Behavioral and Synaptic Consequences Following Removal of the Il1rapl1 Gene in Mice, a Model of Intellectual Disability

Total Page:16

File Type:pdf, Size:1020Kb

Behavioral and Synaptic Consequences Following Removal of the Il1rapl1 Gene in Mice, a Model of Intellectual Disability THESE Pour le DOCTORAT De L’UNIVERSITE DE BORDEAUX Ecole Doctorale des Sciences de la Vie et de la Santé Présentée et soutenue publiquement Le 28 novembre 2014 Par Xander Houbaert Behavioral and synaptic consequences following removal of the Il1rapl1 gene in mice, a model of intellectual disability Membres du Jury M. le Dr. Bertrand Lambolez (DR CNRS)…………………………… (rapporteur externe) M. le Dr Nael Nadif Kasri (Assistant Professor)………………… (rapporteur externe) M. le Dr. Carlo Sala (Senior Researcher)..………………………… (examinateur) M. le Dr. Cyril Herry (CR Inserm)……………………………………… (examinateur) M. le Dr. Yann Humeau (CR CNRS)…………………………………… (directeur de thèse) Table of contents I) Remerciements ................................................................... 1 II) Résumé en français ............................................................ 3 III) Abstract en français ........................................................... 6 IV) Abstract .................................................................................. 7 V) Abbreviations ....................................................................... 8 VI) Introduction ...................................................................... 11 1 Intellectual disabilities ............................................................ 13 1.1 General definitions ............................................................................. 13 1.2 Function of ID-related genes ........................................................... 16 1.3 Physiology of the brain in health and disease .......................... 17 1.3.1 Synaptic integration ......................................................................................... 17 1.3.2 Synaptic function ............................................................................................... 21 1.3.2.1 Presynaptic function ....................................................................................................... 21 1.3.2.2 Postsynaptic function ...................................................................................................... 26 1.3.3 Brain development and ID ............................................................................. 31 1.3.3.1 Synaptogenesis .................................................................................................................. 32 1.4 Animal models of ID ........................................................................... 35 1.5 Towards ID therapeutics? ................................................................ 36 2 A model of intellectual disability: mutations in the Il1rapl1 gene ....................................................................................... 39 2.1 Structure of IL1RAPL1 ....................................................................... 39 2.2 IL1RAPL1 and ID in humans ............................................................ 40 2.3 Biological role of IL1RAPL1 ............................................................. 41 2.3.1 Presynaptic .......................................................................................................... 42 2.3.2 Postsynaptic ........................................................................................................ 43 2.3.3 Transsynaptic ..................................................................................................... 44 2.3.4 In vivo role of IL1RAPL1 .................................................................................. 46 3 Associative learning as a tool to measure cognition on an ID model ......................................................................................... 48 3.1 Fear conditioning ................................................................................ 48 3.2 Neuronal substrates ........................................................................... 49 3.2.1 The amygdala ...................................................................................................... 50 3.2.1.1 General anatomy and connectivity ............................................................................. 50 3.2.1.2 Cellular composition ........................................................................................................ 51 3.2.2 Hippocampus ...................................................................................................... 53 3.2.2.1 General anatomy .............................................................................................................. 53 3.2.2.2 Hippocampus in contextual coding............................................................................. 54 3.3 Synaptic plasticity in associative learning ................................. 56 3.3.1 Synaptic plasticity, general principles ....................................................... 57 3.3.2 Synaptic plasticity related to fear conditioning ..................................... 59 3.3.3 Modulation of synaptic plasticity by inhibitory cells ........................... 60 VII) Materials and methods .................................................. 62 1 Animals ......................................................................................... 62 2 Fear conditioning ...................................................................... 64 2.1 Cued fear conditioning ...................................................................... 64 2.2 Contextual fear conditioning .......................................................... 65 3 Optogenetics ............................................................................... 67 4 Surgeries ...................................................................................... 70 5 In vitro electrophysiology on acute brain slices ............. 71 5.1 Slice preparation ................................................................................. 71 5.2 Electrophysiological recordings .................................................... 73 5.3 Data acquisition and analysis ......................................................... 75 VIII) Results .............................................................................. 76 1 Publication 1: “Target-specific vulnerability of excitatory synapses leads to deficits in associative memory in a model of intellectual disorder” ............................................ 78 1.1 Results summary ................................................................................ 78 1.2 Discussion.............................................................................................. 82 1.3 Conclusion ............................................................................................. 86 2 Publication 2: “The hippocampo-amygdala control of contextual fear expression is affected in a model of intellectual disability ....................................................................... 88 2.1 Results summary ................................................................................ 88 2.2 Discussion.............................................................................................. 93 2.3 Conclusion ............................................................................................. 95 IX) General discussion .......................................................... 98 1 How and where does IL1RAPL1 absence impact the synapse? ............................................................................................ 100 1.1 IL1RAPL1, a synaptogenic protein .............................................. 100 1.1.1 Postsynaptic IL1RAPL1 mediates synapse formation/maintenance 101 1.1.2 Heterogeneity defines vulnerability to IL1RAPL1 absence ............. 103 1.1.3 Does IL1RAPL1 have a presynaptic function? ....................................... 106 1.1.4 A proteomic approach to study the consequence of IL1RAPL1 absence at the synapse ................................................................................................ 107 2 When is IL1RAPL1 important at the synapse? .............. 112 2.1 Consequences of IL1RAPL1’s absence on information processing and behavior? ......................................................................... 113 2.1.1 In vivo imaging as a tool to study synapse dynamics .......................... 113 2.1.2 Catching behaviorally relevant cells ........................................................ 114 X) Conclusion ............................................................................. 118 XI) Bibliography .................................................................... 119 I) Remerciements Je remercie sincèrement mon directeur de thèse, le Dr. Yann Humeau, de m’avoir offert la chance de rejoindre son équipe il y a de ça déjà presque quatre ans. Depuis, l’équipe et les projets scientifiques continuent de se diversifier et le fait d’assister et de participer à cette évolution fut très enrichissant. Je tiens à le remercier pour sa disponibilité et pour les nombreuses discussions que nous avons pu avoir au cours de ma thèse. Il a su m’initier au monde de l’électrophysiologie et me transmettre sa passion pour ce domaine. Un grand merci également pour la liberté qu’il m’a laissée afin de développer mes propres idées et expériences. Travailler avec lui fut un plaisir et j’espère que nos chemins se recroiseront dans l’avenir. J’oubliais presque, merci de m’avoir offert la possibilité de participer à de grands congrès scientifiques dont celui à Copenhague qui me tenait vraiment à cœur pour la recherche de mon futur post-doc. Je remercie également le directeur de l’Institut Interdisciplinaire
Recommended publications
  • Reframing Psychiatry for Precision Medicine
    Reframing Psychiatry for Precision Medicine Elizabeth B Torres 1,2,3* 1 Rutgers University Department of Psychology; [email protected] 2 Rutgers University Center for Cognitive Science (RUCCS) 3 Rutgers University Computer Science, Center for Biomedicine Imaging and Modelling (CBIM) * Correspondence: [email protected]; Tel.: (011) +858-445-8909 (E.B.T) Supplementary Material Sample Psychological criteria that sidelines sensory motor issues in autism: The ADOS-2 manual [1, 2], under the “Guidelines for Selecting a Module” section states (emphasis added): “Note that the ADOS-2 was developed for and standardized using populations of children and adults without significant sensory and motor impairments. Standardized use of any ADOS-2 module presumes that the individual can walk independently and is free of visual or hearing impairments that could potentially interfere with use of the materials or participation in specific tasks.” Sample Psychiatric criteria from the DSM-5 [3] that does not include sensory-motor issues: A. Persistent deficits in social communication and social interaction across multiple contexts, as manifested by the following, currently or by history (examples are illustrative, not exhaustive, see text): 1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social approach and failure of normal back-and-forth conversation; to reduced sharing of interests, emotions, or affect; to failure to initiate or respond to social interactions. 2. Deficits in nonverbal communicative behaviors used for social interaction, ranging, for example, from poorly integrated verbal and nonverbal communication; to abnormalities in eye contact and body language or deficits in understanding and use of gestures; to a total lack of facial expressions and nonverbal communication.
    [Show full text]
  • 1 Supporting Information for a Microrna Network Regulates
    Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Autosomal Recessive Ataxias and with the Early-Onset Parkinson’S Disease That We Identified Here As Overlapping with the SFARI Autism Gene
    Roadmap to Help Develop Personalized Targeted Treatments for Autism as a Disorder of the Nervous Systems Elizabeth B Torres 1,2,3* 1 Rutgers University Department of Psychology; [email protected] 2 Rutgers University Center for Cognitive Science (RUCCS) 3 Rutgers University Computer Science, Center for Biomedicine Imaging and Modelling (CBIM) * Correspondence: [email protected]; Tel.: (011) +858-445-8909 (E.B.T) 1 | P a g e Supplementary Material Sample Psychological criteria that sidelines sensory motor issues in autism: The ADOS-2 manual [1, 2], under the “Guidelines for Selecting a Module” section states (emphasis added): “Note that the ADOS-2 was developed for and standardized using populations of children and adults without significant sensory and motor impairments. Standardized use of any ADOS-2 module presumes that the individual can walk independently and is free of visual or hearing impairments that could potentially interfere with use of the materials or participation in specific tasks.” Sample Psychiatric criteria from the DSM-5 [3] that does not include sensory-motor issues: A. Persistent deficits in social communication and social interaction across multiple contexts, as manifested by the following, currently or by history (examples are illustrative, not exhaustive, see text): 1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social approach and failure of normal back-and-forth conversation; to reduced sharing of interests, emotions, or affect; to failure to initiate or respond to social interactions. 2. Deficits in nonverbal communicative behaviors used for social interaction, ranging, for example, from poorly integrated verbal and nonverbal communication; to abnormalities in eye contact and body language or deficits in understanding and use of gestures; to a total lack of facial expressions and nonverbal communication.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • A Novel Intragenic Deletion in OPHN1 in a Japanese Patient with Dandy
    Iida et al. Human Genome Variation (2019) 6:1 https://doi.org/10.1038/s41439-018-0032-8 Human Genome Variation DATA REPORT Open Access A novel intragenic deletion in OPHN1 in a Japanese patient with Dandy-Walker malformation Aritoshi Iida 1,EriTakeshita2, Shunichi Kosugi3, Yoichiro Kamatani 3,4, Yukihide Momozawa5,MichiakiKubo6, Eiji Nakagawa2,KenjiKurosawa7, Ken Inoue8 and Yu-ichi Goto8,9 Abstract Dandy-Walker malformation (DWM) is a rare congenital malformation defined by hypoplasia of the cerebellar vermis and cystic dilatation of the fourth ventricle. Oligophrenin-1 is mutated in X-linked intellectual disability with or without cerebellar hypoplasia. Here, we report a Japanese DWM patient carrying a novel intragenic 13.5-kb deletion in OPHN1 ranging from exon 11–15. This is the first report of an OPHN1 deletion in a Japanese patient with DWM. Dandy-Walker malformation (DWM) is a OPHN1 encodes oligophrenin 1, which is a Rho-GTPase midbrain–hindbrain malformation characterized by cer- activating protein involved in synaptic morphogenesis and ebellar vermis hypoplasia and dysplasia, cystic dilatation functions through the regulation of the G protein cycle5. of the fourth ventricle and an elevated torcula, often OPHN1 (NM_002547) consists of 25 exons and spans 1 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; accompanied by hydrocephalus . The frequency of DWM ~391 kb on chromosome Xq12 (UCSC Genome Browser: in the U.S. is ~1 in 25,000–35,000 liveborn infants https://genome.ucsc.edu). Oligophrein 1 is an 802 amino- (https://rarediseases.org/rare-diseases/dandy-walker- acid protein harboring multiple domains, such as a BAR malformation/). DWM becomes apparent in early infancy, domain, PH domain, Rho-GAP domain, and three is complicated by macrocephaly, and occurs along with proline-rich sequences6.
    [Show full text]
  • Characterization of Intellectual Disability and Autism Comorbidity Through Gene Panel Sequencing
    bioRxiv preprint doi: https://doi.org/10.1101/545772; this version posted February 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Characterization of Intellectual disability and Autism comorbidity through gene panel sequencing Maria Cristina Aspromonte 1, 2, Mariagrazia Bellini 1, 2, Alessandra Gasparini 3, Marco Carraro 3, Elisa Bettella 1, 2, Roberta Polli 1, 2, Federica Cesca 1, 2, Stefania Bigoni 4, Stefania Boni 5, Ombretta Carlet 6, Susanna Negrin 6, Isabella Mammi 7, Donatella Milani 8 , Angela Peron 9, 10, Stefano Sartori 11, Irene Toldo 11, Fiorenza Soli 12, Licia Turolla 13, Franco Stanzial 14, Francesco Benedicenti 14, Cristina Marino-Buslje 15, Silvio C.E. Tosatto 3, 16, Alessandra Murgia 1, 2, Emanuela Leonardi 1, 2 1. Molecular Genetics of Neurodevelopment, Dept. of Woman and Child Health, University of Padova, Padova, Italy 2. Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padova, Italy 3. Dept. of Biomedical Sciences, University of Padova, Padova, Italy 4. Medical Genetics Unit, Ospedale Universitario S. Anna, Ferrara, Italy 5. Medical Genetics Unit, S. Martino Hospital, Belluno, Italy 6. Child Neuropsychiatry Unit, IRCCS Eugenio Medea, Conegliano, Italy 7. Medical Genetics Unit, Dolo General Hospital, Venezia, Italy 8. Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, University of Milano, Fondazione IRCCS, Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy 9. Child Neuropsychiatry Unit, Epilepsy Center, Santi Paolo-Carlo Hospital, Dept. of Health Sciences, University of Milano, Milano, Italy 10. Department of Pediatrics, Division of Medical Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA 11.
    [Show full text]
  • ROCK/PKA Inhibition Rescues Hippocampal Hyperexcitability And
    2776 • The Journal of Neuroscience, March 25, 2020 • 40(13):2776–2788 Neurobiology of Disease ROCK/PKA Inhibition Rescues Hippocampal Hyperexcitability and GABAergic Neuron Alterations in a Oligophrenin-1 Knock-Out Mouse Model of X-Linked Intellectual Disability Irene Busti,1,2* Manuela Allegra,1* Cristina Spalletti,1 Chiara Panzi,1 Laura Restani,1 XPierre Billuart,3 and X Matteo Caleo1,4 1Neuroscience Institute, National Research Council (CNR), 56124 Pisa, Italy, 2NEUROFARBA, University of Florence, 50134 Florence, Italy, 3Institute of Psychiatry and Neuroscience of Paris, INSERM UMR1266, Paris Descartes University, 75014 Paris, France, and 4Department of Biomedical Sciences, University of Padua, 35121 Padua, Italy Oligophrenin-1 (Ophn1) encodes a Rho GTPase activating protein whose mutations cause X-linked intellectual disability (XLID) in humans. Loss of function of Ophn1 leads to impairments in the maturation and function of excitatory and inhibitory synapses, causing deficits in synaptic structure, function and plasticity. Epilepsy is a frequent comorbidity in patients with Ophn1-dependent XLID, but the cellular bases of hyperexcitability are poorly understood. Here we report that male mice knock-out (KO) for Ophn1 display hippocampal epileptiform alterations, which are associated with changes in parvalbumin-, somatostatin- and neuropeptide Y-positive interneurons. BecauselossoffunctionofOphn1isrelatedtoenhancedactivityofRho-associatedproteinkinase(ROCK)andproteinkinaseA(PKA),we attempted to rescue Ophn1-dependent pathological phenotypes by treatment with the ROCK/PKA inhibitor fasudil. While acute admin- istration of fasudil had no impact on seizure activity, seven weeks of treatment in adulthood were able to correct electrographic, neuro- anatomical and synaptic alterations of Ophn1 deficient mice. These data demonstrate that hyperexcitability and the associated changes in GABAergic markers can be rescued at the adult stage in Ophn1-dependent XLID through ROCK/PKA inhibition.
    [Show full text]
  • The X-Linked Intellectual Disability Protein IL1RAPL1 Regulates Dendrite Complexity
    6606 • The Journal of Neuroscience, July 12, 2017 • 37(28):6606–6627 Cellular/Molecular The X-Linked Intellectual Disability Protein IL1RAPL1 Regulates Dendrite Complexity X Caterina Montani,1,2 XMariana Ramos-Brossier,3 Luisa Ponzoni,2,4 XLaura Gritti,1,2 XAndrzej W. Cwetsch,5 X Daniela Braida,2 Yoann Saillour,3 Benedetta Terragni,6 XMassimo Mantegazza,7,8 XMariaelvina Sala,1,2 X Chiara Verpelli,1,2 XPierre Billuart,3 and XCarlo Sala1,2 1National Research Council Neuroscience Institute, 20129 Milan, Italy, 2Department of Medical Biotechnology and Translational Medicine, Universita` degli Studi di Milano, 20129 Milan, Italy, 3Institut Cochin, Institut national de la sante´ et de la recherche me´dicale U1016, Centre National de la Recherche Scientifique UMR8104, Universite´ Paris Descartes, Paris 75014, France, 4Fondazione Umberto Veronesi, 20122 Milan, Italy, 5Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 16163 Genoa, Italy, 6Operating Unit of Neurophysiopathology and Diagnostic Epileptology, Foundation Istituto di Ricerca e Cura a Carattere Scientifico Neurological Institute Carlo Besta, 20133 Milan, Italy, 7Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence in Ion Channel Science and Therapeutics, Centre National de la Recherche Scientifique UMR7275, 06560 Valbonne, France, and 8Université Côte d’Azur, 06560 Valbonne, France Mutationsanddeletionsoftheinterleukin-1receptoraccessoryproteinlike1(IL1RAPL1)gene,locatedontheXchromosome,areassociatedwith intellectual disability (ID)
    [Show full text]
  • Insertion of the IL1RAPL1 Gene Into the Duplication Junction of the Dystrophin Gene
    Journal of Human Genetics (2009) 54, 466–473 & 2009 The Japan Society of Human Genetics All rights reserved 1434-5161/09 $32.00 www.nature.com/jhg ORIGINAL ARTICLE Insertion of the IL1RAPL1 gene into the duplication junction of the dystrophin gene Zhujun Zhang, Mariko Yagi, Yo Okizuka, Hiroyuki Awano, Yasuhiro Takeshima and Masafumi Matsuo Duplications of one or more exons of the dystrophin gene are the second most common mutation in dystrophinopathies. Even though duplications are suggested to occur with greater complexity than thought earlier, they have been considered an intragenic event. Here, we report the insertion of a part of the IL1RAPL1 (interleukin-1 receptor accessory protein-like 1) gene into the duplication junction site. When the actual exon junction was examined in 15 duplication mutations in the dystrophin gene by analyzing dystrophin mRNA, one patient was found to have an unknown 621 bp insertion at the junction of duplication of exons from 56 to 62. Unexpectedly, the inserted sequence was found completely identical to sequences of exons 3–5 of the IL1RAPL1 gene that is nearly 100 kb distal from the dystrophin gene. Accordingly, the insertion of IL1RAPL1 exons 3–5 between dystrophin exons 62 and 56 was confirmed at the genomic sequence level. One junction between the IL1RAPL1 intron 5 and dystrophin intron 55 was localized within an Alu sequence. These results showed that a fragment of the IL1RAPL1 gene was inserted into the duplication junction of the dystrophin gene in the same direction as the dystrophin gene. This suggests the novel possibility of co-occurrence of complex genomic rearrangements in dystrophinopathy.
    [Show full text]
  • Interleukin-1 Receptor Accessory Protein Organizes Neuronal Synaptogenesis As a Cell Adhesion Molecule
    2588 • The Journal of Neuroscience, February 22, 2012 • 32(8):2588–2600 Cellular/Molecular Interleukin-1 Receptor Accessory Protein Organizes Neuronal Synaptogenesis as a Cell Adhesion Molecule Tomoyuki Yoshida,1,3 Tomoko Shiroshima,1 Sung-Jin Lee,1 Misato Yasumura,1 Takeshi Uemura,1 Xigui Chen,1 Yoichiro Iwakura,2 and Masayoshi Mishina1 1Department of Molecular Neurobiology and Pharmacology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan, 2Center for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan, and 3PRESTO (Precursory Research for Embryonic Science and Technology), Japan Science and Technology Agency, Saitama 332-0012, Japan Interleukin-1 receptor accessory protein (IL-1RAcP) is the essential component of receptor complexes mediating immune responses to interleukin-1 family cytokines. IL-1RAcP in the brain exists in two isoforms, IL-1RAcP and IL-1RAcPb, differing only in the C-terminal region. Here, we found robust synaptogenic activities of IL-1RAcP in cultured cortical neurons. Knockdown of IL-1RAcP isoforms in cultured cortical neurons suppressed synapse formation as indicated by decreases of active zone protein Bassoon puncta and dendritic protrusions. IL-1RAcP recovered the accumulation of presynaptic Bassoon puncta, while IL-1RAcPb rescued both Bassoon puncta and dendritic protrusions. Consistently, the expression of IL-1RAcP in cortical neurons enhances the accumulation of Bassoon puncta and that of IL-1RAcPb stimulated both Bassoon puncta accumulation and spinogenesis. IL-1RAcP interacted with protein tyrosine phospha- tase (PTP) ␦ through the extracellular domain. Mini-exon peptides in the Ig-like domains of PTP␦ splice variants were critical for their efficient binding to IL-1RAcP.
    [Show full text]