Alasmidonta Heterodon)

Total Page:16

File Type:pdf, Size:1020Kb

Alasmidonta Heterodon) University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses December 2020 In-vitro Propagation and Fish Assessments to Inform Restoration of Dwarf Wedgemussel (Alasmidonta Heterodon) Jennifer Ryan University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2 Part of the Aquaculture and Fisheries Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Ryan, Jennifer, "In-vitro Propagation and Fish Assessments to Inform Restoration of Dwarf Wedgemussel (Alasmidonta Heterodon)" (2020). Masters Theses. 990. https://doi.org/10.7275/18786186 https://scholarworks.umass.edu/masters_theses_2/990 This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. IN-VITRO PROPAGATION AND FISH ASSESSMENTS TO INFORM RESTORATION OF DWARF WEDGEMUSSEL (ALASMIDONTA HETERODON) A Thesis Presented by JENNIFER ELAINE RYAN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment Of the requirements for the degree of MASTER OF SCIENCE September 2020 Environmental Conservation Wildlife, Fish and Conservation Biology IN-VITRO PROPAGATION AND FISH ASSESSMENTS TO INFORM RESTORATION OF DWARF WEDGEMUSSEL (ALASMIDONTA HETERODON) A Thesis Presented by JENNIFER ELAINE RYAN Approved as to style and content by: ____________________________________ Allison H. Roy, Chair ____________________________________ David L. Perkins, Member ____________________________________ Peter D. Hazelton, Member ____________________________________ Curtice R. Griffin . Environmental Conservation ACKNOWLEDGMENTS First and foremost, I would like to thank my advisor, Allison Roy for accepting me as a student in her lab, for her continued support throughout this process, and for fostering such a strong community in her lab. I would also like to thank my committee members, Peter Hazelton and David Perkins for their feedback and encouragement these last two years. I would like to acknowledge my funding source, the Science Support Partnership Program with the US Fish and Wildlife Service and the US Geological Survey. In particular, I would like to thank Heather Galbraith, Barry Baldigo and Barbara St. John White from the U.S. Geological Survey. I would also like to thank Melissa Grader and Susi von Oettingen from the U.S. Fish and Wildlife Service for supplying the data that allowed me to complete my research. I would also like to thank members of the Richard Cronin Aquatic Resource Center (CARC), specifically Timothy Warren, for aiding me in the setup for all my experiments and braving the cold water to collect gravid mussels. The assistance Tim provided throughout all my experiments was invaluable and I am deeply grateful for his help. I would also like to thank Ayla Skorupa and Virginia Martell for welcoming me into the mussel lab with open arms. I am thankful to have worked alongside such intelligent and driven women who were willing to answer my endless questions about graduate school and CARC before and throughout my time at UMass. This experience would have been much more exhausting if not for their presence. I would also like to thank my technicians, Kara Duprey, Sarah Endyke and Sam Rode for their enthusiasm for the project, their endless positivity and flexibility throughout the field season and iii beyond. Their work was instrumental in the completion of this project. Thank you to Ethan Nedeau (Biodrawversity, LCC) for collecting gravid dwarf wedgemussels. I want to thank Monte McGregor and Julieann Jacobs with the Kentucky Department of Fish and Wildlife Resources Center for Mollusk Conservation taught me how to successfully propagate freshwater mussels using in-vitro methods. Without their training, guidance and willingness to share, my ability to conduct successful in-vitro propagation would not have been possible. Thank you for taking precious time out of your busy schedule to train me and foster a passion for this very specific line of research. I also want to thank Robert Wick and Claire Walsh who offered me their endless support to identify the fungal contamination plaguing my in-vitro dishes. Their curiosity, interest, and dedication to figuring out a big piece of the puzzle helped in my research as well as future research for freshwater mussel propagation. Thank you to the fisheries and mussel biologists throughout the Northeast took time out of their busy field season to help with data collection. Specifically, I would like to thank Brian Keleher and Steven Mattocks from Massachusetts Division of Fisheries and Wildlife; Ross Shramko and Jeanette Bowers of New Jersey Department of Environmental Protection; Brian Eltz, Michael Beauchene and Laura Saucier from Connecticut Department of Energy and Environmental Protection; and Scott Decker, Benjamin Nugent, Melissa Doperalski and Jason Carrier from New Hampshire Fish and Game as well as all of their field technicians who helped gather data, plan and execute fish surveys in the summer of 2019. iv I would like to give a special thank you to all of the Roy lab members, past and present who offered advice and support, as well as a community I can to take with me for the rest of my career. I would also like to thank my younger sister, Alyssa, who showed me the ropes of graduate school at UMass and who welcomed me with open arms. Finally, I would like to thank my parents, Trudy and Robert Ryan who fostered a love and appreciation of the outdoors, especially freshwater ecosystems. The life they gave me allowed me to pursue my dreams and for that, I am forever grateful. v ABSTRACT PROPAGATION AND FISH ASSESSMENTS TO INFORM RESTORATION OF DWARF WEDGEMUSSEL (ALASMIDONTA HETERODON) SEPTEMBER 2020 JENNIFER E. RYAN, B.S., STATE UNIVERSITY OF NEW YORK AT POSTDAM M.S., UNIVERSITY OF MASSACHUSETTS AMHERST Directed by: Professor Allison H. Roy The dwarf wedgemussel (Alasmidonta heterodon) is a federally endangered freshwater mussel that once ranged from New Brunswick to North Carolina, but now only exists in isolated populations throughout its diminished range. Laboratory propagation in conjunction with augmentation or reintroduction is considered a critical component of dwarf wedgemussel restoration. My thesis aimed to I) develop in-vitro propagation techniques including methods to minimize microbial contamination for two Alasmidonta species and II) compile and assess critical fish assemblage information at existing dwarf wedgemussel presence and absence locations to inform future restoration activities. For the first objective (Chapter 2) I assessed three methods of contamination mitigation (media change frequency, concentration of the antifungal Amphotericin B, and method of antifungal replenishment). Across all experiments, higher levels of contamination severity had a negative impact on transformation success. In my experiments, dishes that had media changes every other day (vs. those changed daily and every 3 days) had the highest contamination and the lowest glochidia transformation success. Treatments with vi the lowest (0 µg/mL) concentration of the antifungal, Amphotericin B, and got a low- dose replenishment of Amphotericin B (vs frequent media changes) had the highest transformation success. The fungus was identified as Candida parapsilosis, a common fungus found in aquatic and human environments; future propagation efforts should use mitigation methods that are specific to the fungal contaminant. In the assessment of host fish near dwarf wedgemussel locations (Chapter 3), two fish repeatedly emerged as indicators of dwarf wedgemussel occurrence and abundance: the tessellated darter (Etheostoma olmstedi) and brown trout (Salmo trutta). Tessellated darter was positively related to dwarf wedgemussel which supports the importance of tessellated darter as a host fish in the wild. The negative relationship between dwarf wedgemussel and brown trout may indicate a difference in habitat between the species or brown trout’s predation upon wild hosts. Results from this project will be used in conjunction with habitat and genetic information to inform future restoration plans in the northeast and add to the growing body of literature on in-vitro propagation of freshwater mussels. vii TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ............................................................................................... iii ABSTRACT ....................................................................................................................... vi LIST OF TABLES ............................................................................................................. xi LIST OF FIGURES ......................................................................................................... xiii CHAPTER 1. INTRODUCTION .........................................................................................................1 1.1. Study Species – The Dwarf Wedgemussel (Alasmidonta heterodon) ....................1 1.2. Freshwater Mussel Propagation and Host Fish for Restoration .............................4 1.3. Study Objectives .....................................................................................................6 2. ASSESSING METHODS FOR MITIGATING CONTAMINATION IN FRESHWATER MUSSEL IN-VITRO PROPAGATION
Recommended publications
  • THE NAUTILUS (Quarterly)
    americanmalacologists, inc. PUBLISHERS OF DISTINCTIVE BOOKS ON MOLLUSKS THE NAUTILUS (Quarterly) MONOGRAPHS OF MARINE MOLLUSCA STANDARD CATALOG OF SHELLS INDEXES TO THE NAUTILUS {Geographical, vols 1-90; Scientific Names, vols 61-90) REGISTER OF AMERICAN MALACOLOGISTS JANUARY 30, 1984 THE NAUTILUS ISSN 0028-1344 Vol. 98 No. 1 A quarterly devoted to malacology and the interests of conchologists Founded 1889 by Henry A. Pilsbry. Continued by H. Burrington Baker. Editor-in-Chief: R. Tucker Abbott EDITORIAL COMMITTEE CONSULTING EDITORS Dr. William J. Clench Dr. Donald R. Moore Curator Emeritus Division of Marine Geology Museum of Comparative Zoology School of Marine and Atmospheric Science Cambridge, MA 02138 10 Rickenbacker Causeway Miami, FL 33149 Dr. William K. Emerson Department of Living Invertebrates Dr. Joseph Rosewater The American Museum of Natural History Division of Mollusks New York, NY 10024 U.S. National Museum Washington, D.C. 20560 Dr. M. G. Harasewych 363 Crescendo Way Dr. G. Alan Solem Silver Spring, MD 20901 Department of Invertebrates Field Museum of Natural History Dr. Aurele La Rocque Chicago, IL 60605 Department of Geology The Ohio State University Dr. David H. Stansbery Columbus, OH 43210 Museum of Zoology The Ohio State University Dr. James H. McLean Columbus, OH 43210 Los Angeles County Museum of Natural History 900 Exposition Boulevard Dr. Ruth D. Turner Los Angeles, CA 90007 Department of Mollusks Museum of Comparative Zoology Dr. Arthur S. Merrill Cambridge, MA 02138 c/o Department of Mollusks Museum of Comparative Zoology Dr. Gilbert L. Voss Cambridge, MA 02138 Division of Biology School of Marine and Atmospheric Science 10 Rickenbacker Causeway Miami, FL 33149 EDITOR-IN-CHIEF The Nautilus (USPS 374-980) ISSN 0028-1344 Dr.
    [Show full text]
  • Final Report- HWY-2009-16 Propagation and Culture of Federally Listed Freshwater Mussel Species
    Final Report- HWY-2009-16 Propagation and Culture of Federally Listed Freshwater Mussel Species Prepared By Jay F- Levine, Co-Principal Investigator1 Christopher B- Eads, Co-Investigator1 Renae Greiner, Graduate Student Assistant1 Arthur E- Bogan, Co- Investigator2 1North Carolina State University College of Veterinary Medicine 4700 Hillsborough Street Raleigh, NC 27606 2 NC State Museum of Natural Sciences 4301 Reedy Creek Rd- Raleigh, NC 27607 November 2011 Technical Report Documentation Page 1- Report No- 2-Government Accession No- 3- Recipient’s Catalog No- FHWA/NC/2009-16 4- Title and Subtitle 5- Report Date Propagation and Culture of Federally Listed Freshwater November 2011 Mussel Species 6-Performing Organization Code 7- Author(s) 8-Performing Organization Report No- Jay F- Levine, Co-Principal Investigator Arthur E- Bogan, Co-Principal Investigator Renae Greiner, Graduate Student Assistant 9- Performing Organization Name and Address 10- Work Unit No- (TRAIS) North Carolina State University College of Veterinary Medicine 11- Contract or Grant No- 4700 Hillsborough Street Raleigh, NC 27606 12- Sponsoring Agency Name and Address 13-Type of Report and Period Covered North Carolina Department of Transportation Final Report P-O- Box 25201 August 16, 2008 – June 30, 2011 Raleigh, NC 27611 14- Sponsoring Agency Code HWY-2009-16 15- Supplementary Notes 16- Abstract Road and related crossing construction can markedly alter stream habitat and adversely affect resident native flora. The National Native Mussel Conservation Committee has recognized artificial propagation and culture as an important potential management tool for sustaining remaining freshwater mussel populations and has called for additional propagation research to help conserve and restore this faunal group.
    [Show full text]
  • Natural Resources Technical Report
    TRANSFORM 66 OUTSIDE the Beltway I-66 CORRIDOR 66 IMPROVEMENTS PROJECT Multimodal Solutions - 495 to Haymarket Tier 2 Draft Environmental Assessment 193 Town of Natural Resources TechnicalTown of Report Middleburg Herndon LOUDOUN FAUQUIER 50 267 Washington Dulles McLean International Airport 309 28 286 Tysons Corner West Falls Church 7 Chantilly Dunn Loring FALLS 123 CHURCH 29 Vienna LOUDOUN Fair Lakes 50 FAIRFAX CO. 66 15 FAIRFAX CITY Centreville 286 29 236 Manassas National Battlefield Park Haymarket Fairfax Station Springfield 66 Gainesville 234 28 MANASSAS PARK PRINCE WILLIAM 29 FAUQUIER 234 123 286 215 Ft. Belvoir MANASSAS MAY 12, 2015 Tier 2 Draft Environmental Assessment Natural Resources Technical Report Draft – May 12, 2015 I-66 Corridor Improvements Project – Natural Resources Technical Report May 12, 2015 Table of Contents Chapter 1 – Introduction .......................................................................................................................... 1-1 1.1 Project Description ..................................................................................................................... 1-1 1.2 Methods ...................................................................................................................................... 1-2 Chapter 2 – Affected Environment ......................................................................................................... 2-1 2.1 Water Resources ......................................................................................................................
    [Show full text]
  • Atlas of the Freshwater Mussels (Unionidae)
    1 Atlas of the Freshwater Mussels (Unionidae) (Class Bivalvia: Order Unionoida) Recorded at the Old Woman Creek National Estuarine Research Reserve & State Nature Preserve, Ohio and surrounding watersheds by Robert A. Krebs Department of Biological, Geological and Environmental Sciences Cleveland State University Cleveland, Ohio, USA 44115 September 2015 (Revised from 2009) 2 Atlas of the Freshwater Mussels (Unionidae) (Class Bivalvia: Order Unionoida) Recorded at the Old Woman Creek National Estuarine Research Reserve & State Nature Preserve, Ohio, and surrounding watersheds Acknowledgements I thank Dr. David Klarer for providing the stimulus for this project and Kristin Arend for a thorough review of the present revision. The Old Woman Creek National Estuarine Research Reserve provided housing and some equipment for local surveys while research support was provided by a Research Experiences for Undergraduates award from NSF (DBI 0243878) to B. Michael Walton, by an NOAA fellowship (NA07NOS4200018), and by an EFFRD award from Cleveland State University. Numerous students were instrumental in different aspects of the surveys: Mark Lyons, Trevor Prescott, Erin Steiner, Cal Borden, Louie Rundo, and John Hook. Specimens were collected under Ohio Scientific Collecting Permits 194 (2006), 141 (2007), and 11-101 (2008). The Old Woman Creek National Estuarine Research Reserve in Ohio is part of the National Estuarine Research Reserve System (NERRS), established by section 315 of the Coastal Zone Management Act, as amended. Additional information on these preserves and programs is available from the Estuarine Reserves Division, Office for Coastal Management, National Oceanic and Atmospheric Administration, U. S. Department of Commerce, 1305 East West Highway, Silver Spring, MD 20910.
    [Show full text]
  • Species: Dwarf Wedgemussel (Alasmidonta Heterodon) Global
    Species: Dwarf Wedgemussel (Alasmidonta heterodon) Global Rank: G1G2 State Rank: S1 State Wildlife Action Plan Priority: Immediate Concern Species CCVI Rank: Highly Vulnerable Confidence: Very High Habitat: Dwarf wedgemussels generally live in creek and river bottoms where sand is a component of the substrate (e.g., muddy sand, sand, sand and gravel bottoms), the current is slow to moderate, and there is little silt deposition (USFWS 1993). This species is discontinuously distributed in the Atlantic coast drainages from Maine to North Carolina (NatureServe 2010). Current Threats: Major threats leading to the decline of dwarf wedgemussel include impoundments, pollution, sedimentation, competition from exotic species, population-related problems, and construction projects (USFWS 1993). Main Factors Contributing to Vulnerability Rank: Predicted impact of land use changes designed to mitigate against climate change: Natural gas extraction may alter the water quality of the Delaware River. Dispersal and movement: As adults, the dwarf wedgemussel is mostly non-migratory with only limited vertical movement and possibly passive movement due to flood events (NYNHP 2010). Predicted macro sensitivity to changes in precipitation, hydrology, or moisture regime: Considering the range of the mean annual precipitation across the species’ range in Pennsylvania, the species has experienced a very small precipitation variation in the past 50 years. Dependence on specific disturbance regime likely to be impacted by climate change: More intense flooding events, likely associated with climate change in Pennsylvania, may affect dwarf wedgemussel populations by altering water/habitat quality of rivers and streams (e.g., increased silt load). Dependence on other species for propagule dispersal: Dwarf wedgemussel depends on a few fish (Johnny darter, tessellated darter, and mottled sculpin) to serve as glochidial hosts (Spoo 2008).
    [Show full text]
  • Chesapeake Bay Species Habitat Literature Review
    Chesapeake Bay Species Habitat Literature Review December 31, 2015 Bob Murphy Sam Stribling 1 Table of Contents Atlantic Silverside (Menidia menidia)……………………………………………...……. 3 Bay Anchovy (Anchoa mitchilli)………………………………………………..……….. 5 Black Sea Bass (Cenropristis striata)……………………………………………...…….. 8 Chain Pickerel (Esox niger)………………………………………………………..…… 11 Eastern Elliptio (Elliptio complanata)…………………………………………..…….... 13 Eastern Floater (Pyganodon cataracta) ………………………………………............... 15 Largemouth Bass (Micropterus salmoides)………………………………….............…. 17 Macoma (Macoma balthica)……………………………………………………...…..… 19 Potomac Sculpin (Cottus Girardi)…………………………………………………...…. 21 Selected Anodontine Species: Dwarf Wedgemussel (Alasmidonta heterodon), Green Floater (Lasmigona subviridis), and Brook Floater (Alasmidonia varicosa)…..... 23 Smallmouth Bass (Micropterus dolomieu)………………………………………...…… 25 Spot (Leiostomus xanthurus)…………………………………………………………… 27 Summer Flounder (Paralichthys dentatus)…………………………………………...… 30 White Perch (Morone Americana)……………………………………………………… 33 Purpose: The Sustainable Fisheries Goal Implementation Team (Fisheries GIT) of the Chesapeake Bay Program was allocated Tetra Tech (Tt) time to support Management Strategies under the 2014 Chesapeake Bay Program (CBP) Agreement. The Fish Habitat Action Team under the Fisheries GIT requested Tt develop a detailed literature review for lesser- studied species across the Chesapeake Bay. Fish and shellfish in the Chesapeake Bay and its watershed rely on a variety of important habitats throughout
    [Show full text]
  • Illinois Department of Natural Resources CONSERVATION PLAN (Application for an Incidental Take Authorization) Per 520 ILCS 10/5.5 and 17 Ill
    Illinois Department of Natural Resources CONSERVATION PLAN (Application for an Incidental Take Authorization) Per 520 ILCS 10/5.5 and 17 Ill. Adm. Code 1080 150-day minimum required for public review, biological and legal analysis, and permitting PROJECT APPLICANT: DeKalb County Highway Department 1826 Barber Greene Road, DeKalb IL 60115 PROJECT NAME: Somonauk Road over Somonauk Creek Bridge Replacement. COUNTY: DeKalb AREA OF IMPACT: 140 linear feet of channel of Somonauk Creek at Somonauk Road, approximately 0.18 acres of stream channel and banks. The incidental taking of endangered and threatened species shall be authorized by the Illinois Department of Natural Resources (IDNR) only if an applicant submits a conservation plan to the IDNR Incidental Take Coordinator that meets the following criteria: 1. A description of the impact likely to result from the proposed taking of the species that would be covered by the authorization, including but not limited to - A) Identification of the area to be affected by the proposed action, include a legal description and a detailed description including street address, map(s), and GIS shapefile. Include an indication of ownership or control of affected property. Attach photos of the project area. The project is located where Somonauk Road (CH 10) crosses over Somonauk Creek in DeKalb County. The bridge is located approximately 4 miles south of Hinckley, Illinois in DeKalb County, Township 34N, Range 5E, Section 3. The road right-of-way is approximately 140 feet wide at the crossing and is owned by the DeKalb County Highway Department. A project location map is provided as Exhibit 1 and photographs of the creek at the bridge location are included in Exhibit 2.
    [Show full text]
  • Dwarf Wedgemussel, Alasmidonta Heterodon Brook Floater
    MUSSELS FRESHWATER MUSSELS: Dwarf wedgemussel, Alasmidonta heterodon Status: State: Endangered Federal: Endangered Brook floater, Alasmidonta varicosa Status: State: Endangered (pending) Federal: Species of Special Concern Green floater, Lasmigona subviridis Status: State: Endangered (pending) Federal: Species of Special Concern Yellow lampmussel, Lampsilis cariosa Status: State: Threatened (pending) Federal: Species of Special Concern Eastern lampmussel, Lampsilis radiata Status: State: Threatened (pending) Federal: Not listed Eastern pondmussel, Ligumia nasuta Status: State: Threatened (pending) Federal: Not listed Tidewater mucket, Leptodea ochracea Status: State: Threatened (pending) Federal: Not listed Triangle floater, Alasmidonta undulata Status: State: Threatened (pending) Federal: Not listed Identification All freshwater mussels have a calcium carbonate bivalve shell that is divided into a left and right half. The shell consists of three layers; the outer periostracum, the middle calcium carbonate, and the inner nacre. The periostracum (or epidermis) protects underlying calcium carbonate from the corrosive action of low pH water and damage from moving sand and gravel. A thin prismatic layer of crystalline calcium carbonate lies beneath the periostracum. The nacre or mother-of-pearl is the innermost and often thickest layer of the shell. It is comprised of thin, stacked calcium carbonate plates that lie parallel to the shell’s surface. In many species, the color and texture of the nacre are important for identification. Lateral and pseudocardinal teeth, separated by an interdentum, are located dorsally inside the shell. Lateral teeth are elongated and raised interlocking structures along the hinge line of a valve, whereas pseudocardinal teeth are triangular-shaped hinge teeth near the shell’s anterior-dorsal margin. The interdentum is a flattened area of the hinge plate between the lateral and pseudocardinal teeth.
    [Show full text]
  • Dwarf Wedge Mussel 2006
    U.S. Fish & Wildlife Service Dwarf Wedgemussel Alasmidonta heterodon When we think about the other species This mussel reproduces sexually. The eggs Why bother? sharing this planet, it is easy to overlook are carried in the gills of the female and Human beings also are sensitive to metals, the very small creatures, and easier still if fertilized as sperm-laden water passes fungicides, herbicides, insecticides and those creatures live under the water's through the gills. Within the female's gills, fertilizers in the water. With the same surface. The dwarf wedgemussel is just the fertilized eggs develop into larvae sensitivities, dwarf wedgemussels serve as such an animal. Barely 1.5 inches long, this called glochidia, which the female releases a signal of a river or stream's health. Their tiny mollusk lives in freshwater streams into the water. A larva then attaches to a presence or absence indicates the health of and rivers. Although they once thrived in host fish's gills to continue growth. It a natural ecosystem. If the water is too about 70 different river systems on the appears that the glochidium only uses the silted or polluted for dwarf wedgemussels, Atlantic coast from New Brunswick, fish as a means of dispersal; after some it is not good for people, either. Lining Canada, to North Carolina, dwarf weeks, the larva detaches itself from the stream banks with natural vegetation helps wedgemussels are now considered unharmed fish and drops to the river to buffer the flow of pollutants and control endangered. No longer found in Canada, bottom, where it may live as an adult for erosion, protecting both the water and the the species appears to be declining in 10 years.
    [Show full text]
  • Measuring the Success of the Endangered Species Act: Recovery Trends in the Northeastern United States
    MEASURING THE OF THE ENDANGEREDSuccess SPECIES ACT Recovery Trends in the Northeastern United States Measuring the Success of the Endangered Species Act: Recovery Trends in the Northeastern United States A Report by the Center for Biological Diversity © February 2006 Author: Kieran Suckling, Policy Director: [email protected], 520.623.5252 ext. 305 Research Assistants Stephanie Jentsch, M.S. Esa Crumb Rhiwena Slack and our acknowledgements to the many federal, state, university and NGO scientists who provided population census data. The Center for Biological Diversity is a nonprofit conservation organization with more than 18,000 members dedicated to the protection of endangered species and their habitat through science, policy, education and law. CENTER FOR BIOLOGICAL DIVERSITY P.O. Box 710 Tucson, AZ 85710-0710 520.623.5252 www.biologicaldiversity.org Cover photo: American peregrine falcon Photo by Craig Koppie Cover design: Julie Miller Table of Contents Executive Summary…………………………………………………………….. 1 Methods………………………………………………………………………….. 2 Results and Discussion………………….………………………………………. 5 Photos and Population Trend Graphs…………………………...……………. 9 Highlighted Species..……………………………………………………...…… 32 humpback whale, bald eagle, American peregrine falcon, Atlantic piping plover, shortnose sturgeon, Atlantic green sea turtle, Karner blue butterfly, American burying beetle, seabeach amaranth, dwarf cinquefoil Species Lists by State………………………………………………………….. 43 Technical Species Accounts………………………………………………….... 49 Measuring the Success of the Endangered Species Act Executive Summary The Endangered Species Act is America’s foremost biodiversity conservation law. Its purpose is to prevent the extinction of America’s most imperiled plants and animals, increase their numbers, and effect their full recovery and removal from the endangered list. Currently 1,312 species in the United States are entrusted to its protection.
    [Show full text]
  • Volume 21 Number 1 April 2018
    FRESHWATER MOLLUSK BIOLOGY AND CONSERVATION THE JOURNAL OF THE FRESHWATER MOLLUSK CONSERVATION SOCIETY VOLUME 21 NUMBER 1 APRIL 2018 Pages 1-18 Pages 19-27 Freshwater Mussels (Bivalvia: Unionida) A Survey of the Freshwater Mussels of Vietnam: Diversity, Distribution, and (Mollusca: Bivalvia: Unionida) of the Conservation Status Niangua River Basin, Missouri Van Tu Do, Le Quang Tuan, and Stephen E. McMurray, Joshua T. Arthur E. Boga Hundley, and J. Scott Faiman Freshwater Mollusk Biology and Conservation 21:1–18, 2018 Ó Freshwater Mollusk Conservation Society 2018 REGULAR ARTICLE FRESHWATER MUSSELS (BIVALVIA: UNIONIDA) OF VIETNAM: DIVERSITY, DISTRIBUTION, AND CONSERVATION STATUS Van Tu Do1, Le Quang Tuan1, and Arthur E. Bogan2* 1 Institute of Ecology and Biological Resources (IEBR), Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Ha Noi, Vietnam, [email protected]; [email protected] 2 North Carolina Museum of Natural Sciences, 11 West Jones Street, Raleigh, NC 27601 USA ABSTRACT Vietnam has the second highest diversity of freshwater mussels (Unionida) in Asia after China. The purpose of this paper is to compile an up-to-date list of the modern unionid fauna of Vietnam and its current conservation status. Unfortunately, there has been relatively little research on this fauna in Vietnam. Fifty-nine species of Unionida have been recorded from Vietnam based on literature, museum records, and our fieldwork. Fifty were assessed in the International Union for Conservation of Nature (IUCN) Red List 2016 in the IUCN categories of Critically Endangered (four species, 6.8%), Endangered (seven species, 12%), Vulnerable (one species, 1.7%), Near Threatened (two species, 3.4%), Least Concern (23 species, 39%), Data Deficient (11 species, 18.6%), and Not Evaluated (11 species, 18.6%).
    [Show full text]
  • Mussels Only)
    MUSSEL CWCS SPECIES (46 SPECIES) Common name Scientific name Bleufer Potamilus purpuratus Butterfly Ellipsaria lineolata Catspaw Epioblasma obliquata obliquata Clubshell Pleurobema clava Cracking Pearlymussel Hemistena lata Creek Heelsplitter Lasmigona compressa Cumberland Bean Villosa trabalis Cumberland Elktoe Alasmidonta atropurpurea Cumberland Moccasinshell Medionidus conradicus Cumberland Papershell Anodontoides denigratus Cumberlandian Combshell Epioblasma brevidens Dromedary Pearlymussel Dromus dromas Elephantear Elliptio crassidens Elktoe Alasmidonta marginata Fanshell Cyprogenia stegaria Fat Pocketbook Potamilus capax Fluted Kidneyshell Ptychobranchus subtentum Green Floater Lasmigona subviridis Kentucky Creekshell Villosa ortmanni Little Spectaclecase Villosa lienosa Littlewing Pearlymussel Pegias fabula Longsolid Fusconaia subrotunda Mountain Creekshell Villosa vanuxemensis vanuxemensis Northern Riffleshell Epioblasma torulosa rangiana Orangefoot Pimpleback Plethobasus cooperianus Oyster Mussel Epioblasma capsaeformis Pink Mucket Lampsilis abrupta Pocketbook Lampsilis ovata Purple Lilliput Toxolasma lividus Pyramid Pigtoe Pleurobema rubrum Rabbitsfoot Quadrula cylindrica cylindrica Rayed Bean Villosa fabalis Ring Pink Obovaria retusa Rough Pigtoe Pleurobema plenum Round Hickorynut Obovaria subrotunda Salamander Mussel Simpsonaias ambigua Scaleshell Leptodea leptodon Sheepnose Plethobasus cyphyus Slabside Pearlymussel Lexingtonia dolabelloides Slippershell Mussel Alasmidonta viridis Snuffbox Epioblasma triquetra Spectaclecase
    [Show full text]