CONTROL of NEURONAL CIRCUIT ASSEMBLY by GTPASE REGULATORS Julia E. Sommer Submitted in Partial Fulfillment of the Requirements

Total Page:16

File Type:pdf, Size:1020Kb

CONTROL of NEURONAL CIRCUIT ASSEMBLY by GTPASE REGULATORS Julia E. Sommer Submitted in Partial Fulfillment of the Requirements CONTROL OF NEURONAL CIRCUIT ASSEMBLY BY GTPASE REGULATORS Julia E. Sommer Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2011 2011 Julia E. Sommer All rights reserved ABSTRACT Control of Neuronal Circuit Assembly by GTPase Regulators Julia E. Sommer One of the most remarkable features of the central nervous system is the exquisite specificity of its synaptic connections, which is crucial for the functioning of neuronal circuits. Thus, understanding the cellular and molecular mechanisms leading to the precise assembly of neuronal circuits is a major focus of developmental neurobiology. The structural organization and specific connectivity of neuronal circuits arises from a series of morphological transformations: neuronal differentiation, migration, axonal guidance, axonal and dendritic arbor growth and, eventually, synapse formation. Changes in neuronal morphology are driven by cell intrinsic programs and by instructive signals from the environment, which are transduced by transmembrane receptors on the neuronal cell surface. Intracellularly, cytoskeletal rearrangements orchestrate the dynamic modification of neuronal morphology. A central question is how the activation of a neuronal cell surface receptor triggers the intracellular cytoskeletal rearrangements that mediate morphological transformations. A group of proteins linked to the regulation of cytoskeletal dynamics are the small GTPases of the Rho family. Small RhoGTPases are regulated by GTPase exchange factors (GEF) and GTPase activating proteins (GAP), which can switch GTPases into “on or off” states, respectively. It is thought, that GEFs and GAPs function as intracellular mediators between transmembrane receptors and RhoGTPases, to regulate cytoskeletal rearrangements. During my dissertation I identified the GAP α2-chimaerin as an essential downstream effector of the axon guidance receptor EphA4, in the assembly of neuronal locomotor circuits in the mouse. Furthermore, I identified two novel neuronal GAPs, mSYD-1A and mSYD-1B, which interact with components of the presynaptic active zone and which may contribute to presynaptic assembly downstream of synaptic cell surface receptors. TABLE OF CONTENTS CHAPTER 1 INTRODUCTION: THE ASSEMBLY OF NEURONAL CIRCUITS ................................................. 1 PREFACE .................................................................................................................................................... 2 AXON GUIDANCE ....................................................................................................................................... 3 A Historical Perspective of Axon Guidance .............................................................................................. 3 Principles of Axon Guidance .................................................................................................................... 5 The Role of Eph-receptors and Ephrin Ligands in Axon Guidance .......................................................... 9 Steering the Axon Growth Cone ............................................................................................................. 10 SYNAPSE FORMATION ............................................................................................................................ 14 Initiation of Synapse Formation by trans-synaptic signaling .................................................................. 15 Molecular Mechanisms of Presynaptic Assembly downstream of Trans-Synaptic Adhesion Proteins .. 21 SYD-1: A Key Regulator of Presynaptic Assembly in Invertebrates ...................................................... 26 GAPS: COMMON SIGNALING MODULES IN AXON GUIDANCE AND SYNAPSE FORMATION .......... 28 THE DISSERTATION PROJECT: CONTROL OF NEURONAL CIRCUIT ASSEMBLY BY GTPASE REGULATORS .................................... 29 α2-Chimaerin .......................................................................................................................................... 29 Synapse Defective-1 (mSYD-1) ............................................................................................................. 30 FIGURES AND LEGENDS ......................................................................................................................... 31 CHAPTER 2 α2-CHIMAERIN IS AN ESSENTIAL EPHA4 EFFECTOR IN THE ASSEMBLY OF NEURONAL LOCOMOTOR CIRCUITS ............................................................................................................. 38 PREFACE .................................................................................................................................................. 39 INTRODUCTION ........................................................................................................................................ 40 Regulation of Rho GTPase Signaling Downstream of Eph Receptors ................................................... 40 α-Chimaerins are GAPs Involved in Neural Development ..................................................................... 41 RESULTS ................................................................................................................................................... 42 α2-Chimaerin Interacts with Activated Eph-Receptors ........................................................................... 42 i α2-Chimaerin Mutant Mice Exhibit Locomotor Defects .......................................................................... 44 α2-Chimaerin is Required for Ephrin-Induced Growth Cone Collapse ................................................... 45 α2-Chimaerin Mutant Mice Show Aberrant Midline Crossing of Spinal Interneuron Projections ........... 46 Corticospinal Defects in α2-Chimaerin Mutant Mice .............................................................................. 48 α2-Chimaerin Mutants Show Bilateral Hindlimb Movements in Response to Cortical Stimulation ........ 48 Genetic Dissection of the Functional Origin of Hindlimb Synchrony in α2-chimaerin Mutant Mice ........ 49 DISCUSSION AND FUTURE DIRECTIONS .............................................................................................. 50 α2-Chimaerin is an Essential EphA4 Effector in the Assembly of Neuronal Locomotor Circuits ........... 50 Why is there no Redundancy in EphA4 Downstream Signaling in the Neurons Controlling Locomotion? ............................................................................................................................................................... 51 Is the α2-chimaerin Phenotype Selective for Locomotor Circuits? ......................................................... 52 The Creation of an α2-chimaerin Conditional Allele as Tool to Dissect the Function of Neuronal Locomotor Circuits ................................................................................................................................. 53 Conclusion .............................................................................................................................................. 54 FIGURES AND LEGENDS ......................................................................................................................... 56 CHAPTER 3 A POTENTIAL ROLE FOR MSYD-1 IN PRESYNAPTIC ASSEMBLY ........................................ 68 PREFACE .................................................................................................................................................. 69 INTRODUCTION ........................................................................................................................................ 71 Invertebrate SYD-1 in AZ assembly ....................................................................................................... 71 Protein Domain Organization and Function in C. elegans SYD-1 .......................................................... 72 C. elegans SYD-1: a Functional GAP? .................................................................................................. 72 SYD-1: a Presynaptic GAP that Links Trans-Synaptic Adhesion with Cytoskeletal Dynamics? ............ 73 The Actin and Microtubule Cytoskeleton in Presynaptic Assembly ........................................................ 73 RESULTS ................................................................................................................................................... 75 Identification of Potential Vertebrate Orthologues of C. elegans SYD-1 ................................................ 75 Expression Analysis of mouse SYD-1 .................................................................................................... 77 Subcellular Localization of mSYD-1A ..................................................................................................... 80 Functional Analysis of mSYD1A ............................................................................................................. 82 ii mSYD-1A Interaction partners ............................................................................................................... 88 Candidate Screening Approach for mSYD-1A Interaction Partners ....................................................... 88 Yeast Two Hybrid Screen for mSYD-1A Interaction Partners ................................................................ 91 A Functional Interaction between Tankyrase 1 and mSYD-1A and -B ..................................................
Recommended publications
  • Reframing Psychiatry for Precision Medicine
    Reframing Psychiatry for Precision Medicine Elizabeth B Torres 1,2,3* 1 Rutgers University Department of Psychology; [email protected] 2 Rutgers University Center for Cognitive Science (RUCCS) 3 Rutgers University Computer Science, Center for Biomedicine Imaging and Modelling (CBIM) * Correspondence: [email protected]; Tel.: (011) +858-445-8909 (E.B.T) Supplementary Material Sample Psychological criteria that sidelines sensory motor issues in autism: The ADOS-2 manual [1, 2], under the “Guidelines for Selecting a Module” section states (emphasis added): “Note that the ADOS-2 was developed for and standardized using populations of children and adults without significant sensory and motor impairments. Standardized use of any ADOS-2 module presumes that the individual can walk independently and is free of visual or hearing impairments that could potentially interfere with use of the materials or participation in specific tasks.” Sample Psychiatric criteria from the DSM-5 [3] that does not include sensory-motor issues: A. Persistent deficits in social communication and social interaction across multiple contexts, as manifested by the following, currently or by history (examples are illustrative, not exhaustive, see text): 1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social approach and failure of normal back-and-forth conversation; to reduced sharing of interests, emotions, or affect; to failure to initiate or respond to social interactions. 2. Deficits in nonverbal communicative behaviors used for social interaction, ranging, for example, from poorly integrated verbal and nonverbal communication; to abnormalities in eye contact and body language or deficits in understanding and use of gestures; to a total lack of facial expressions and nonverbal communication.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • A Novel Method of Neural Differentiation of PC12 Cells by Using Opti-MEM As a Basic Induction Medium
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 41: 195-201, 2018 A novel method of neural differentiation of PC12 cells by using Opti-MEM as a basic induction medium RENDONG HU1*, QIAOYU CAO2*, ZHONGQING SUN3, JINYING CHEN4, QING ZHENG2 and FEI XIAO1 1Department of Pharmacology, School of Medicine, Jinan University; 2College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632; 3Department of Anesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong 999077, SAR; 4Department of Ophthalmology, The First Clinical Medical College of Jinan University, Guangzhou, Guangdong 510632, P.R. China Received April 5, 2017; Accepted October 11, 2017 DOI: 10.3892/ijmm.2017.3195 Abstract. The PC12 cell line is a classical neuronal cell model Introduction due to its ability to acquire the sympathetic neurons features when deal with nerve growth factor (NGF). In the present study, The PC12 cell line is traceable to a pheochromocytoma from the authors used a variety of different methods to induce PC12 the rat adrenal medulla (1-4). When exposed to nerve growth cells, such as Opti-MEM medium containing different concen- factor (NGF), PC12 cells present an observable change in trations of fetal bovine serum (FBS) and horse serum compared sympathetic neuron phenotype and properties. Neural differ- with RPMI-1640 medium, and then observed the neurite length, entiation of PC12 has been widely used as a neuron cell model differentiation, adhesion, cell proliferation and action poten- in neuroscience, such as in the nerve injury-induced neuro- tial, as well as the protein levels of axonal growth-associated pathic pain model (5) and nitric oxide-induced neurotoxicity protein 43 (GAP-43) and synaptic protein synapsin-1, among model (6).
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • Autosomal Recessive Ataxias and with the Early-Onset Parkinson’S Disease That We Identified Here As Overlapping with the SFARI Autism Gene
    Roadmap to Help Develop Personalized Targeted Treatments for Autism as a Disorder of the Nervous Systems Elizabeth B Torres 1,2,3* 1 Rutgers University Department of Psychology; [email protected] 2 Rutgers University Center for Cognitive Science (RUCCS) 3 Rutgers University Computer Science, Center for Biomedicine Imaging and Modelling (CBIM) * Correspondence: [email protected]; Tel.: (011) +858-445-8909 (E.B.T) 1 | P a g e Supplementary Material Sample Psychological criteria that sidelines sensory motor issues in autism: The ADOS-2 manual [1, 2], under the “Guidelines for Selecting a Module” section states (emphasis added): “Note that the ADOS-2 was developed for and standardized using populations of children and adults without significant sensory and motor impairments. Standardized use of any ADOS-2 module presumes that the individual can walk independently and is free of visual or hearing impairments that could potentially interfere with use of the materials or participation in specific tasks.” Sample Psychiatric criteria from the DSM-5 [3] that does not include sensory-motor issues: A. Persistent deficits in social communication and social interaction across multiple contexts, as manifested by the following, currently or by history (examples are illustrative, not exhaustive, see text): 1. Deficits in social-emotional reciprocity, ranging, for example, from abnormal social approach and failure of normal back-and-forth conversation; to reduced sharing of interests, emotions, or affect; to failure to initiate or respond to social interactions. 2. Deficits in nonverbal communicative behaviors used for social interaction, ranging, for example, from poorly integrated verbal and nonverbal communication; to abnormalities in eye contact and body language or deficits in understanding and use of gestures; to a total lack of facial expressions and nonverbal communication.
    [Show full text]
  • Agrin Differentially Regulates the Rates of Axonal and Dendritic Elongation in Cultured Hippocampal Neurons
    The Journal of Neuroscience, September 1, 2001, 21(17):6802–6809 Agrin Differentially Regulates the Rates of Axonal and Dendritic Elongation in Cultured Hippocampal Neurons Kristina B. Mantych and Adriana Ferreira Institute for Neuroscience and Department of Cell and Molecular Biology, Northwestern University Medical School, Chicago, Illinois 60611 In the present study, we examined the role of agrin in axonal elongation and branching were paralleled by changes in the and dendritic elongation in central neurons. Dissociated hip- composition of the cytoskeleton. In the presence of agrin, there pocampal neurons were grown in the presence of either recom- was an upregulation of the expression of microtubule- binant agrin or antisense oligonucleotides designed to block associated proteins MAP1B, MAP2, and tau. In contrast, a agrin expression. Our results indicate that agrin differentially downregulation of the expression of these MAPs was detected regulates axonal and dendritic growth. Recombinant agrin de- in agrin-depleted cells. Taken collectively, these results suggest creased the rate of elongation of main axons but induced the an important role for agrin as a trigger of the transcription of formation of axonal branches. On the other hand, agrin induced neuro-specific genes involved in neurite elongation and branch- both dendritic elongation and dendritic branching. Conversely, ing in central neurons. cultured hippocampal neurons depleted of agrin extended longer, nonbranched axons and shorter dendrites when com- Key words: agrin; neurite outgrowth; microtubule-associated pared with controls. These changes in the rates of neurite proteins; CREB; antisense oligonucleotides; axons and dendrites Agrin, an extracellular matrix protein, is synthesized by motor Conversely, neurons depleted of agrin elongated longer axons neurons and transported to their terminals where it is released when compared with control ones (Ferreira 1999; Serpinskaya et (Magill-Solc and McMahan, 1988; Martinou et al., 1991; Ruegg et al., 1999).
    [Show full text]
  • Dock3 Stimulates Axonal Outgrowth Via GSK-3ß-Mediated Microtubule
    264 • The Journal of Neuroscience, January 4, 2012 • 32(1):264–274 Development/Plasticity/Repair Dock3 Stimulates Axonal Outgrowth via GSK-3␤-Mediated Microtubule Assembly Kazuhiko Namekata, Chikako Harada, Xiaoli Guo, Atsuko Kimura, Daiji Kittaka, Hayaki Watanabe, and Takayuki Harada Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan Dock3, a new member of the guanine nucleotide exchange factors, causes cellular morphological changes by activating the small GTPase Rac1. Overexpression of Dock3 in neural cells promotes axonal outgrowth downstream of brain-derived neurotrophic factor (BDNF) signaling. We previously showed that Dock3 forms a complex with Fyn and WASP (Wiskott–Aldrich syndrome protein) family verprolin- homologous (WAVE) proteins at the plasma membrane, and subsequent Rac1 activation promotes actin polymerization. Here we show that Dock3 binds to and inactivates glycogen synthase kinase-3␤ (GSK-3␤) at the plasma membrane, thereby increasing the nonphos- phorylated active form of collapsin response mediator protein-2 (CRMP-2), which promotes axon branching and microtubule assembly. Exogenously applied BDNF induced the phosphorylation of GSK-3␤ and dephosphorylation of CRMP-2 in hippocampal neurons. More- over, increased phosphorylation of GSK-3␤ was detected in the regenerating axons of transgenic mice overexpressing Dock3 after optic nerve injury. These results suggest that Dock3 plays important roles downstream of BDNF signaling in the CNS, where it regulates cell polarity and promotes axonal outgrowth by stimulating dual pathways: actin polymerization and microtubule assembly. Introduction We recently detected a common active center of Dock1ϳ4 within The Rho-GTPases, including Rac1, Cdc42, and RhoA, are best the DHR-2 domain and reported that the DHR-1 domain is nec- known for their roles in regulating the actin cytoskeleton and are essary for the direct binding between Dock1ϳ4 and WAVE1ϳ3 implicated in a broad spectrum of biological functions, such as (Namekata et al., 2010).
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Lfp Cv May 2021 1
    Curriculum Vitae Luis F. Parada, Ph.D. [email protected] 1275 York Avenue, Box 558 New York, NY 10065 T 646-888-3781 www.mskcc.org Education & positions held 1979 B.S., Molecular Biology (with Honors), University of Wisconsin-Madison, Wisconsin 1985 Ph.D., Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 1985 - 1987 Postdoctoral Fellow, Unité de Génetique Cellulaire, Pasteur Institute, Paris, France 1988 - 1994 Head, Molecular Embryology Group & Molecular Embryology Section (with tenure), Mammalian Genetics Laboratory, ABL-Basic Research Program, NCI-Frederick Cancer Research and Development Center, Frederick, Maryland 1994 - 2006 Director, Center for Developmental Biology and Professor of Cell Biology University of Texas Southwestern Medical Center, Dallas, TX 1995 - 2015 Diana and Richard C. Strauss Distinguished Chair in Developmental Biology 1997 - 2015 Director, Kent Waldrep Center for Basic Research on Nerve Growth and Regeneration 1998 - 2015 Southwestern Ball Distinguished Chair in Basic Neuroscience Research 2003 - American Cancer Society Research Professor 2006 - 2015 Chairman, Department of Developmental Biology, University of Texas Southwestern Medical School 2015- Director, Brain Tumor Center & Member Cancer Biology and Genetics Program, SKI & MSKCC 2015- Albert C. Foster Chair, SKI & MSKCC 2015- Attending Neuroscientist, Departments of Neurology and Neurosurgery, MSKCC Luis F. Parada Page 2 of 28 Honors 2018 EACR Keynote Lecture. The 4th Brain Tumours 2018: From Biology to Therapy Conference. Warsaw, Poland. 2018 Keynote Lecture CRUK Brain Tumour Conference 2018. London 2016 - 2023 NCI Outstanding Investigator Award (R35) 2015 Distinguished Lectureship in Cancer Biology, MD Anderson 2014 The Maestro Award – Dallas, TX 2014 The Herman Vanden Berghe Lectures – University of Leuven, Belgium 2013 Blaffer Lecture – M.D.
    [Show full text]
  • Whole Exome Sequencing in Families at High Risk for Hodgkin Lymphoma: Identification of a Predisposing Mutation in the KDR Gene
    Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Whole exome sequencing in families at high risk for Hodgkin lymphoma: identification of a predisposing mutation in the KDR gene Melissa Rotunno, 1 Mary L. McMaster, 1 Joseph Boland, 2 Sara Bass, 2 Xijun Zhang, 2 Laurie Burdett, 2 Belynda Hicks, 2 Sarangan Ravichandran, 3 Brian T. Luke, 3 Meredith Yeager, 2 Laura Fontaine, 4 Paula L. Hyland, 1 Alisa M. Goldstein, 1 NCI DCEG Cancer Sequencing Working Group, NCI DCEG Cancer Genomics Research Laboratory, Stephen J. Chanock, 5 Neil E. Caporaso, 1 Margaret A. Tucker, 6 and Lynn R. Goldin 1 1Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 2Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; 3Ad - vanced Biomedical Computing Center, Leidos Biomedical Research Inc.; Frederick National Laboratory for Cancer Research, Frederick, MD; 4Westat, Inc., Rockville MD; 5Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD; and 6Human Genetics Program, Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD, USA ©2016 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2015.135475 Received: August 19, 2015. Accepted: January 7, 2016. Pre-published: June 13, 2016. Correspondence: [email protected] Supplemental Author Information: NCI DCEG Cancer Sequencing Working Group: Mark H. Greene, Allan Hildesheim, Nan Hu, Maria Theresa Landi, Jennifer Loud, Phuong Mai, Lisa Mirabello, Lindsay Morton, Dilys Parry, Anand Pathak, Douglas R. Stewart, Philip R. Taylor, Geoffrey S. Tobias, Xiaohong R. Yang, Guoqin Yu NCI DCEG Cancer Genomics Research Laboratory: Salma Chowdhury, Michael Cullen, Casey Dagnall, Herbert Higson, Amy A.
    [Show full text]
  • Human DOCK3 Antibody Antigen Affinity-Purified Polyclonal Sheep Igg Catalog Number: AF7134
    Human DOCK3 Antibody Antigen Affinity-purified Polyclonal Sheep IgG Catalog Number: AF7134 DESCRIPTION Species Reactivity Human Specificity Detects human DOCK3 in direct ELISAs. In direct ELISAs, less than 3% cross­reactivity with recombinant human (rh) DOCK1, rhDOCK2, and rhDOCK5 is observed. Source Polyclonal Sheep IgG Purification Antigen Affinity­purified Immunogen E. coli­derived recombinant human DOCK3 Gly418­Thr656 Accession # Q8IZD9 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (­SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Immunohistochemistry 5­15 µg/mL See Below DATA Immunohistochemistry DOCK3 in Human Brain. DOCK3 was detected in immersion fixed paraffin­ embedded sections of human Alzheimer's brain (cortex) using Sheep Anti­Human DOCK3 Antigen Affinity­purified Polyclonal Antibody (Catalog # AF7134) at 3 µg/mL overnight at 4 °C. Tissue was stained using the Anti­Sheep HRP­DAB Cell & Tissue Staining Kit (brown; Catalog # CTS019) and counterstained with hemotoxylin (blue). Specific staining was localized to neurofibrillary tangles. View our protocol for Chromogenic IHC Staining of Paraffin­ embedded Tissue Sections. PREPARATION AND STORAGE Reconstitution Sterile PBS to a final concentration of 0.2 mg/mL. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. *Small pack size (­SP) is shipped with polar packs. Upon receipt, store it immediately at ­20 to ­70 °C Stability & Storage Use a manual defrost freezer and avoid repeated freeze­thaw cycles.
    [Show full text]