..................................................................................................................... 1-1 1.2 Methods ...................................................................................................................................... 1-2 Chapter 2 – Affected Environment ......................................................................................................... 2-1 2.1 Water Resources ...................................................................................................................... -
Species: Dwarf Wedgemussel (Alasmidonta Heterodon) Global
Species: Dwarf Wedgemussel (Alasmidonta heterodon) Global Rank: G1G2 State Rank: S1 State Wildlife Action Plan Priority: Immediate Concern Species CCVI Rank: Highly Vulnerable Confidence: Very High Habitat: Dwarf wedgemussels generally live in creek and river bottoms where sand is a component of the substrate (e.g., muddy sand, sand, sand and gravel bottoms), the current is slow to moderate, and there is little silt deposition (USFWS 1993). This species is discontinuously distributed in the Atlantic coast drainages from Maine to North Carolina (NatureServe 2010). Current Threats: Major threats leading to the decline of dwarf wedgemussel include impoundments, pollution, sedimentation, competition from exotic species, population-related problems, and construction projects (USFWS 1993). Main Factors Contributing to Vulnerability Rank: Predicted impact of land use changes designed to mitigate against climate change: Natural gas extraction may alter the water quality of the Delaware River. Dispersal and movement: As adults, the dwarf wedgemussel is mostly non-migratory with only limited vertical movement and possibly passive movement due to flood events (NYNHP 2010). Predicted macro sensitivity to changes in precipitation, hydrology, or moisture regime: Considering the range of the mean annual precipitation across the species’ range in Pennsylvania, the species has experienced a very small precipitation variation in the past 50 years. Dependence on specific disturbance regime likely to be impacted by climate change: More intense flooding events, likely associated with climate change in Pennsylvania, may affect dwarf wedgemussel populations by altering water/habitat quality of rivers and streams (e.g., increased silt load). Dependence on other species for propagule dispersal: Dwarf wedgemussel depends on a few fish (Johnny darter, tessellated darter, and mottled sculpin) to serve as glochidial hosts (Spoo 2008). -
Chesapeake Bay Species Habitat Literature Review
Chesapeake Bay Species Habitat Literature Review December 31, 2015 Bob Murphy Sam Stribling 1 Table of Contents Atlantic Silverside (Menidia menidia)……………………………………………...……. 3 Bay Anchovy (Anchoa mitchilli)………………………………………………..……….. 5 Black Sea Bass (Cenropristis striata)……………………………………………...…….. 8 Chain Pickerel (Esox niger)………………………………………………………..…… 11 Eastern Elliptio (Elliptio complanata)…………………………………………..…….... 13 Eastern Floater (Pyganodon cataracta) ………………………………………............... 15 Largemouth Bass (Micropterus salmoides)………………………………….............…. 17 Macoma (Macoma balthica)……………………………………………………...…..… 19 Potomac Sculpin (Cottus Girardi)…………………………………………………...…. 21 Selected Anodontine Species: Dwarf Wedgemussel (Alasmidonta heterodon), Green Floater (Lasmigona subviridis), and Brook Floater (Alasmidonia varicosa)…..... 23 Smallmouth Bass (Micropterus dolomieu)………………………………………...…… 25 Spot (Leiostomus xanthurus)…………………………………………………………… 27 Summer Flounder (Paralichthys dentatus)…………………………………………...… 30 White Perch (Morone Americana)……………………………………………………… 33 Purpose: The Sustainable Fisheries Goal Implementation Team (Fisheries GIT) of the Chesapeake Bay Program was allocated Tetra Tech (Tt) time to support Management Strategies under the 2014 Chesapeake Bay Program (CBP) Agreement. The Fish Habitat Action Team under the Fisheries GIT requested Tt develop a detailed literature review for lesser- studied species across the Chesapeake Bay. Fish and shellfish in the Chesapeake Bay and its watershed rely on a variety of important habitats throughout -
The Freshwater Bivalve Mollusca (Unionidae, Sphaeriidae, Corbiculidae) of the Savannah River Plant, South Carolina
SRQ-NERp·3 The Freshwater Bivalve Mollusca (Unionidae, Sphaeriidae, Corbiculidae) of the Savannah River Plant, South Carolina by Joseph C. Britton and Samuel L. H. Fuller A Publication of the Savannah River Plant National Environmental Research Park Program United States Department of Energy ...---------NOTICE ---------, This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Depart mentof Energy.nor any of theircontractors, subcontractors,or theiremploy ees, makes any warranty. express or implied or assumes any legalliabilityor responsibilityfor the accuracy, completenessor usefulnessofanyinformation, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. A PUBLICATION OF DOE'S SAVANNAH RIVER PLANT NATIONAL ENVIRONMENT RESEARCH PARK Copies may be obtained from NOVEMBER 1980 Savannah River Ecology Laboratory SRO-NERP-3 THE FRESHWATER BIVALVE MOLLUSCA (UNIONIDAE, SPHAERIIDAE, CORBICULIDAEj OF THE SAVANNAH RIVER PLANT, SOUTH CAROLINA by JOSEPH C. BRITTON Department of Biology Texas Christian University Fort Worth, Texas 76129 and SAMUEL L. H. FULLER Academy of Natural Sciences at Philadelphia Philadelphia, Pennsylvania Prepared Under the Auspices of The Savannah River Ecology Laboratory and Edited by Michael H. Smith and I. Lehr Brisbin, Jr. 1979 TABLE OF CONTENTS Page INTRODUCTION 1 STUDY AREA " 1 LIST OF BIVALVE MOLLUSKS AT THE SAVANNAH RIVER PLANT............................................ 1 ECOLOGICAL -
Manual to the Freshwater Mussels of MD
MMAANNUUAALL OOFF TTHHEE FFRREESSHHWWAATTEERR BBIIVVAALLVVEESS OOFF MMAARRYYLLAANNDD CHESAPEAKE BAY AND WATERSHED PROGRAMS MONITORING AND NON-TIDAL ASSESSMENT CBWP-MANTA- EA-96-03 MANUAL OF THE FRESHWATER BIVALVES OF MARYLAND Prepared By: Arthur Bogan1 and Matthew Ashton2 1North Carolina Museum of Natural Science 11 West Jones Street Raleigh, NC 27601 2 Maryland Department of Natural Resources 580 Taylor Avenue, C-2 Annapolis, Maryland 21401 Prepared For: Maryland Department of Natural Resources Resource Assessment Service Monitoring and Non-Tidal Assessment Division Aquatic Inventory and Monitoring Program 580 Taylor Avenue, C-2 Annapolis, Maryland 21401 February 2016 Table of Contents I. List of maps .................................................................................................................................... 1 Il. List of figures ................................................................................................................................. 1 III. Introduction ...................................................................................................................................... 3 IV. Acknowledgments ............................................................................................................................ 4 V. Figure of bivalve shell landmarks (fig. 1) .......................................................................................... 5 VI. Glossary of bivalve terms ................................................................................................................ -
Suitable Fish Hosts for Glochidia of Four Freshwater Mussels Mark C
Suitable Fish Hosts for Glochidia of Four Freshwater Mussels Mark C. Hove, Robin A. Engelking, Margaret E. Peteler, Eric M. Peterson, Anne R. Kapuscinski, Laurie A. Sovell, and Elaine R. Evers University of Minnesota, Department of Fisheries and Wildlife, St. Paul, Minnesota Abstract. Management of rare freshwater mussels frequently demands knowledge of their fish host(s). We conducted studies during 1993-1995 to determine suitable fish hosts for purple wartyback {Cyclonaias tuberculata), round pigtoe {Pleurobema coccineinu), cylindrical papershell (Anodontoidesferussaciamis), and squawfoot {Strophitiis undulatus). Suitable hosts were determined by artificially exposing glochidia to fish and observing if they developed into juveniles. Of 11 fish species infested with C. tuberculata glochidia, only the yellow bullhead and channel catfish served as hosts. Three cyprinids of eight fish species tested were hosts for P. coccmcum glochidia. Juvenile A. ferussaciamis were collected from aquaria holding spotfin shiner and black crappie. Six of eleven species tested were hosts for S. undulatus glochidia. These trials identified several previ ously unknown suitable hosts. Introduction Materials and Methods Conservation of North American freshwater mussel Laboratory experiments were conducted during (unionid) diversity is an increasing concern among 1993-1995 to identify suitable hosts for Cyclonaias natural resource managers. The American Fisheries tuberculata, Pleurobema coccineum, Anodontoides Society's (APS) Endangered Species Committee has ferussaciamis, and Strophitus undulatus. Unionid and announced that 72% of North America's freshwater fish nomenclature follows Turgeon et al. (1988) and mussel fauna is either endangered, threatened, or of Robins et al. (1991), respectively. Test fish were special concern (Williams et al. 1993). Freshwater collected from streams and lakes believed not to mussels are distributed throughout the world but hold the unionids under investigation in order to the greatest diversity occurs in North America. -
Survey of the Pearly Freshwater Mussels (Unionidae: Bivalvia) of the .Susquehanna River in a Reach Between Exits 14 And, 15 of Interstate 88, Oneonta, NY1
Survey of the pearly freshwater mussels (Unionidae: Bivalvia) of the .Susquehanna River in a reach between Exits 14 and, 15 of Interstate 88, Oneonta, NY1 3 Willard N. Harman2 and Emily Underwood INTRODUCTION Although long impacted by anthropogenic activities, the Susquehanna drainage basin provides habitat for about a dozen species of unionids (Clark and Berg, 1959; Harman, 1970; Strayer and Fetterman,,1999) including four "Species of Greatest Conservation Need (SGCN)" as determined by the United States fish and Wildlife Service (Bell, 2007). They are Alasmidonta varicosa (brook floater), A. marginata (elktoe), Lasmigona subviridis (green floater) and Lampsiliscariosa(Yellow lamp mussel). Previous channelization of the Susquehanna River in the Oneonta area has resulted in destabilization of gravel substrates typical of widespread activities in nearby drainage systems (Harman, 1974) resulting,.in unionid habitat degradation and destabilization of banks threatening Interstate.88, therefore requiring additional stream bed disturbance to mitigate concerns (O'JBrian ýand O'Reilly, 2007). Because of the potential presence of the SGCN at the. Oneonta work site, the New York State Department of Environmental Conservation (DEC) required the New York State Department of Transportation (DOT) to sponsor this study in order to: 1. Ascertain the presence of any unionids, including any SGCN, and if found either 2. Remove the populations to local refugia (returning them after construction) or 3. Protect them by mitigation via in stream engineering. PHYSICAL CHARACTERIZATION OF THE SITE The site includes a pool, riffles and an extensive run approximately 450 m in length in the proposed area of DOT activity. Upon first observation the entire area appeared to be poor unionid habitat, unsuitable for colonization because of substrate instability. -
Dwarf Wedgemussel, Alasmidonta Heterodon Brook Floater
MUSSELS FRESHWATER MUSSELS: Dwarf wedgemussel, Alasmidonta heterodon Status: State: Endangered Federal: Endangered Brook floater, Alasmidonta varicosa Status: State: Endangered (pending) Federal: Species of Special Concern Green floater, Lasmigona subviridis Status: State: Endangered (pending) Federal: Species of Special Concern Yellow lampmussel, Lampsilis cariosa Status: State: Threatened (pending) Federal: Species of Special Concern Eastern lampmussel, Lampsilis radiata Status: State: Threatened (pending) Federal: Not listed Eastern pondmussel, Ligumia nasuta Status: State: Threatened (pending) Federal: Not listed Tidewater mucket, Leptodea ochracea Status: State: Threatened (pending) Federal: Not listed Triangle floater, Alasmidonta undulata Status: State: Threatened (pending) Federal: Not listed Identification All freshwater mussels have a calcium carbonate bivalve shell that is divided into a left and right half. The shell consists of three layers; the outer periostracum, the middle calcium carbonate, and the inner nacre. The periostracum (or epidermis) protects underlying calcium carbonate from the corrosive action of low pH water and damage from moving sand and gravel. A thin prismatic layer of crystalline calcium carbonate lies beneath the periostracum. The nacre or mother-of-pearl is the innermost and often thickest layer of the shell. It is comprised of thin, stacked calcium carbonate plates that lie parallel to the shell’s surface. In many species, the color and texture of the nacre are important for identification. Lateral and pseudocardinal teeth, separated by an interdentum, are located dorsally inside the shell. Lateral teeth are elongated and raised interlocking structures along the hinge line of a valve, whereas pseudocardinal teeth are triangular-shaped hinge teeth near the shell’s anterior-dorsal margin. The interdentum is a flattened area of the hinge plate between the lateral and pseudocardinal teeth. -
Alasmidonta Heterodon)
University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses December 2020 In-vitro Propagation and Fish Assessments to Inform Restoration of Dwarf Wedgemussel (Alasmidonta Heterodon) Jennifer Ryan University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2 Part of the Aquaculture and Fisheries Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Ryan, Jennifer, "In-vitro Propagation and Fish Assessments to Inform Restoration of Dwarf Wedgemussel (Alasmidonta Heterodon)" (2020). Masters Theses. 990. https://doi.org/10.7275/18786186 https://scholarworks.umass.edu/masters_theses_2/990 This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. IN-VITRO PROPAGATION AND FISH ASSESSMENTS TO INFORM RESTORATION OF DWARF WEDGEMUSSEL (ALASMIDONTA HETERODON) A Thesis Presented by JENNIFER ELAINE RYAN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment Of the requirements for the degree of MASTER OF SCIENCE September 2020 Environmental Conservation Wildlife, Fish and Conservation Biology IN-VITRO PROPAGATION AND FISH ASSESSMENTS TO INFORM RESTORATION OF DWARF WEDGEMUSSEL (ALASMIDONTA HETERODON) A Thesis Presented by JENNIFER -
Dwarf Wedge Mussel 2006
U.S. Fish & Wildlife Service Dwarf Wedgemussel Alasmidonta heterodon When we think about the other species This mussel reproduces sexually. The eggs Why bother? sharing this planet, it is easy to overlook are carried in the gills of the female and Human beings also are sensitive to metals, the very small creatures, and easier still if fertilized as sperm-laden water passes fungicides, herbicides, insecticides and those creatures live under the water's through the gills. Within the female's gills, fertilizers in the water. With the same surface. The dwarf wedgemussel is just the fertilized eggs develop into larvae sensitivities, dwarf wedgemussels serve as such an animal. Barely 1.5 inches long, this called glochidia, which the female releases a signal of a river or stream's health. Their tiny mollusk lives in freshwater streams into the water. A larva then attaches to a presence or absence indicates the health of and rivers. Although they once thrived in host fish's gills to continue growth. It a natural ecosystem. If the water is too about 70 different river systems on the appears that the glochidium only uses the silted or polluted for dwarf wedgemussels, Atlantic coast from New Brunswick, fish as a means of dispersal; after some it is not good for people, either. Lining Canada, to North Carolina, dwarf weeks, the larva detaches itself from the stream banks with natural vegetation helps wedgemussels are now considered unharmed fish and drops to the river to buffer the flow of pollutants and control endangered. No longer found in Canada, bottom, where it may live as an adult for erosion, protecting both the water and the the species appears to be declining in 10 years. -
Measuring the Success of the Endangered Species Act: Recovery Trends in the Northeastern United States
MEASURING THE OF THE ENDANGEREDSuccess SPECIES ACT Recovery Trends in the Northeastern United States Measuring the Success of the Endangered Species Act: Recovery Trends in the Northeastern United States A Report by the Center for Biological Diversity © February 2006 Author: Kieran Suckling, Policy Director: [email protected], 520.623.5252 ext. 305 Research Assistants Stephanie Jentsch, M.S. Esa Crumb Rhiwena Slack and our acknowledgements to the many federal, state, university and NGO scientists who provided population census data. The Center for Biological Diversity is a nonprofit conservation organization with more than 18,000 members dedicated to the protection of endangered species and their habitat through science, policy, education and law. CENTER FOR BIOLOGICAL DIVERSITY P.O. Box 710 Tucson, AZ 85710-0710 520.623.5252 www.biologicaldiversity.org Cover photo: American peregrine falcon Photo by Craig Koppie Cover design: Julie Miller Table of Contents Executive Summary…………………………………………………………….. 1 Methods………………………………………………………………………….. 2 Results and Discussion………………….………………………………………. 5 Photos and Population Trend Graphs…………………………...……………. 9 Highlighted Species..……………………………………………………...…… 32 humpback whale, bald eagle, American peregrine falcon, Atlantic piping plover, shortnose sturgeon, Atlantic green sea turtle, Karner blue butterfly, American burying beetle, seabeach amaranth, dwarf cinquefoil Species Lists by State………………………………………………………….. 43 Technical Species Accounts………………………………………………….... 49 Measuring the Success of the Endangered Species Act Executive Summary The Endangered Species Act is America’s foremost biodiversity conservation law. Its purpose is to prevent the extinction of America’s most imperiled plants and animals, increase their numbers, and effect their full recovery and removal from the endangered list. Currently 1,312 species in the United States are entrusted to its protection.