Ecology andBiologica l Controlo f

Verticillium dahliae Promotor: prof, drM.J . Jeger hoogleraar in deecologisch e fytopathologie

Co-promotor: drA.J . Termorshuizen universitair docentbi j deleerstoelgroe p biologische bedrijfssystemen Propositions

1. With Arabidopsis thaliana, microsclerotia of Verticillium dahliae can be quantified down to 1microsclerotiu m g'1 soil. {This thesis).

2. Rather than direct detection methods such as plating techniques, bioassays integrate information on multiple soil factors leading to infection by Verticillium dahliae. {This thesis).

3. The dynamics of formation of microsclerotia of Verticillium dahliae in senescent host tissue is the result of a complex interaction between weather, host growth, number of root infections, and host senescence rate. {This thesis).

4. In quantifying microsclerotia of Verticillium dahliae in soil it should be taken into account that the amount of recoverable microsclerotia may change in time. {This thesis).

5. Consistency of biological control can be improved by applying compatible combinations of antagonists. {This thesis).

6. Biological control of plant pathogens will improve the quality of the environment.

7. Absence of above-ground symptoms of Verticillium dahliae does not exclude the presence of a pathogenic interaction below-ground.

8. Educating farmers in farmer's schools improves management of plant diseases and therefore leads to more sustainable agriculture.

9. Wisdom is knowing when to speak your mind and when to mind your speech. When we are filled with pride, we leave no room for wisdom {Our Daily Bread, RBC Ministries, Grand Rapids, Michigan, 1999).

10. We may not complain about so many thorns on roses but we should be thankful for the roses among thorns. 11. Proper education isdecisiv e for the quality of our future generations.

12. Understanding, paying attention, hospitality, and self control are thebasi s for building up good relationships among people having different cultural, religious, and social backgrounds.

Propositions attached toth e thesis: Ecology and Biological Control of Verticillium dahliae by L. Soesanto, defended on 29 ofMarc h 2000. L. Soesanto

Ecology and Biological Control of Verticillium dahliae

Proefschrift terverkrijgin g van degraa dva n doctor op gezagva n derecto r magnificus van Wageningen Universiteit, dr CM. Karssen, inhe topenbaa r teverdedige n opwoensda g 29maar t 2000 desnamiddag st e 16.00uu r ind eAul a van Wageningen Universiteit

J Bibliograpic data

Soesanto,L. ,200 0

Ecology and biological control of Verticillium dahliae PhDThesi s Wageningen University, Wageningen, the With references -Wit h summary inEnglish , Dutch, and Indonesian ISBN 90-5808-192-3

Cover design: P.J. Kostense andL . Soesanto

The studies described in this thesis wereperforme d at theLaborator y of Phytopathology and Biological Farming Systems,th eDepartmen t of Crop Science, Wageningen University, Marijkeweg 22,670 9P GWageningen , theNetherlands .

Theresearc h was fully financed byth e Minister of Education and Culture,th e Republic of Indonesia, through the Higher Education Development Project (HEPII ) -AD BLoa n No. 1235- INO.

Printed byPonse n &Looije n B.V. Dedicated to mymothe r and my late father whopasse d away on 17tho fDecembe r 1998, tom ywif e andm ybrother s and sister and their family: Jones,Denny , Eli,Yenny , andAgu s ABSTRACT

Soesanto,L. , 2000.Ecolog y and biological control of Verticillium dahliae.Ph DThesis , Wageningen University, Wageningen, the Netherlands.

The dynamics of Verticillium dahliae, the causal agent of wilt disease in manycrop s including potato,cotton , and olive,wer einvestigated . Itsbiologica l control with Talaromycesflavus wit h or without additional Pseudomonasfluorescens wa s attempted.Arabidopsis thalianawa s selected as abioassa yplan t for studying aspects of ecology andbiologica l control of thepathoge n becauseo f its short life cycle andhig h sensitivity to thepathogen . The optimal temperature for production of microsclerotia,th e survival structures of thepathogen , both invitro an d onA. thalianawa sabou t 20°C. Microsclerotia incorporated in soil were exposed to arang e of conditions of temperature andmoistur e and quantified on several sampling occasions. One day after incorporation, densities were low, andwer eeve n lower overth e following 1-6 months,bu t subsequently densities increased. These changes were ascribed tochang e in the level of soil mycostasis rather than death andne w formation of microsclerotia. After application ofT. flavus to fresh organic debris containing microsclerotia followed bya 3-wee kincubatio n aboveground at 15o r25° C the population density ofT. flavus increased in soil,especiall y at 25°C.T. flavus significantly reduced the density of microsclerotia in soil,especiall y at 25°C,an d delayed thedevelopmen t of senescence ofA .thaliana a t 15an d 25°C.I ti sconclude d that above-ground application of T. flavus may lead to moreconsisten t effects. Theeffec t of P.fluorescens strain P60, originally isolated from atake-al l decline field continuously grown to wheat, onV. dahliaewa s also studied. Strain P60, andtw o otherisolate s of P.fluorescens, inhibited the invitro mycelia l growth of 20isolate s ofV. dahliae,reduce d formation of microsclerotia both invitro an d onA. thalianaan d theyretarde d senescence ofA .thaliana to arat elik e that of uninoculated plants.

Key words:Arabidopsis thaliana, biological control,bioassay , detection, eggplant, microsclerotia, Pseudomonasfluorescens, recovery, relative humidity, Solanum melongena, Talaromycesflavus, temperature, Verticillium dahliae. CONTENTS

Preface 11

Chapter 1. General introduction 13

Chapter 2. Arabidopsisthaliana a sa bioassa y plant for Verticillium dahliae 25

Chapter 3. Effect oftemperatur e on formation ofmicroscleroti a of Verticillium dahliae 37

Chapter 4. Recovery ofmicroscleroti a of Verticillium dahliaefro m soil as subjected to various treatments 49

Chapter 5. Above-ground application of Talaromycesflavus t o control Verticillium dahliae 61

Chapter 6. Control of Verticillium dahliaei nArabidopsis thaliana an d eggplant (Solatium melongena) by combination ofPseudomonas fluorescens and Talaromycesflavus Ti

Chapter 7. General discussion 89

References 95

Summary 107

Samenvatting 111

Ringkasan 115

Author's curriculum vitae 120 PREFACE

Thisthesi s isth eresul t of four yearso finvestigatin g theecolog y ofth eplan t pathogen Verticillium dahliaecarrie d out atth e Laboratory ofPhytopathology , section Ecological Phytopathology, Wageningen University, theNetherlands . First of allI deepl y would liket othan k God for Hismerc y to follow aPh Dprogram , for His guidance and strength duringthi shar dtime , and for Hisblessin g to finish theprogra m and defend mythesis .It' stru etha t "Ica nd o everything through Himwh o givesm e strength" (Philippians4:13). Thisresearc h was initiated in September 1995unde r the supervision ofD rA.J . Termorshuizen, recently moved to the Group ofBiologica l Farming Systems,Departmen t of Plant Science, Wageningen University. Ia mver y grateful for hispersisten t guidance,help , understanding, and support from thebeginnin g upt oth e end ofth eresearch . Aad,than k youver y muchfo r everything youhav edon et oencourag eme . Iwoul d liket othan kProf . DrM.J . Jeger for his efforts to attainth epromotion . Iacknowledg e my gratitude toD rJ.M . Raaijmakers for his encouragement, supervision, motivation, andreadin g the manuscript. Theprojec t was granted by theMinistr y ofEducatio n and Culture,th eRepubli c of Indonesia, through theHighe r Education Development Project (HEP II) -AD B LoanNo . 1235- INO,t owho m Ia m sincerely grateful for the financial support. Ials o extend my sincere gratitude toNuffi c both inJakarta , Indonesia, andi n TheHague ,th eNetherlands , for facilitating my stay inth eNetherlands . I deeply would liket o thank theRecto r ofth eUniversit y ofJendera l Soedirman (UNSOED) andth eDea n ofth eFacult y ofAgriculture ,UNSOED ,Purwokerto ,Indonesia , for theirpermissio n and support to improve my appreciation of sciencea tWageninge n University. I amdetermine d todistribut em y acquired skillst oUNSOED .M ythank s also got om y colleagues atth eDepartmen t ofPlan t Pests andDiseases , theFacult y of Agriculture,UNSOED .Th eDean' s Office for International Students,WAU , arranged andmanage d my accommodation, extension, andtravel .I a mver y grateful for their service. Iwoul d liket othan kProf .D rW . Gams (Centraalbureauvoo r Schimmelcultures,Baarn) , Dr W.J.Blo k (Laboratory ofPhytopathology) , DrJ .A .Hiemstr a (CPRO,Wageningen) , andD r M.P.M.Nagtzaa m (LNV, TheHague ) for useful comments on earlier versions ofth e manuscript. I further thank all themember s ofth e Laboratory of Phytopathology with special thanks toth e section of Ecological Phytopathology: DineVolker , Wout Hoogkamer,Dr s Gerrit Bollen, Dr Gerrie Tuitert, Dr Wim Blok, DrMari oNagtzaam , Jan-Kees Goud, Trudie Coenen, Dr Gitte Schober, Eelco Gilijamse, Herman Frinking,Jorg ed e Souza,Gerar d van Leeuwen, Angelique

11 Lamour,an d Corrie Geerds for theirhel p andnic eco-operation . For someo fth e fellow students, Hans Meerman,Pell aBrinkman , DioneBouchout , Gerben Messelink, Dereje Assefa Abera,an d other students for their kind co-operation during working in apleasan t atmosphere, Iexten d my thanks. Special thanks got o Willem Twijsel and his family for their kind support and companionship. Igiv em y thankst o Drs Gerrit Gort (section ofMathematics ) for his statistical advices.I als o thank themanagemen t ofth e greenhouse and climate chamber facilities, Unifarm, for assistance during my experiments. Wim,Bertus ,Pieter , Rick, Casper, and Rene,man ythanks ! I appreciate the Library ofFYT O (Heleen, Ans) andDuoton e for their service. Ireall y thank you. Iwis h to thank theIndonesia n Student Association ofWageninge n and thewhol e family ofIndonesia n communities, with special thanks got o Mrs.Widjorin i Eveleens and her family, theInternationa l Student Chaplaincy, theInternationa l Christian Fellowship, and my foreign friends, for their hospitality, spiritual support, andkin d co-operation during studying inth e Netherlands.Als o many thanks got o thoseI di d notmentio n here for their ideas and support. Finally, no list of acknowledgements wouldb ecomplete d without an acknowledgement ofver y special gratitude tom ymothe r andm y late father who invested in education but didno t live long enough to seeit sresult ,t o Mrs. SriRahay u andMrs .Ima m Soetorowit h their family, to mydea rwife , andm ybrother s and sister: Jones,Denny , Eli,Yenny , and Agus,wit hthei r family. Very special thanks got o you all for your support, encouragement, and understanding, duringm y study inth eNetherlands .Akhirnya, tiada senerai ucapan terima kasihyang lengkap tanpa ungkapan rasaterima kasih yang sangattulus danhormat kepada ibunda dan almarhum ayahndayang telah membekali kamidengan pendidikan tetapi tidak hidup cukup lama untuk menikmati hasilnya, kepadaibunda SriRahayu danibunda ImamSoetoro beserta keluarga, kepadaistriku tercinta, danadik-adikku: Jones, Denny,Eli, Yenny, danAgus beserta keluarga mereka masing-masing, atasdorongan, semangat, danpengertian yang telah diberikan khususnya selamamasa-masa sukar.

Wageningen, January 2000

12 CHAPTER1

GENERALINTRODUCTIO N

Verticillium dahliaeKleb . is a soilborne pathogen that causes wilt in awid erang e of hosts (Schnathorst, 1981).I t affects manycrops ,th e most economically significant being cotton,potato , and olive.I n addition many othercrop s can be affected seriously, including vegetables (artichoke, eggplant, cauliflower, pepper),fruit s (strawberry, grapevine), fruit trees (avocado,cocoa) ,ston e fruit, fibre and oil seed crops (apricot, kenaf {Hibiscus canabinus),linseed , sunflower), ornamentals (chrysanthemum, dahlia, rose),an d shadetree s (maple, ash).Som e reports on severe outbreaks ofV. dahliaear e listed in Table 1.1.

Table 1.1.Report s of severe yield lossescause db y Verticillium dahliae.

Major hosts Location Yield loss References Almond (Prunus dulcis) Italy I Luisi and Sicoli, 1993;Luis i etal., 1994 Artichoke (Cynara scolymus) Chile 22-70% Fernandez and Tobar, 1989 Italy - Cirulli et al., 1994 Ash (Fraxinus spp.) USA 20-30% Heffer and Regan, 1996 Avocado (Persea spp.) Chile - Latorre and Allende, 1983 Cauliflower (Brassica oleracea var. USA 95% Koike etal, 1994 botrytis) Cocoa (Theobroma cacao) Brazil 85% Resende et at, 1994 Cotton (Gossypium hirsutum) China - Shi etal., 1998 Spain - Bejarano-Alcazar et al., 1996 USA 100% Friebertshauser and DeVay, 1982 Eggplant (Solanum melongena) Japan - Hashimoto, 1989 Horseradish (Armoracia rusticana) USA 75% Eastburn and Chang, 1994 Linseed (Linum usitatissimum) UK >98% Fitter a/., 1991; 1992 Olive (Olea europaea) Greece - Thanassoulopoulos 1993 Spain 25% Bianco-Lopez et al., 1984 Paprika (Capsicum annuum) Israel 22% Tsror etal., 1998 Potato (Solanum tuberosum) Canada - Piatt etal., 1995 USA 50% Rowe etal, 1987 Israel 20-50% Susnoschi etal., 1974 Protea (Leucospermum cordifolium) USA - Koike etal., 1991 Pyramid tree (Lagunaria patersonii) Italy - Polizzi, 1996 Sunflower (Helianthus annuus) UK 25-90% Church and McCartney, 1995 Winter rape (Brassica napus) Germany 44% Daebeler etal., 1988 Precise yield loss not indicated.

13 Anextensiv e host list has been presented byPeg g (1974).Monocotyledonou s plantsar e generally considered non-hosts,wit h the notable exception ofbarle y (Mathre, 1986,1989).Th e pathogen occurs worldwide in the temperate and subtropical zones in all continents,bu t only sporadically in thetropics . Thepathoge n forms highlypersisten t survival structures, the microsclerotia,b y which it maysurviv e extended non-host periods.Give n the wide hostrang eo fV. dahliae,cro p rotation provides onlylimite d protection against thedisease ,a n alternation with monocotyledonous crops such ascereal s yielding thebes tresult s (Bollen etal., 1989).Contro l of verticilliumwil t has largelybee n based on chemical soil disinfestation, but because of the nonselective mode of action andth eenvironmenta l impact, suchtreatment s arebecomin gbanne d byth eauthorities . Currently, alternatives areno t available except for soil solarization in Mediterranean areas (Katan, 1981). Although microsclerotia are generally regarded asth etarge t structures tob econtrolle d through strategies of biological orcultura l control, theirecolog y and dynamics have onlyrarel y been studied in detail.Therefore , factors affecting formation, survival, anddeat h of microsclerotia of V. dahliaear eth e subject of thisthesis . BesidesV. dahliae,ther e are some other plant pathogenic species of Verticillium, i.e., V. albo-atrum Reinke &Berthold ,V. longisporum (C.Stark ) Karapapa, Bainbr. &Heale , andV. tricorpusIsaac .Thei r distinguishing morphological characters areliste d inTabl e 1.2.Verticillium species areknow n to degeneratequickl y after subculturing invitro (Domsc h etal., 1980),s oth e identification should be performed using fresh isolates. V. albo-atrum is known asth ecausa l agent of wilt in mainly hop,tomato , soybean, and alfalfa (Domsch etal., 1980;Atkinson , 1981).I ti sdistinguishe d from V. dahliaeb y the absence of microsclerotia and theformatio n of dark resting mycelium, which has less survival potential than the mycelium ofV. dahliae. Thebasa l cells of conidiophores are usually dark-coloured. In contrast toV. dahliae,V. albo-atrumma ybecom e air-borne through the formation of conidiao n infected shoottissu e (Jimenez-Diaz andMillar , 1988). V.tricorpus i sa wea k pathogen that is ablet oproduc e threetype s of resting structures, i.e., resting mycelium, microsclerotia, and chlamydospores (Heale and Isaac, 1965).Korole v and Katan (1999) mentioned that although V. tricorpuscolonize d theroot s and hypocotyls of seedlings, stems were only rarely infected. Paplomatas etal. (1997 )reporte d preliminary evidence thatV. tricorpusca n be used as abiocontro l agent of Rhizoctonia solanii n cotton seedlings. V.longisporum wasformerl y namedV. dahliaevar . longisporumStar k (Stark, 1961),bu t studies on the morphology, phylogeny, andecolog y revealed the necessity of recognition atth e level of species (Jackson andHeale , 1985; Karapapa etal., 1997). V.longisporum i s recognised

14 •8 -o

•Ii sIif ! S o S -a

o u

^ £ a 60 O jg

in ^

o g>5 w .„ c3

3 Q, -Q O •3! oo s Q *D *T •ff 2 ^ ro (N 23 « _hf_l o XI o o*. * .2 -~f 11 o a J3 *! i .s - « I) 3 w Z OS asa heterodiploi d ofV. albo-atrum xV. dahliae. Itca n bedistinguishe d morphologically from V. dahliaeb ythre echaracter s (Table 1.2), themos t conspicuous is the longer conidia. In addition, phialides occur 3pe rnod ei nV. longisporum and usually4- 5pe rnod e inV. dahliae.I n contrast toV. dahliae,th ehos trang eo fV. longisporum islimite d tocrucifer s and thefungu s hasbee n most phialides occur 3pe rnod ei nV. longisporum and usually4- 5 pernod e inV. dahliae. In contrast toV. dahliae, thehos t range ofV. longisporum is limited to crucifers and thefungu s has been most frequently reported tooccu r inoi l seedrap e (Berg, 1997;Karapap a etal., 1997) , though it was originally described from horseradish. Three aspects areintroduce d here,viz., th e aetiology and the life cycle ofV. dahliae, the epidemiology of verticilliumwil t diseases,an d current control approaches for the pathogen, before the objective, approach, and structure of this thesis are outlined.

Life cycleo f Verticillium dahliaean d disease symptoms

The life cycle ofV. dahliaeca n be divided into adormant , parasitic, and saprotrophic stage (Figure 1.1). During the dormant stageth e fungus survives inroundis h toellipsoi d aggregateso f thick-walled, melanized cells called microsclerotia. Melanins aredark-pigment s found inanimals , plants,an d micro-organisms. They areno t essential for growth ordevelopmen t (Polak, 1989),bu t provide protection against infection and,consequently , play an important rolei n the survival. Microsclerotia ofV. dahliaehav e been shown toremai n viablei n soil for moretha n 10year s (Wilhelm, 1955; Powelson andRowe , 1993).Hawk e andLazarovit s (1995)foun d thatnon - melanized microsclerotia of amutan t hadn o persistence. In soil,V. dahliaelack s asaprotrophi c stage.Germinatio n of microsclerotia, being subject to mycostasis (Lockwood, 1977),take s place only under the influence of root exudates in the rhizosphere of host plants.Als o non-hosts havebee n reported toinduc e germination of microsclerotia (Schreiber and Green, 1963; Olsson and Nordbring-Hertz, 1985; Mol etal., 1995) . Mycostasis isprobabl y overcome byroo t exudates in therhizospher e where available carbon is not limited (Lynch andWhipps , 1990).Site s of infection of germinating microsclerotia areth e root tip,th eroo telongatio n zone,o rth epoint so f lateral root emergence.

16 Formation of microscierotia on dying tissue

Microsclerotia in soil or on plant residues

Germination of microsclerotia

Colonization of shoot, stem and leaves Colonization of the cortex and stele

Figure 1.1.Lif e cycleo f Verticillium dahliaei n potato (Courtesy DrM.P.M . Nagtzaami n Nagtzaam, 1998).

Most of the root cortex infections seemt o affect the plant toa limite d extent andthe y remain superficial and small (Huisman, 1988;Geri k andHuisman , 1988).I n someplants ,roo t infections remain limited in sizeprobabl y as aresul t of aresistanc e reaction byth e host. However, in chrysanthemum considerable damage was observed in infected root cells (Hall and Busch, 1971).Th eendodermi s acts as anatura l barrier that apparently cannot bepenetrate d byV. dahliae, only very few root cortex infections seemt oreac h the vascular tissue.Huisma n (1982) estimated that only 5%o rles s of theroo tcorte x infections ultimately results in infection of the shoot. It has been postulated that vascular infections are successful only where the endodermis hasye tno tdevelope d (i.e.,a tth eroo ttip ) (Bowerset al., 1996),o rwher eth eendodermi s has been damaged, e.g.,b ynematode s (Pegg, 1974;Schnathorst , 1981;MacGuidwi n andRouse , 1990a). After penetration of the endodermis,th efungu s enters the vascular system where it forms conidia from inconspicuous intercalary phialides, alsoterme d budding (Gerik and Huisman,

17 1985;Ferrandino , 1995).Subsequently , theconidi a aretransporte d passively with the sap stream to end walls where theygerminat e andpenetrat e into thenex t vessel segment (Bell, 1992), followed again byproductio n of conidia.V. dahliaesecrete s pectinolytic enzymes that destroyth e middlelamella e of thexyle mparenchym a anddegrad e pectic compounds in the walls of vessels andtracheid s (Pierson etal, 1955;Heal ean dGupta , 1972).Parenchym a cells adjacent toth e infected xylem vessels become discoloured andfille d with gum-like material.I n most host species,xyle m discoloration can be seen byth enake d eye. Infected xylem vessels maybecom e clogged byth e secretion of material byth e parenchyma cells andb ymasse s of fungal hyphae. This,i n combination with production of wilt toxins (e.g., lipopolysaccharides) byth e pathogen, results in reduced respiration, reduced photosynthesis, and, finally, wilting (Orenstein et al, 1989;Mansoor i etal, 1995). Wilt symptoms appear initially atth e lower leaves,where ,typically , first half of an infected leaf shows disease symptoms,bu t ultimately the whole leaf wilts and drops off. In manycases , however, no one-sided wilting of leaves occurs,an dprematur e senescencei s the onlydiseas e symptom. In trees,onl y some branches maysho w wilting and they mayrecove r temporarily or completelyi n subsequent years (Hiemstra, 1998).Sinc e specific disease symptoms are often absent, thediseas e isonl y diagnosed reliably when the pathogen can be isolated from diseased plant material. Moreover, several Fusarium species cause similar disease symptoms. During and after plant senescence the saprotrophic stageo f thefungu s begins, resultingi n thecolonizatio n of the shoots androot s followed bymassiv e production of microsclerotia. Microsclerotia areforme d mostprominentl y in thecorte x of stems, and morerarel y in the leaves (cotton) of herbaceous plants.The y are alsocommonl y formed in petioles of woodyhost s (Rijkers etal, 1992).

Epidemiology of verticilliumwilt s

Verticillium wilt is considered to bea monocycli c disease, because a single propagule (i.e., a microsclerotium) causes only oneinfectio n within one growing season and new microsclerotia mayb eforme d in the season of infection, but they will not leadt one w infection in the same season. Alinea r relationship between thedensit y of microsclerotia in soil andth enumbe r ofroo t infections per unit of root length has been reported frequently (Huisman and Ashworth, 1976; Ashworth etal, 1979;Nagtzaa m etal, 1997).V. dahliaema yb econsidere d an ecologically obligate vascular pathogen. Ashor t growth through soil to reach aroo t ispossibl y at the expense of the energy contents of themicrosclerotia . Itha s been shown that microsclerotia maygerminat e independently of anexterna l nutrient supply (Ben-Yephet andPinkas , 1977).However , asdescribe d inth e previous paragraph, ina n unsterile soil,V. dahliaei s subject toth ephenomeno n of mycostasis.Lockwoo d (1977) hypothesized that propagules can germinate byconsumin g exudates accumulated on their surface. In an unsterile soil,thes e exudates areremove d byothe r organisms,thu s preventing germination. Mycostasis has been interpreted asecologicall y advantageous for any soil-borneplan t pathogen because in the absence of ahos t their germination hyphae would be lysedreadily . Inth e rhizosphere, however, wherethroug h theexudatio n of nutrients byth eroo t carbon limitation is counteracted (Lynch andWhipps , 1990),microscleroti a ofV. dahliaegerminat e readily (Molan d Van Riesen, 1995).Th eproductio n of new microsclerotia from germinated microsclerotia has alsobee n reported (Farley etal., 1971),bu t this new microsclerotium receives less energy than the original one,a s the uptake of nutrients from the surrounding soil is considered tob e highly unlikely. The energy contents of amicrosclerotiu m are likely tob e sufficient to support hyphal growth over aver y short distance towards aroot . Each singlecel l of amicrosclerotiu m is able to germinate once.Thus ,microscleroti a are able to germinate repeatedly. Alinea rrelationshi p hasbee n observed between densityo f microsclerotia in soil androo t infection ordiseas e incidence (Ashworth etal., 1979;Nagtzaa met al., 1997).However , in several other studiesn o significant correlation was found between microsclerotial density in soil andinfectio n oryiel d loss (Ashworth etal, 1972;DeVa y et al, 1974;Davi s andEverson , 1986;Bejarano-Alcaza r etal., 1995) .Som edispersa l ofV. dahliae through the soili spossibl eb y mesofauna orabioti cfactors . Uneven distribution of the microsclerotia may alsopla y arole .Bejarano-Alcaza r etal. (1999 ) observed infection in all parts of the root systems of eggplants that were inoculated byplacin g about 100 microsclerotia adhering to a9-1 8 mm2-sized tape against theroo t for threedays .The y suggested that production of conidia on microsclerotia and subsequent transport of theseconidi a bywate r flow orth e mesofauna mayexplai n the distribution of infection onth e eggplant root system.Transmissio n of conidia of Coniothyrium minitansi n soil byth emesofaun a hasbee n shown byWilliam s and Whipps (1995).However , for time-spans longertha n afe w weeks,microscleroti a areth eonl y survival structures ofV. dahliaei n soil (Green, 1969). The main mechanisms of dispersal ofV. dahliaear e probably through transport of infested soil byagricultura l tools orb yth e wind,b yusin g infected plant material orb yinfeste d soil adhering to plant material.Row e etal. (1997 ) showed ahig h incidence of infection inpotat o seed tubers. Seed transmission seems tob e animportan t mechanism of dispersal of V. dahliaewhic h

19 has been demonstrated for safflower (Klisiewicz, 1975),sunflowe r (Sackston and Martens, 1959; Richardson, 1990),cotton , eggplant, linseed, soybean, and tomato (Richardson, 1990),an d spinach and beet (Van der Spek, 1972). Genetic variation ofV. dahliae,presenc e of root-infecting nematodes and environmental conditions mayexplai n differences in therelatio n between soil inoculum density and disease incidence among fields. Although V. dahliaeha s long been regarded as afairl y homogeneous species,severa l pathotypes and,mor erecently , four orfiv e vegetative compatibility groups have been recognised (Jeger etal, 1996).Thes e vegetative compatibility groups exhibit some specialization with respect tohos t range,aggressiveness , and distribution. Forexample , vegetative compatibility group4 A is most commonly encountered in solanaceous crops inEurop e andAmeric a (Joaquim andRowe , 1991).O f courseth e virulence of particular isolates of V. dahliaedepend s also on the susceptibility of thehos t cultivar (Zilberstein etal., 1983). Plant-pathogenic nematodes areknow n toenhanc e verticillium wilt severity{e.g., Harrison, 1971;MacGuidwi n and Rouse, 1990ab;Bower s etal, 1996).Th emechanis m of this interaction is not well-understood. Both direct (provision of infection courts forV. dahliaeb y root wounding caused bynematodes ;Ma i and Abawi, 1987) and indirect interactions (increased susceptibility; Faulkner etal, 1970)hav e been suggested. The interaction between verticillium wilt androot-infectin g nematodes is likely to beo f considerable importance, given the wide host ranges and strong survival capabilities of both nematodes andV. dahliae. Moderately high temperatures favour yield loss in potato (Francl etal., 1990).However , supra-optimal temperatures curtail further development ofV. dahliae.I n potato-growing areas disease development ofV. dahliaei s limited toth e springan d autumn, because temperatures become too high in summer (Tsror etal., 1990).Germinatio n of conidia and mycelial growth at temperatures above 31-33°C (Pullman etal., 1981 )an d the development ofV. dahliaei n infected plants stop attemperature s above 27°C (Roweet al, 1987;Koik e etal, 1994).Thi s mayb eth e major reason thatV. dahliaei so f less importance in tropical regions.Excessiv e soil moisturei s known toenhanc e potato early dying in irrigated areas with an aridclimate .Thi s mayb ecause d by afas t transpiration stream (Cook, 1973),althoug h several other factors such aseffect s onroo t growth androo t exudation haveals obee n proposed (Pullman andDeVay , 1982;Gaudreaul t et al, 1995).I n more temperate areas theeffec t of soil moisture is,however , less evident (Bollenet al, 1989;Haverkorte f al, 1990). Yield reduction is mainly theresul t of blockage of the xylem vessels,closur e of the stomata, reduced photosynthesis, andearl y senescence (Haverkort etal, 1990;Bowde n and Rouse, 1991; Schnathorst, 1981).Th e production of toxins byV. dahliaepossibl y also

20 contributes to yield reduction (Healean dGupta , 1972;Orenstei n etal, 1989). New microsclerotia areforme d when infected plant parts senesce. V.dahliae leave sth e xylem,colonize s theparenchymatou s tissues and forms microsclerotia. When plant parts bearing microsclerotia are incorporated into the soil, aggregated microsclerotia areinitiall y held together byth e shoot tissue,bu t gradually, asth e shoot decomposes,th emicroscleroti a fall apart.Thi s is reflected in an apparent increase in soil inoculum density oneo rtw o years after the incorporation of infected plant material (Mol etal, 1996a).Wilhel m (1955)reporte dtha t microsclerotia may survive in soil for 12-14years .Population s of microsclerotia gradually decrease with timedow n to levels where damage to the host isinsignificant . Bollen etal. (1989 )foun d that growing non- hosts for four years was sufficient toeliminat e damage toV. dahliaei npotato .Th eeffect s of environmental conditions on the survival of microsclerotia havebee n studied only rarely. Artificially produced microsclerotia mayhav edifferen t survival patterns from those formed naturally. In unsterile soil,the y survived onlyu p to6 0 days (Lazarovits etal, 1991). Moist conditions resulting from heavyrain s andfloodin g of potato fields were found to induce production of microsclerotia ofV. dahliaeo nth e surface of moribund stemsan d leaves after plant senescence (McKeen andThorpe , 1981; Stapleton etal, 1993).V. dahliae,however , alsoca n grow, sporulate, and form microsclerotia under drycondition s of -100 to -120bar s (approx.p F 5) (Ioannou etal, 1977a).Furthe rLazarovit s etal. (1991 )reporte d that microsclerotia in water-saturated soils lost viability morequickl y (less than 10hours )tha n in soilstha t were air-dryo ra t 50%o f field capacity. Mol and Scholte (1995b) found that covering theplan t remains with soil did not reduce theproductio n of microsclerotia. Root colonization by V. dahliaewa s suppressed consistently bya soil water tension of -0.01MP a (pF2 ) (Gaudreault et al, 1995).Th efinding s of Ioannou etal. (1977a ) andPowelso n andRow e (1993)tha tearly - season irrigation can be an effective component of integrated disease management support this.

Management of verticillium wilt disease

Manynon-hosts , including various monocotyledonous crops,ca n be symptomless carriers ofV . dahliae.Attempt s have been made toreduc e inoculum densities ofV. dahliaeb y inducing germination of microsclerotia bynon-hosts .However , new microsclerotia wereproduce d inth e roots of non-hosts,resultin g in insufficient control ofV. dahliae(Mo l etal, 1996a). Breeding for resistance ortoleranc e hasbee n successful for only afe w crops. Commercial resistant or tolerant crops areonl y available in tomato and cotton production (Allen, 1994) andi n

21 sunflower (Miller andGulya , 1995).Toleranc ei s availablei n other crops such aspotato ,bu t presently the choiceo f potatocultivar s isdominate d byth erequirement s of the processing industry andpreference s ofth econsumers . Croprotatio n is commonly recommended asa metho d to control V. dahliae.Croppin g non-hosts for four years ormor e markedly reduces populations ofV. dahliae(Bolle n etal, 1989). However, given the widehos t rangeo fV. dahliae,non-host s mayno t be aneconomi c alternative to the farmer. Moreover, crops such ascotto n andpotat o aregrow n continuously in variousareas . Under these circumstances soil steaming orfumigatio n has been applied.Thes e methods, however, become more and morerestricte d due tohig h costs,healt h risk for workers, and adverse effects onth e environment. Soil solarization provides control in areas with aMediterranea n climate (Katan, 1980). Soil inundation mayals ob eeffectiv e provided that low oxygen levels develop and temperatures areno t too low (Ioannou etal., 1977b).I nth e Netherlands, Blok etal. (2000 ) obtained atleas t 90%reductio n of inoculum density ofV. dahliaeb yinducin g anoxic conditions through the incorporation of fresh organic matter and overnight irrigation followed byth eplacemen t ofa plastic tarp.I n addition toth e direct effect on the fungus, nematodes stimulating verticillium wilt wereals ocontrolled . Conn andLazarovit s (1998)wer eabl et oreduc everticilliu m byth e application of chicken manure. Other organic amendments that showed an effect onV. dahliae arealfalf a and oat residues (Green andPapavizas , 1968),chiti n (Jordan etal, 1972)o rbarle y (Harrison, 1976).Davi s etal. (1996 )conclude d that green manure treatments with sudangrass or maize gavebes t control of verticillium wilt. Koike etal. (1997 ) and Subbarao etal. (1999 ) demonstrated theeffectivenes s of broccoli residues tocontro l verticillium wilt in cauliflower. The removal of debriscontainin g microsclerotia seems alogica l approach tocontro l V. dahliaebut , accordingt oMo l etal. (1995) ,thi streatmen t wasinsufficien t to allow narrow rotations ofpotato . Soils that are suppressive toV. dahliaear ebarel y reported. Ashwort h etal. (1976 ) showed that Cu2+ wasinvolve d in the suppression ofV. dahliae. Thiseffec t was noticed when no microsclerotia wererecovere d from soils which previously had contained high densities of them. Further data on this phenomenon haveno t been reported. Keinath and Fravel (1992) were ablet o induce suppressiveness in thegreenhous e byrepeatedl y cropping potato on the same soil.Th e induction of this suppressiveness varied with soil type,bu t itsnatur e was not further investigated. Thephenomeno n ofdiseas e suppression, which is understood in several other soilborne pathosystems (e.g., Baker and Cook, 1974;Oyarzu n etal., 1997, 1998)i s still not explained for verticillium.

22 Thepotentia l of the application of biocontrol agents tocontro l verticillium wilt isno w being studied intensively. About 25potentia l antagonists have been tested. In most, if not all, cases,thes e antagonists havebee n selected from studies on other sclerotial parasites.Th e studyo f parasites of microsclerotiai shampere d bythei r small size.Recentl y investigated antagonists include Trichoderma(Gliocladium) virens(Johnsto n etal, 1994),Trichoderma koningii (Georgieva, 1992)an dothe r Trichoderma species,Bacillus subtilis, Pseudomonas fluorescens, and Streptomycesflavofungini (Ber gan dBallin , 1994),Pythium oligandrum (Al-Rawah i and Hancock, 1998)and ,mos t notably, Talaromycesflavus (Maroi s etal, 1982;Fravel , 1996).T. flavus isabl et o parasitize microsclerotia ofV. dahliae(Fahim a etah, 1992)an d sclerotiao f several otherpathogen s such asSclerotinia sclerotiorum (McLaren etal, 1986), Rhizoctonia solani(Boosalis , 1956),an dSclerotium rolfsii(Mad iet al, 1992).Furthermore ,T. flavus i sabl e toproduc e enzymes such asglucos e oxidase that generatestoxi c peroxide,chitinase ,glucanase , andcellulase .Mad i etal. (1997 ) showed that culture filtrates ofT. flavus affecte d germination andmelani n formation of microsclerotia. McLaren etal. (1986 )reporte dpartia ldisintegratio no f melanized material of sclerotia of S. sclerotiorum that wereparasitise d byT. flavus. Althoug h T. flavus isregarde d as aroo t colonizer, the factors affecting thepopulatio n dynamics in the rhizosphere areinsufficientl y understood (Fahima andHenis , 1995; Nagtzaam andBollen , 1997). RecentlyT. flavus ha sbee n registered as abiocontro l agent byProphyt a (Rostock, Germany) for the control in oil-seed rape and tomato.Bot h root dipping of young plants ormixin g of the suspended product is advised (Zeise, 1997;Koch , 1999).S ofar , application ofT. flavus t oth e soil has yielded inconsistent results,probabl y because of competition with the resident microflora.

About this thesis

The main goal of the present study was togathe r fundamental ecological knowledge on the formation and survival of microsclerotia. Detailed quantitative information about factors influencing theseprocesse s may leadt one w prospects for controllingV. dahliae.A secondar y goal wast ofurthe r improve biological control of verticillium wilt.W ehypothesize d that the above-ground application of thebiocontro l agent Talaromycesflavus ont o microsclerotia- containing debris would lead toreductio n of inoculum density ofV. dahliae.I n addition, the effects of adiacetylphloroglucinol-producin g strain of Pseudomonasfluorescens o n verticillium wilt was studied.

23 InChapte r 2a bioassa y ispresente d for thequantitativ e studyo f the formation of microsclerotia andfo r evaluating theeffect s of biocontrol agents usingArabidopsis thalianaa sa test plant.A. thalianawa schose n because of its short life cycle and its sensitivity toman y plant pathogens.Man y other bioassay plantsrequir e either labour-intensive methods,involvin g the plating of root or shoot fragments todetec t orquantif y V. dahliae,o rthe ynee d alon g period before disease symptoms develop, ord ono t allow to detect low population levels of, e.g.,1 microsclerotiumpe rgramm e soil,tha t may still damage asusceptibl ecrop . In Chapter 3th eeffect s of constant and variable temperatures on the formation of microsclerotia onA. thalianaar e assessed. In thefiel d alarg evariatio n in densityo f microsclerotia iscommonl y observed in senescent host tissue.W e studied whether temperature affects theproces s of microsclerotium formation, either directly"o rindirectl y through plant senescence. In Chapter4 factors affecting thedensit y of microsclerotia distributed in unsterile soil are investigated. Factors studied include temperature, moisture, anddifferen t methodso f incorporation of organic debris. Chapter 5studie s effects of various methods of application of the antagonist T.flavus on survival of thepathoge n on potato stems covered with microsclerotia ofV. dahliae. In Chapter 6th eeffect s of a2,4-diacetylphloroglucinol-producin g strain of P.fluorescens o n verticillium wilti nA. thalianaan d eggplant, with or without in combination withT. flavus are reported. Finally, in Chapter 7topic s of bioassays, formation and survival of microsclerotia, and biocontrol are discussed in amor e general context.

24 CHAPTER 2

ARABIDOPSISTHAUANA ASA BIOASSA Y PLANT FOR VERTICILLIUMDAHUAE

Summary

Arabidopsisthaliana wa s used asa bioassa yplan t todetec t low inoculum levelso f Verticillium dahliaei n soil. Although inth efiel d crucifers arepredominantl y infected byV. longisporum, underth etes tcondition sA. thalianabecam ereadil yinfecte d byfou r isolates ofV. dahliae. Disease symptoms included early senescence,bu tn o typical verticillium wilt. Increasing amounts of infection ofbot h root and shoot werenote d atdensitie s of 1,3,10 , 30,an d 100 microsclerotia g"1soil .A log-linea rrelatio n between inoculum density andth e area-under-the-disease-progress curve wasestablished . Even atth elowes t inoculum density of 1 microsclerotium g"1soil , 5% of theroo t length wasinfecte d withV. dahliae,an d30 %o f thestems .Th emos t sensitive parameter was thedensit y of new microsclerotia formed in the shoot.Th ehighe r theinoculu m densityth e greaterth e density of microsclerotia in the shoot, indicating that multiple root infections leadt oa more intense colonization ofV. dahliae. Disease progress was fastest at 20°C, and slower at 10, 15,an d 25°C.A bioassa y withA. thalianafo r assessing infestation of fields with V.dahliae can be recommended.

Introduction

Verticillium dahliaeKleb .cause sconsiderabl e economic losses through wilting and early senescence in diverse crops such aspotato ,cotton , rose, strawberry, and maple (Schnathorst, 1981).Thi sroot-infectin g pathogen forms abundant survival structures, microsclerotia, in diseased, senescent tissue.Give n the widehos t range ofV. dahliae, crop rotation providesonl y limited protection against thedisease , an alternation with monocotyledonous crops such as cereals giving thebes t results (Bollen etal., 1989).Contro l ofV. dahliaeha s largely been based on the application of chemical soil disinfestants, but because of their impact on the soil

25 ecosystem, thegroundwate r quality, andth econtributio n toth edepletio n of theozonospher eb y methyl bromide,thes emethod s arebecomin g unacceptable. For the development andevaluatio n of new management strategies againstV. dahliae, assays areneede d that, rapidly andwit h limited labour input, provide information about the density of V. dahliaemicroscleroti a in soil toevaluat e thenee d for control orcontro l efficacy. Changes in the soil inoculum density ofV. dahliaear eofte n assessed byplatin g asoi l suspension onto asemi-selectiv e agarmedium , but these determinations are not always reliable (Termorshuizen etal., 1998).Moreover , theyexclud e effects of competition in the rhizosphere ando f induced resistance.Therefore , bioassays havebee n recommended to study theecolog yo f V. dahliae(e.g., Evanset al., 1974),fo r selection of resistance toth epathoge n (Palloix etal., 1990)an d for theevaluatio n of biocontrol agents {e.g., Nagtzaam etal., 1998).However , bioassays sofa r available areeithe r labour-intensive, involving plating of root or shoot fragments to detect orquantif y V. dahliae,o rdiseas e symptoms take alon gtim et o develop. Moreover, presently available bioassays areno t able to detect low population levels of e.g. 1 microsclerotium pergramm e soil that may stilldamag e asusceptibl e crop (Nicot andRouse , 1987). Arabidopsisthaliana (L. )Heyhn .havin g anunusuall y small genome among greenplant s hasbecom e aguine ypi gfo r studies on geneexpression . In preliminary experiments, atthi s institute,A. thalianawa sfoun d tob e sensitive toV. dahliae.W etherefor e decided totr yit s use asa tes t plant inbioassay s forV. dahliae.A. thalianai suse d in many studies, with fungi (Koch and Slusarenko, 1990),plant-pathogeni c bacteria (Whalen etal., 1991;Tsuj i and Somerville, 1992),nematode s (Sijmons etal., 1991),an d viruses (Sosnova and Polak, 1975),i n part because of itsshor t life cycle.Cruciferou s crops such asoi l seed rape are long known tob e preferentially infected byheterodiploi d strainso fV. dahliaeformerl y known asV. dahliaevar .longisporum, but recently this taxon was elevated to species level (Karapapa etal., 1997).Tabret t etal. (1995) , however, showed that the haploidV. dahliaeals o was able toinfec t the crucifer A. thaliana.

Material and methods

Fungalcollections, maintenance, andinoculum preparation Fourcollection s ofV. dahliae,K 3 and VI, V3,an d V4,wer e obtained in summer 1996 and 1997, respectively, from diseased potato stemscontainin g microsclerotia in the municipalities of Veenhuizen, Nieuweroord, Nieuw-, andBruntinge , respectively, in theProvinc eo f

26 ,th e Netherlands.Th epotat o stems werecu t into 1-cmpieces ,allowe d to airdr y for about ten days atroo mtemperature , and stored in plastic boxes until further use. To separate the microsclerotiafro m potato stem tissue the material was ground and sieved over screens with mesh sizes of 106an d2 0 um.Th eresidu eremainin g on the 20u m sieve was suspended in water containing 0.08% agar.Th e agarwa s added toobtai n ahomogeneou s suspension of microsclerotia. Thenumbe r of microsclerotia in the suspension was determined in small subsamples using adissectin g microscope at 25x magnification. To determine the germinabilityo f microsclerotia, 25microscleroti a wereplate d individually in Petri dishes containing Modified SoilExtrac t Agar (MSEA)mediu m (Harris etal., 1993)b yusin g an insect pin00 0 (Emil Arlt,Australia) .Th ePetr i dishes were incubated upside down in thedar k for 14 daysa t 23°C,an dth e number of germinated microsclerotia was counted. Microsclerotia from collections VI, V3,an dV 4wer e surface-disinfested in 1% NaCIO for 1 min,washe d three times in sterile water each for 1 min,blotte d dryo n sterile filter paper, andplate d onto Potato-Dextrose Agar (Oxoid) amended with 50pp moxytetracyclin . From this culture monoconidial isolates wereprepared .Thi s culture waspropagate d bygrowin g in Czapek- Dox liquid medium (Oxoid)fo r 7day s at23° C in ashakin g incubator (Gallenkamp Orbital Incubator). After incubation, conidia were filtered through cheese cloth and suspended in sterile distilled water to obtain 1.0 x 106conidi a ml"1 suspension.

Plantmaterial andgrowth conditions A. thalianaecotyp eColumbi a wasuse di n this study. Apreliminar yexperimen t didno t indicate significant differences in colonization with three otherecotype s ofA .thaliana, i.e., Cap e Verde Islands,Landsber g erecta,an d Wassilewskaija. Seeds ofA .thaliana wer eprovide d byProf .D r M.Koornnee f (Laboratory of Genetics, Wageningen University). Seeds were spread over sieved and wetted potting soil in aplasti c box covered with aca p in ordert omaintai n high humidity. Theboxe swer eincubate d in aclimat echambe r with 16h ligh t (PhilipsTD32W/8 4HF ) and 8 h dark at20°C . Todetermin e infection byV. dahliae, A. thalianawa sharveste d after itsrosett e had completely died. Roots were washed on asiev e by spraying tap water toremov e organic matter. Stem segments were surface-sterilized in 1%NaCI Ofo r 30 sec,roo t segments in 96%ethano l for 1 sec,the n washed twicei n sterile water,drie do n sterilefilte r paper, plated separately inPetr i dishes containing MSEA and incubated at25° C inth e dark for 14days .

27 Disease assessment Senescence of rosette leaves and stems (including stems,ste m leaves,flowers an d siliquae)wa s evaluated separately byassessin g senescence indices (SI)rangin g from 0 to 5i n weeklyintervals . Forth erosett e leaves:0 =0-5 %o f therosett e leaves showing somenecrosis ; 1 =6-15% ;2 = 16- 25%; 3= 26-50% ;4 = 51-75%;an d 5= 76-100% .Fo r the stems:0 =n o necrosis; 1 = stems still green but 1-5% of leaves showing necrosis; 2= 1-5% of the stembrownis h or yellowish, but 6- 25% of theleave s showing necrosis, and 1-5% of pods and/orflower s yellowish orbrownish ; 3= 6-25% of the stems brownish oryellowish , 26-75%o f the leaves showing necrosis, and 6-25%o f the podsbrownish ; 4 =26-50 %o f the stems brown, 26-100% of the leaves showing necrosis,26 - 50%o f thepod s brown and 1-75% of theflower s yellow orbrown ; and 5= mos t of all stems, leaves,flowers , andpod s show necrosis.Th e disease index (DI)o f verticillium-inoculated plants wasdefine d as SIafte r subtraction of the values of SIdetermine d for thecontro l plants.Usin g theseindices ,th e area-under-the-senescence-progress curve (AUSPC) and the area-under-the- disease-progress curve (AUDPC) werecalculate d (Campbell andMadden , 1990). Production of microsclerotia ofV. dahliaewa s quantified after A.thaliana ha d completely died. Shoots androot swer eseparate d andth eroot swer ewashe db ygentl ysoakin g in standing tapwater . All parts of the plant were then dried atroo m temperature for aweek . Both dried shoots androot s ofA . thalianawer e weighed and ground using amorta r andpestl e and suspended in 0.08% water agar.Th e suspension was weighed and homogenized. The densityo f microsclerotia in the suspension was determined bydirec t counting of at least three small subsamples under the dissecting microscope at 16x magnification measuring approximately 20 ul

Experiments Effect of inoculumdensit y ondiseas edevelopment .Th eexperimen t wascarrie d out asa completely randomized block design using densities of 0,1, 3,10, 30,an d 100microscleroti ag" 1 dry soil and was performed with 10replication s pertreatment . Plastic pots (w/w/h, 7/7/8 cm) wereuse d containing mixed sieved potting soil and sand (2/1, v/v).Four-week-ol d seedlings ofA . thalianawit h the first rosette leaf emerging wereplante d andplace d in aclimat e chamber at2 5° C under a 16/8h light/dark regime.A repeate d experiment showed similar results, and onlythos eo f thefirs t experiment arepresente d here.

Effects of temperature. The optimal bioassay temperature and the pathogenicity of three isolates ofV. dahliaewer e determined in aroot-di p experiment with isolates VI, V3,an d V4.Four-week -

28 old seedlings ofA .thaliana wer euproote d carefully andth eroot swer ewashe d in steriledistille d water, dipped for 20mi n in aconidia l suspension ofV. dahliae(10 6conidi a ml"1),an d plantedi n pots with mixed potting soil and sand asdescribe d above.Th epot s were placed at 10,15,20, and 25°C, under the same light regime.

Results

Disease symptoms became visible asearl y as4 weeks after planting the seedlings ofA . thaliana in infested soil or dipping the seedlings in aconidia l suspension. Symptoms consistedo f chlorosis followed bynecrosis , sometimes accompanied by some stunting.Th etypica l unilateral wilting of leaves orplants ,ofte n described for verticilliumwil t was not observed. Nine weeks after planting,mos t rosette leaves werecompletel y dead and 11week s after planting the stems hadnearl y orcompletel y died.Durin gth e final stage of senescence,microscleroti awer e formed abundantly, especially onth e stems,bu t many were also observed on allothe r plant parts, including theroo t system.Th edr yweigh t of the shoot was not significantly affected byV. dahliae. Natural senescenceprogresse d slowlya tlo wtemperatures . Senescence duet oV. dahliae wasmos t stronglyenhance d at 20°Cbu t less at 15an d25° C (Table 2.1). Senescence began earlier andprogresse d faster atincreasin g densities of microsclerotia in soil (Figure 2.1). Since senescence isa rapi d natural process inA .thaliana al l plants eventually became senescent; thus differences in senescence between treatments tend to converge atth een d

Table 2.1. The time (days)i t takes for the plants to die of seedlings that were root-dip infected with three isolates of Verticillium dahliae(10 6cf u ml"1suspension ) to uninfected control plants.

Isolate of Verticillium dahliae VI V3 V4 I Temperature (°C) Life span ofArabidopsis thaliana relative toth econtro l 10 0.81 0.86 0.82 15 0.82 0.80 0.79 20 0.66 0.59 0.66 25 0.76 0.71 0.71

'Control plants had life spans of 293, 247, 178,an d 99day sfo r incubation temperatures of 10, 15,20 ,an d 25°C respectively.

29 a2 MICROSCLEROTIA MICROSCLEROTIA z 9 G''SOI L G' SOIL sin in 5 -*-10 -*-10 -*-30 -*-30 -•-100 -•-100

4 5 6 7 8 9 10 11 4 5 6 7 8 9 10 11

WEEKSAFTE RTRANSPLANTIN G WEEKSAFTE RTRANSPLANTIN G

Figure 2.1. Senescence progress for rosette leaves and stems ofArabidopsis thaliana a t different inoculum densities of Verticillium dahliae.(A ) Senescence index, (B)Diseas e index = senescence index minus the senescence index estimated for thecontro l plants.

MICROSCLEROTIA MICROSCLEROTIA G'1 SOIL G"' SOIL

-*-10 -X-10 -*-30 -•-100 -*-30 -•-100

5 6 7 8 9 10 11 5 6 7 8 9 10 11

WEEKSAFTE RTRANSPLANTIN G WEEKSAFTE RTRANSPLANTIN G Figure 2.2.Senescenc e progress for rosette leaves and stems ofArabidopsis thalianaa t different inoculum densities of Verticillium dahliae.(A )Area-under-the-senescence-progres s curve (AUSPC),(B )Area-under-the-disease-progres s curve (AUDPC) =AUSP C minusAUSP C estimated for the control plants.

30 • rosette,repetitio n1 AUSPC= 5.7(±0.7)log(ID+1)+6.5(±0.6) • rosette,repetitio n2 AUSPC= 6.0(±0.5)log(ID+1)+7.2(±0.6) • stem,repetitio n1 AUSPC= 6.3(±0.6)log(ID+1)+8.5(±0.6) xstem ,repetitio n2 AUSPC= 7.4(±0.6)log(ID+1)+8.3(±0.7)

100

LOG (MICROSCLEROTIA G'1 SOIL)

Figure 2.3. Regression lines for the area-under-the-senescence-progress curve (AUSPC) asa function of the transformed (10log)soi l inoculum density. of the life cycle ofA .thaliana (Figur e 2.1).Th e disease index {i.e., the senescence index scored for the inoculated seedlings minus the senescence index scored for the non-inoculated seedlings) was maximal 6-8 weeks after transplanting the seedlings into infested soil for therosett e leaves, and6- 9 weeks for the stems (Figure 2.1).Diseas e indices for therosett e leaves generally gaveles s variable results than those for the stems.I n several cases disease indices decreased temporarily for the estimates based on the stems,perhap s indicating that compensation growth had occurred. Thearea-under-the-senescence-progres s curves steadilyincrease d and showed the largest differences at the final observation date (Figure 2.2).Th e area-under-the-disease-progress curves showed few differences with the area-under-the-senescence-progress curves (Figure 2.2). At the latest observation date (9an d 11wee k after transplanting for the rosette leaves and stems respectively), alog-linea r relationship existed between inoculum density and the area-under-the- senescence-progress curve (Figure 2.3),wit h adjusted-R2 values closet o0.70 . Atharvest , 11 weeks after transplanting, plating of the stem bases of seedlings that hadbee n inoculated at1 microsclerotium g"1soi l resulted in 30%incidenc e ofV. dahliae(Figur e 2.4).Individua l colonies growing out from the roots could not becounte d because most root infections appeared tob e systemic.Therefore , the percentage of root length covered withV. dahliaeafte r 14day so f incubation on MSEA wasdetermined , resulting in 5%roo t infection atth e lowest inoculum level. Infection gradually increased with increasing inoculum levels,leadin g up to 100fo r stem and 70% for root infection, at 100microscleroti a g"1soi l (Figure 2.4).

31 100

w tit i o LU uoj z O UJ O o o 0 1 3 10 30 100 MICROSCLEROTIA /G DRY SOIL

STEM ROOT Figure2.4 .Incidenc e of Verticillium dahliaei nth este mbas e andpercentag e ofroo t length infected ofcompletel y senescentArabidopsis thalianaa sreveale d byplatin g in relation to soil inoculum density.

Thenumber s ofmicroscleroti a g"1 dry shoot tissuewer ecorrelate d with the inoculum density ofV. dahliae.Whil e at 1 microsclerotia g"1 soil 1.6 xlO3± 9.0 xlO2microscleroti a g"1 dry shoottissu ewa s found, at 100microscleroti a g"1 soil an 18-fold increasewa s observed (Figure 2.5).Irrespectiv e ofth e inoculum level,incidenc e ofmicroscleroti a inth e shootswa s 100%. However, not all the stemsproduce d by asingl etes tplan t contained externally visible microsclerotia (Figure 2.5);th eproportio n of stemswit h externally visible microsclerotia was strongly correlated with inoculum density.

Discussion

The four isolatesteste d hadconidia l lengths upt o 6.0 um, indicating that theybelon g toV. dahliae,an d not toV. longisporum, whichha sconidi a upt o 8.8 um (Karapapa etal., 1997) . Problemswit hverticilliu m wilt in oil seed rape(Brassica napusvar . oleifera)an d other crucifers havebee n associated withV. longisporum, andmostl y notV. dahliae,whils t on non-crucifers theyappea rt ob ealway sassociate d withV. dahliae,an dno tV. longisporum(Okol iet al., 1994 ; Subbarao etal., 1995).However , when inoculating V. dahliaeo rV. longisporum on crucifer or non-crucifer hosts,diseas e regularly occurred (Subbarao etal., 1995,Tabret t etal., 1995 ;

32 yd C en UJ O :

PS w > 1 3 10 30 100 MICROSCLEROTIA G"1SOI L

Figure 2.5.Microscleroti a in shoot tissue after complete senescence ofArabidopsis thaliana asa function of soil inoculum density. (A)Th e amount of microsclerotia g"1dr y shoot tissue,(B )Th e percentage of stems perplan t exhibiting externally visible microsclerotia.

Karapapa etah, 1997).Apparently , in thefiel d othermechanism s areoperativ e that suppress disease development or dispersal of thepathoge n inV. dahliaeI crucife r andV. longisporumI non-crucifer combinations. A. thalianawa s susceptible toal l four isolates ofV. dahliaeuse di n thisstudy .Eac h isolate caused similar disease symptoms and formed microsclerotia in all parts of the senescent plants.However , typical disease symptoms of verticilliumwilt , such aspartia l wilting of the leaves,wer eno tobserved . Allparameter s measured,excep t shootdr yweight , showed strong positive correlations with soil inoculum density ofV. dahliae. Even at 1 microsclerotium g"1soil , stem and root infection was detected andth e area-under-the-senescence-progress curve differed significantly from that of the control plants.Th e sensitivity of detectingV. dahliaeb yplatin g stem base fragments appear tob e lower than that of assessing microsclerotia in the shoot,

33 senescence index,o rroo t plating.Fo r example, microsclerotia were detected in all stems of plants exposed to 1 microsclerotium g"1soil ,althoug h only 30%o f them showed presence ofV. dahliae on plated stembas efragments . Nagtzaam etal. (1997 )foun d that plating of 5-mm pieces of stem bases of eggplant orpotat o wasmuc h less sensitive than plating sap squeezed from 5-cm stem pieces.Thi s indicates either that low populations ofV. dahliaear e unable to grow out from the stempiece s ontoth e agar medium ortha t the pathogen maysimpl yb e absent from the small stem pieces.Usin g ELISA and plating, Van derKoppe l and Schots (1995) mentioned uneven distributions ofV. dahliaei n stems of various hosts.Likewise ,i n ourplating s of the5-cm-lon g pieces of the stem base ofA . thaliana,V. dahliaema yhav e been absent, while being present in otherpart s of the stem. The association ofV. dahliaewit h thecrucife r A. thalianama yb e rare under field conditions, if extant at all,bu t for bioassay purposes it appears tob e well-suited. Thebioassa y is relatively fast as already 6 weeks after planting final disease scores can be made.Th e bioassay appears to be suited to detect low levels of soil infestation withV. dahliae.Assessmen t of disease 6-9 weeks after planting is optimal when the differences with thecontro l are most prominent. The disease index isth eparamete r most easilydetermined . More sharply defined criteria includeth e number of isolations ofV. dahliaeobtaine d from the shoot orroot , and the amounto f microsclerotia formed onth e shoot after complete senescence of the plants.Instea do f determining the amount of microsclerotia peruni t of dry weight of shoot material, asemi ­ quantitative index for microsclerotial density mayals ob e used (data not presented).However , we prefer the useo f disease indices because theydiscriminat e sufficiently between the different inoculum densities.A. thalianaresponde d more sensitively to low inoculum densities than other bioassay plants such aseggplan t (Nagtzaam etah, 1997)o rthor n apple (Evans etal., 1974).Fo r example, at several (butno t all)observatio n dates 5-7 weeks after planting, disease indices differed significantly (P< 0.05) between inoculum densities 0,1, and 3microscleroti a per grammedr y soil.Diseas e progressed most quicklyi n plants grown at25°C ,bu t the life spano f theV. dahliae-infected plants was most influenced at 20°C (Table 2.1).Therefore , we recommend atemperatur e of 20°C for the bioassay. In all test plants,th eproportio n of stems exhibiting externally visible microsclerotia was strongly positively correlated with inoculum density. This mayindicat e that a single infection on aroo t isno t ablet o infect all stems of aplant .Th e amount of microsclerotia g"1dr y shoot tissue reaches rather similar values for inoculum densities of 1,3 ,an d 10microscleroti a g'1 soil, i.e., 1.6 x 103± 9. 0 x 102,2. 2 x 103± 6.4 x 102,an d 3.8 x 103± 1.1 x 103,respectively , if only the stems showing externally visiblemicroscleroti a are taken into account. However, at 30 andespeciall y at

34 100microscleroti a g"1soil ,highe rdensitie s of microsclerotia, viz.,8. 5 x 103± 4. 3x 103an d2. 9 x 104± 6. 8 x 103respectivel y wereobserve d inth e stems.Th emuc h higher densityo f microsclerotia at 100microscleroti a g"1soi l indicates that repeated infection of the shoot leadst o a more thorough colonization and subsequently tohighe r amounts of microsclerotia g"1shoot . Therefore wehypothesiz e that asingl e shoot infection is not ablet o colonize the shoot completely. The most sensitive bioassays reported sofa r recommend the determination of thenumbe r of rootinfection s peruni t of root length onthor n apple (Daturastramonium) (Evan set ah, 1974). This method allowes adetectio n limit of about 2-3 microsclerotia g"1soil .Th edetectio n limit reported here of atleas t 1 microsclerotiumg" 1soi l is alsolowe rtha n with otherplant s tested such aspotat o and eggplant (Nagtzaam etal., 1997).Thi s mayb e duet o thehig h sensitivity ofA . thaliana to systemic root infection. Whilei n many host plants the great majority of root infections remain localized (Huisman and Gerik, 1989),i nA .thaliana w eobserve d mainly systemic infections, with microsclerotia present inside thexyle mtissu e of roots after plating onto Ethanol Agar. Itwas ,therefore , impossible tocoun t the number ofroo t infections in our bioassay. Nevertheless,th e percentage of root length occupied byV. dahliae 14day s after plating onto MSEA was strongly correlated with soil inoculum density (Figure 2.4).Give n thelo w standard errors, wetherefor e recommend, in linewit h Evans etal. (1974) ,t o useth e amount of root infection as the best estimate for soil inoculum density ofV. dahliae.I f however, the aim is solely to determine whether agive n soil is infested withV. dahliae,th e less labour-intensive methodo f observing the senescence severity 6-9 weeks after planting 4-week-old seedlings ofA .thaliana in infested soil mayb e used.

35 CHAPTER 3

EFFECT OFTEMPERATUR E ONTH EFORMATIO N OFMICROSCLEROTI A OF VERTICILLIUMDAHLIAE

Summary

Microsclerotium formation by six isolates of Verticillium dahliaewa s studied at different temperatures both invitro an d inArabidopsis thaliana. Mycelial growth appeared to beoptima l at 25°C,bu t microsclerotium formation wasgreates t at20° C (two isolates) or 15-20°C (oneisolate) . Seedlings ofA .thaliana wer e root-dipped in aconidia l suspension, planted, andeithe r placeda t 5,10, 15,o r25°C ,o r left at 20°C until the onset of senescence, after which some of the plants wereplace d at5 , 10, 15,o r 25°C.Th e amount of microsclerotia peruni t of shoot weight was assessed in relation to isolate and temperature. Generally, theoptima l temperature for production of microsclerotia was 20°C.Tw oisolate s each produced about ten times moremicroscleroti a than 2 each of the other four isolates.Fo rthes e isolates,hig h R adj.-values of 0.77 and0.6 6 were obtained in multiple regressions, with temperature andit s square ashighl y significant (P< 0.001) 2 independent variables.R adj.-values for the otherisolate s varied between 0.28 and 0.39. Moving plants todifferen t temperatures atth e onset of senescence led to microsclerotial densities intermediate between densities on plants that had grown atconstantl y 20°C and plants grown at other temperatures.Thi s suggests that vascular colonization rate and rateo f microsclerotium formation are similarly affected bytemperature . The senescence rateo f plants appeared unimportant except for plants grown at 25°C, which showed highest amounts of microsclerotia peruni t of plant weight in themos trapidl y senescingplants .Temperatur e andisolat e are regarded asprimar y factors in themicrosclerotiu m formation in host tissue.

Introduction

Verticillium dahliaeKleb .i s asoil-born e wilt pathogen of awid erang eo f crops such as vegetables (e.g.potato ,tomato ,eggplant) ,ornamental s (e.g. chrysanthemum), fruit trees(e.g., cacao,olive) ,an d shade trees (e.g.ash , maple) (Pegg, 1974;Schnathorst , 1981; Hiemstra, 1998). The pathogen can survive for 14year so r more (Wilhelm, 1955)i n soil asmicrosclerotia , which

37 are small, multi-celled and melanized structures. Germination of microsclerotia in the rhizosphere isinduce d byroo t exudates (Schreiber andGreen , 1963;Schnathorst , 1981).Afte r penetration of the vascular system,th e pathogen istransporte d passively upwards through the xylem vessels. Disease symptoms develop asth eresul t of physical blockage of the xylem vessels and the production of toxins.Finally , verticillium wilt results inearl y senescence of the infected plant. When infected plant parts aredyin g ordead ,th epathoge n grows intoth e parenchymatous tissue where itform s abundant microsclerotia upt o 2 x 105g' 1 dryshoo t tissue ormor e (Molan d Scholte, 1995a).However , among and within fields theformatio n of microsclerotia in shoot tissueca n varyconsiderabl y (Mol and Scholte, 1995b).Althoug h it seems likelytha t spatial pattern in inoculum densityexplain s most of the spatial variation in formation of microsclerotia (Smith andRowe , 1984),i t maya tth e sametim eb eth econsequenc e of variation in formation of microsclerotia. The choiceo f host cultivar hasbee n shown to strongly influence densityo f microsclerotia inhos t tissue (Slattery, 1981;Davi s etal., 1983).I n addition, environmental factors maypla y an important role. Temperature may affect formation of microsclerotia either directly or indirectly through plant senescence.Heal ean d Isaac (1965) reported that the optimum temperature for microsclerotiumformatio n byV. dahliaeproduce d on Czapek-Dox Agar was24°C . Brinkerhoff (1969)reporte d on PDA optimum temperatures for mycelial growth and formation of microsclerotia of 22-25°C.I n cotton leaves,som e formation of microsclerotia continued even at5 and 30°C,thoug h with low densities,bu t it was stopped at 32°C (Brinkerhoff, 1969).Formatio n of microsclerotia in infected tomato tissue in unsterile soil amended with Potato-Dextrose Broth occurred at all temperatures tested (12-33°C) and wasoptima l at 24°C (Ioannou, 1977a). The goal of the present study was toinvestigat e theeffec t of temperature on microsclerotium formation invitro an d inplanta. Arabidopsis thaliana wa s used as ates t plant because of its high susceptibility toV. dahliaean d short life cycle (Chapter 2).T o avoid variation due todifference s in inoculum density, seedlings were root-dipped in ahig h density conidial suspension.T o study temperature effects on events prior to microsclerotium formation, plants grown atconstan t temperatures werecompare d toplant s left at 20°C until the first symptomso f senescence were observed, after which theywer eplace d at the test temperatures of 5, 10,15, and 25°C.

38 Materials and methods

Inoculumof V. dahliae Six monospore cultures ofV. dahliaewer e obtained from afla x stem (isolate CI) orpotat o stems (isolates C2,C3 ,VI , V3,V4 )collecte d from fields in the province of Gelderland (isolates Cl- C3)o rDrenth e (isolates V1-V4),th eNetherlands .Conidia l suspensions wereprepare db y growing theculture s in Czapek-Dox liquid medium (Oxoid) for 7day s at 23°C in ashakin g incubator. After incubation, conidia werefiltere d through cheeseclot h and suspended in sterile distilled water toobtai n 106conidi aml" 1.

Effectof temperature invitro Cultures of isolates VI-V4 were grown onEthano l Agarmediu m (Nadakavukaren and Horner, 1959) at 10, 15,20 ,25 ,o r 30°C in the darkfo r 25days .Colon y size was measured every 2-3day s andnumber s of microsclerotiape rcolon ywer ecounte d atth een d of theincubatio n time.T o determine thenumber s of microsclerotia, ameasure d sectoro f thecolon y wastaken , ground using mortar andpestle , suspended in 0.08%wate r agar, andth e microsclerotia were directly counted in three small subsamples (each 15ul )o f the suspension using adissectin g microscope (magnification 25x) .

Effectof temperature inplanta Seedlings ofArabidopsis thaliana ecotyp e Columbia were germinated in steamed potting soil. After 40 daysa t22° Cth efirs t rosette leaves wereforme d andth eplant s uprooted.Th eroot swer e washed in sterile distilled water, dipped for 20mi n in aconidia l suspension, planted inblac k plastic pots (w/w/h, 7/7/6 cm)containin g sievedpottin g soil mixed with sand (2/1, v/v),an d placed at 5, 10, 15,20 ,o r 25°C for experiment 1(isolate s C1-C3) or 10, 15,20 ,o r 25°C for experiment 2 (isolates VI-V4) respectively. Another set of plants wasplace d first at20° C anda t the onset of senescence transferred toth e temperatures of 5(experimen t 1 only), 10, 15,o r25°C . The onset of senescence was defined asth e stage when rosette leaves and lower stem leavesha d started toyello w and first seeds werebein gproduced . Atthi s stage,n o microsclerotia could be observed within the plant tissue.Ever y treatment wasreplicate d ten (experiment 1)o rsi x (experiment 2) times.Plant s werewatere d asnecessar y and placed in a 16h-lighte d (Philips TD 32W/8 4 HF)climat e chamber.

39 90

EC UJ 60 < Q >- 30

o u III III 10 10 10 15 15 15 20 20 20 25 25 25 30 30 30 V1 V3 V4 iiuiUlVI V3 V4 V1 V3 V4 V1 V3 lV4 V1 V3 V4

TEMPERATURE (°C), ISOLATE

10 10 10 15 15 15 25 25 25 30 30 30 V1 V3 V4 V1 V3 V4 V1 V3 V4 VI V3 V4

TEMPERATURE (°C), ISOLATE

20 20 20 25 25 25 30 30 30 V1 V3 V4 V1 V3 V4 V1 V3 V4

TEMPERATURE (°C), ISOLATE

Figure 3.1. Effect oftemperatur e onthre eisolate s of Verticillium dahliaegrowin g on Ethanol Agar. (A)Colon y diameter, (B)Numbe r ofmicroscleroti a per colony, (C)Numbe r of microsclerotia mm'2 colony.

40 Plants were harvested after when dead. After cutting off the shoot, pots were soaked in standing tapwate r for 30mi n andth e soil wasremove d from theroots . Shoots and roots were dried, weighed, and stored separately inpape r bags until further analysis.Bot h dried shoots androot s were ground separately using amorta r andpestl e and suspended in 0.08% water agar.Th e density of microsclerotia in the suspension wasdetermine d bydirec t counting of at least three dropletso f known volume (approximately 20ul ) under adissectin g microscope. Numbers of microsclerotia weretransforme d logarithmically (logio(x+l))prio r todat a analysis.Th eexperimenta l design was asplit-plo t design with temperature asmain-plo t factor and constant versus different temperature andV. dahliaeisolat e as sub-plot factors.

Results

Effectof temperature on mycelial growth andmicrosclerotium formation invitro Maximum growth occurred at 25°C for all isolates,wit h growth at 15an d 20°Conl y slightly less (Figure 3.1A). Growth at 10an d 30°C was about half the growth at 25°C (P< 0.001). Growth rate of three isolates (CI -C3 ) wasbroadl y similar. Formation of microsclerotia percolon yan d permm 2colon y varied considerably (P< 0.001), with anobviou s maximum at 20°Cfo r isolates V3 andV4 ,an d amaximu m at 15-20°C for isolateV I (Figure 3.1B.C).

Effectsof V. dahliaeand temperature onArabidopsis thaliana Theeffec t ofV. dahliaeo n growth ofA .thaliana wa sdetermine d only in experiment 2.Plant s grown atlowe r temperatures generally grew more slowly and yielded higher dryweights .O n average, uninoculated plants grown continuously at 10,15, 20,an d 25°C were completely dead 293,246,178, and9 9day s after inoculation respectively (Figure 3.2).Inoculatio n withV. dahliae accelerated senescence by26 ,36,45 , and 34%respectively , ascompare d toth e uninoculated plants (Figure 3.2).Inoculate d plants weighed 7-67% less than control plants (Figure 3.3).Th e strongest growth reduction occurred for allthre eisolate s at25°C .Th enegativ e effect of isolate VI onplan t dry weight was more apparent athighe r temperatures: a9 %reductio n at 5°Cu pt o 67% at25°C .Fo risolate s V3an dV4 , growthreductio n was alsoconsiderabl e at 10an d 15°C, with arang e of 20-28% and 21-25%respectively . Iti sremarkabl e that the growth reduction observed with isolate V4 at 20°C wasonl y 7%.Roo t dryweight s werequit e low andhighl y variable, probably because theyha d alreadybee n partly decomposed. Shoot dryweigh t and life span of individual plants were significantly (P< 0.001) andpositivel y correlated (Pearson R=

41 0.72). However, thereductio n of shoot dry weight due toV. dahliaewa s not correlated with the reduction of life span duet oV. dahliae. Plants grown at 20°C and moved to 10,15, or 25°C at the onset of senescence showed more similar life spans and dryweight s tothos eo f plants grown continuously at 20°C than those of plants grown continuously at 10,15, or 25°C (Figures 3.2, 3.3).Thus ,plant s moved to 10 or 15°Cha d shorter life spans,an dthos e moved to 25°C had longer life spanstha n plants thatha d been grown atthes e temperatures continuously. Except for isolate VI at 25°C,al l plants thatha d been moved had greater reductions in dryweigh t and life spans duet oV. dahliaetha n plants that grew continuously atth e sametemperatur e (Table 3.1). Analysis of variance indicated ahighl y significant interaction (P< 0.001)betwee n isolate, temperature, and the act of moving plants to different temperatures atth e onset of senescence,o n thedensit yo f microsclerotiai n shoot tissue.Th e average number of microsclerotiaforme d per gramme dryweigh t was almost identical for shoot androot , 1.4 x 105an d 1.3 x 105respectivel y (averages from untransformed data).Isolate s CI, VI, V3,an d V4 formed on average 8.8 x 103 - 1.8 x 104microscleroti a g"1shoo t dryweight , whilst isolates C2an d C3 formed on average 2.9 x

Table 3.1. Average percentage of reduction of shoot dryweigh t and life span of the test plants due to Verticillium dahliae.Constan t =plant sgrow n continuously attemperature s indicated; Changed = plants grown at20° C and moved toth e temperatures indicated at the onset of senescence.

Temperature treatment Constant Changed Constant Changed Isolate Temperature (°C) Plantdr y weight Life span VI 10 9.4 51 19 21 15 10 58 18 45 20 38 - 39 - 25 67 47 31 31 V3 10 20 25 13 33 15 21 35 21 48 20 11 - 43 - 25 30 53 30 35 V4 10 28 45 19 21 15 25 41 21 46 20 6.8 - 39 - 25 66 76 21 26

42 CONSTANTTEMPERATUR E CHANGEDTEMPERATUR E ISOLATEV 1

ISOLATEV 3

ISOLATEV 4

25 10 TEMPERATURE(°C )

--m--Contro l Inoculated

Figure 3.2. Effect ofthre e isolates of Verticillium dahliaean d oftemperatur e on life spano f Arabidopsisthaliana. Plantswer emaintaine d either atconstan t temperatures, orthe ywer e grown up at 20°C andplace d atth eindicate d temperatures atth eonse t of senescence ('changed temperature').

43 CONSTANTTEMPERATUR E CHANGEDTEMPERATUR E ISOLATEV 1

x o m

a H o o OTX

1 •• X e> !! 'kv ui

^ i Q I- O o X (0 10 15 20 25

ISOLATEV 4

10 15 20 25 10 TEMPERATURE(°C )

• Control A- Inoculated

Figure 3.3.Effec t ofthre e isolates of Verticillium dahliaean d oftemperatur e on shoot dry weight ofArabidopsis thaliana. Plants weremaintaine d either atconstan t temperatures, orthe ywer e grown up at 20°C andplace d at the indicated temperatures atth e onset of senescence ('changed temperature').

44 105- 3.0 x 105microscleroti a g"1shoo t dryweigh t (averages from untransformed data).Mos t isolates showed anoptimu m microsclerotium production peruni t shoot dryweigh t at 15-20°C (Table 3.2).Isolate s V3 and V4 showed almost identical production of microsclerotia at 15an d 20°C. The numbers of microsclerotia g"1shoo t dryweigh t forplant s grown atconstan t temperatures andfo r plants moved from 20°Ct odifferen t temperatures atth eonse t senescence was 1.6 x 105an d 1.5 x 106(average s from untransformed data)respectively . The effect of movingplant s todifferen t temperatures atth eonse t of senescence generally ledt omicrosclerotia l densities in plant tissueclose r tothos eo f plants grown atconstan t 20°C.I n most casesth e optimum temperature for microsclerotium formation of moved plantsremaine d 15-20°C.Fo r isolates CI and C3, the effect of movingplant s atth e onset of senescence to 5°Cresulte d ina significant (P< 0.01) increase in the density of microsclerotia g"1shoo t dry weight ando f number microsclerotia perplan t (data not shown)compare d toplant s that hadgrow n continuously at5° C (Table 3.2).Fo r isolates CI, C2,C3 ,an d VI, asimilarl y significant effect was found for plants thatha dbee n moved to 10°C.However , the effect of moving plants to different temperatures was largely insignificant for isolates V3 and V4.Movemen t of plants to 25°C led to a significant increase in the number of microsclerotia per shoot dryweigh t for two isolates and a significant decreasefo r oneisolate . Similareffect s werefoun d for theproductio n of microsclerotia on the root, although these optima were less prominent for isolates C2an d C3 (data not shown). Attempts to describe the density of microsclerotia in plant material for all isolates and treatments in one (multiple) regression as afunctio n of temperature, the square of thetemperature ,plant , shoot, orroo t dry weight, and/orpathogenicit y of theisolat e (defined asth eeffec t of the isolate 2 on growth reduction) using multipleregressio n ledt oa maximu m R adj. of 0.28 with the squareo f thetemperatur e and dryshoo t and root weight as significant terms (P< 0.01) . When onlyth e 2 separate isolates treated atconstan t temperatures wereconsidered , high R adj. values of 0.77 and 0.66 wereobtaine d onlyfo r isolates C2an d C3, with temperature andit s square ashighl y 2 significant (P< 0.001) terms.R adj. values for theothe r isolates varied between 0.28 and 0.39, with the temperature and its square (isolate CI) oreffec t of the isolate on growth reduction (isolates V1-V4) as significant (P< 0.01 )terms . No significant correlations between life span and density of microsclerotia in host tissue werefoun d when allth edat awer econsidered . However, significant correlations between life span anddensit y of microsclerotia in host tissue were found for plants grown at25°C ,wher ea significant negative correlation was found (Pearson R = -0.62).Plant s atthi s temperature containingth e highest microsclerotia densities hadth eshortes t life spans.

45 Discussion

Thetemperatur e optimum for formation of microsclerotia invitro (15-20°C )i s lower than that for hyphal growth ofV. dahliae(25°C) .Wit hA. thaliana,a n optimum of 20°C wasfoun d for the formation of microsclerotia bymos t isolates.W e wereunabl e todescrib e microsclerotial density asa functio n of other variables measured, such asplan t dryweight , amount of microsclerotia in theroot , orth eeffec t ofV. dahliaeo nplant , shooto rroo t dryweight .Isolate s C2 and C3 produced aboutte n times moremicroscleroti a than the other isolates.Whe n the individual 2 isolates wereconsidered , regression resulted in high R adj-values for isolates C2 and C3only , wheretemperatur e and its squarewer e highly significant. Isolates C2 and C3produce d c.te n times more microsclerotia peruni t plant weight than the other isolates. Microsclerotium production in these otherisolate s (CI, VI, V3,V4 )ma yb elimite d byfactor s that aredifferen t to those in isolates C2an dC3 . Mol etal. (1996b ) observed that soil inoculum density ofV. dahliaeafte r incorporation of debriso f arang eo fhost san dnon-host s interacted strongly with theV. dahliaeisolat e useda s inoculum. An isolate ofV. dahliaeobtaine d from asoi l cropped continuously to potato for 14 yearsle d to higher inoculum densities when potato was grown than when beans were grown; and an isolate obtained from asoi l cropped continuously to beans for 10year s led to higher inoculum densities when beans weregrow n than when potato wasgrow n (Mol etal., 1996a).W e found that different isolates originating from potato (except isolate CI from flax), can lead to widely different numbers of microsclerotia in host tissue.I tca n be expected that in thefiel d these isolates would quicklyoutcompet e the otherisolates . However, other conditions, such assoi l moisture andit spersistenc e mayals oinfluenc e therat eo f success of particularisolates . Soesanto andTermorshuize n (Chapter 2)foun d that thedensit y of microsclerotia formed in shoot tissuedepend s on the soilinoculu m density, andconclude d that multiple root and vascular infections are needed toobtai n maximum quantities of microsclerotia in the shoot. Inth e present experiments, ahig h level of root infections was ensured byapplyin g aroo t dip inoculum of 106conidi aml" 1,an dconsequentl y thenumbe ro froo t infections wasno t alimitin g factor. An effect of temperature on vascularcolonizatio n ratema yexplai n the difference in microsclerotial densities between moved and unmoved plants at low temperatures. It isprobabl e thatV. dahliae grew and colonized more tissue at20° C than at 5o r 10°C.Th e higher biomass ofV. dahliaei n the vascular system resulted in more microsclerotia produced for the moved plants.Whe n plants were moved todifferen t temperatures,th eformatio n of microsclerotia had yett obegin ; consequently the fewer microsclerotia produced in plants moved to low temperatures compared

46 o o o o

<4H o (N ON Nn N-O- 00 o ~ V 3 JO #

00 (N

rt rt w rt O O C5 ©

NO O (N T-H Tt a - -

d cd oj cS o o o © XXX o ^ ^ M 00 o >b ^ ~ « 3 T3 rt rt w (3 O o © o ©

OO (N ^O o

« J5 B) Xi I © O © O © X X X X X l> rn ^

© © O © © X X X X •S —; —; O (N rn VO 00 vi ro (N ,P £ ~

ra u •s U J3 o o o O O X X X X X J3 •* [~- »N VO (J m r^o* tr) NO r- £ o o o o o

NO VI CN JD U « *o « .O XI 60 o o o o o £ § <3 C X X X X X O J3 t-~ ON ON O -^ Os . 'W NO >Si 00 ON f^l > H ^ : o tothos egrow n atconstan t 20°Cma yb ea direc t effect of temperature on therat e of formation of microsclerotia. In addition to shoot colonization rate andrat e of formation of microsclerotia, therat eo f senescence of plant material mayals odetermin e the final density of microsclerotia inhos tplan t tissue.However , no significant correlations between life span and density of microsclerotia in host tissue werefound . Onth eon ehand , atlo w temperatures, senescence progressed slowly giving ampletim efo r development of microsclerotia. On the other hand, at suboptimal temperaturesV. dahliaema ybecom e outcompeted byothe r organisms colonizing senescent or dead host tissue.Thes e twoprocesse s maycounterbalanc e each other. Significant correlations between life span and density of microsclerotia in host tissue wereno t found if the temperature treatments were analysed separately, except at25°C ,wher e asignifican t negative correlation was found. Plants at this temperaturecontainin g thehighes t densities of microsclerotia hadth e shortest life spans,an dconsequentl y thefastes t rates of senescence.Thi s indicates that a slow rate of senescence isno t particularly advantageous toV. dahliae.Whe n senescence isto o slow,V. dahliaemigh t bepartiall y outcompeted bysaprotrophi c organisms. Root weight was at least 10time s less than shoot weight. We suppose that this isdu et o thedecompositio n of part of someroo t material andtherefor e root measurements are not reliable enough to warrant detailed discussion. The high microsclerotial densities inth eroo t tissue are likelyt ob e aconsequenc e of theroo t dip inoculation method. Often microsclerotial densities havebee nreporte d tob ehighe ri n shoottha n inroo ttissu e (Lacy andHorner , 1966),althoug h Mol and Scholte (1995a) reported that densities of microsclerotia g"1root s or stolons of potato were about one quarter of those on stems. Microsclerotia areth e survival structures ofV. dahliaetha tcompos eth einoculu m for subsequent crops.Knowledg e about environmental factors affecting their formation could contribute tone w methods of managing verticillium wilt. However, to understand the dynamics ofV. dahliaedurin g thecolonizatio n of senescenceplan t material moredetaile d studieso nth e induction of microsclerotiumformatio n and on theeffec t of competition during the saprotrophic stageo fV. dahliaear eneeded .

48 CHAPTER 4

RECOVERY OFMICROSCLEROTI A OF VERTICILLIUMDAHLIAE FROMSOI LA S SUBJECTED TOVARIOU S TREATMENTS

Summary

The influence of variouscondition s on the survival of microsclerotia of Verticillium dahliaewa s studied using three sources of field-collected potato stems densely covered with naturally-formed microsclerotia. Microsclerotia werefoun d to survivefo r upt otw o years inpotat o stems not incorporated in soil, while under various conditions of temperature and relative humidity. The effects of temperature, pF,includin g weekly variations in temperature and/orpF , and various modes of incorporating potato stem tissue on the survival of microsclerotia for up to one yeari na sandy unsterilised soil was also studied for different microsclerotia sources.Inoculu m sourceha d no significant effect. Remarkably few microsclerotia wererecovere d oneda y after the starto f experiments varying between 5.5 and 31%. Recovery remained atthi s level oreve n decreased for another month and,fo r several treatments, also after 3an d 6months . Only after 3t o 12months , recovery increased to values up to 5time s highertha n that of one day after start of the experiment, butrecoverie s didno texcee dth enumbe ro f microsclerotia initiallyincorporate d into the soil.Change s in recovery mayb edu et o variation in the level of soil mycostasis which is affected byth e rate of nutrient exudation from microsclerotia.

Introduction

Verticillium dahliaeKleb .i sth ecausa l agent of wiltdiseas e in manycrops, includingpotato , cotton, olive,an d strawberry (Schnathorst, 1981).I nth e absence of host plants the fungus can survive in soil for many years as microsclerotia (Wilhelm, 1955),whic h are formed predominantly in the senescent host tissue. Croprotatio n using non-hosts is an important management strategy toreduc e yieldlosse s (Bollen etal., 1989) .

49 Data on the long-term persistence of microsclerotia ofV. dahliaei n field soils arescarce . Wilhelm (1955) reported thatV. dahliaema y survive in field soils for at least 14years .Long - term observations on the persistence ofV. dahliaei n the field are,however , confounded by production of new microsclerotia on non-hosts (Malik and Milton, 1980).Probabl y only amino r fraction of microsclerotia remains viable during several years since yield losses in susceptible potato cultivars arenullifie d in acro protatio n with 3year so f non-hosts (Bollen etal., 1989) . Slattery (1981) studying the survival of microsclerotia ofV. dahliaei npotat o stemsburie di n field soil during winter for 7month s found survival rates aslo w as 23%. In other studies onth e survival of microsclerotia, total mortality wasfoun d after 5year s (Green, 1980).Gree n (1980) concluded that temperature and soil moisture had less influence than soil type on survival of microsclerotia. Hawkean dLazarovit s (1994) found that survival of invitro produce d microsclerotia less than 53-75 urndiam . stored without soil declined quickly after 16week s incubation, whilethos e measuring 75-106 um diam. survived fully for 36 weeks.Mortalit yo f these larger microsclerotia buried in soil depended on soil type and varied between 0 and24 % after 4 weeks of exposure. In this paper werepor t on therecover y of microsclerotia ofV. dahliaea s afunctio n of temperature, moisture, and theincorporatio n of organic debris.Ou r hypothesis wastha t fluctuating temperature and/or pFwoul d cause aninitiall y rapid decrease in survival.

Materials and methods

Incubationof microsclerotia withoutsoil: effectof temperature andrelative humidity (Experiment 1) Inoculum of Verticillium dahliae consisted of naturally formed microsclerotia on dead potato stems collected from three potato fields in the Province of Drenthe,th e Netherlands, in October 1996.Th ethre e sources of inocula were designated as VI, V3 and V4.Afte r collection, the stems werecu t into 10-cm-longpieces ,allowe d to air-dry for about 10day sunde r ambient conditions at room temperature, and subsequently storedi n plastic bags until further use.Fo r each inoculum source, 30piece s of dried 10-cm-long potato stems covered with microsclerotia were placed ina plastic box (1/w/h,25/10/ 9 cm)o n aplasti c screen table (height 6cm ) and loosely covered witha lid. Stem pieces were incubated atrelativ e air humidity of 100o r 70%.T o establish arelativ e air humidity of 100%,a 3-cm-laye ro f water wasadde d into the plastic box. Asaturate d NaCl solution was added to maintain arelativ e air humidity of 70% (Winston and Bates, 1960).Boxe s

50 wereincubate d in aclimat e chamber at 5o r20° Cfo r 0, 3,6,12 , or 24months .Eac h temperature x relative humidity combination wasreplicate d threetimes . Ateac h samplingoccasion , threepotat ostem swer etake n randomlyfro m eachbox , ground using amorta r and pestle, and sieved using meshes of 106an d 20 UJTI.Materia l remaining on the 20 um sieve was placed on filter paper under adissectin g microscope and7 5 microsclerotia werepicke d andplate d ontoModifie d SoilExtrac t Agar (MSEA,Harri s et ah, 1993) amended with 50pp m oxytetracyclin using an insect pin 000 (Emil Arlt, Australia).Eac h platecontaine d 25 microsclerotia. Plates wereplace d upside down and incubated in thedar k at 23°C for three weeks.Th enumber s of colonies ofV. dahliaewer e subsequently counted. The germination percentages of the three inoculum sourcesplate d three weeks prior to the start of the experiment were67,67 , and 89%fo r VI, V3,an d V4respectively .

Incubation ofmicrosclerotia in soil (Experiments 2-4) Inoculum of Verticillium dahliaei n deadpotat o stemscollecte d from threedifferen t potato fields in the Province of Drenthe, theNetherlands , in October 1997 and were designated Kl, K2,an d K3. After collection, the stems werecu t into 10-cm-longpieces ,allowe d to air-dry for about 10 days atroo m temperature, and subsequently stored in plastic bags until further use.Germinabilit y determined 3-5 weeksprio r toth e start of theexperimen t was94-95% . Asand yagricultura l soilfro m Meterik (Province ofLimburg , theNetherlands ) was checked for presence of microsclerotia ofV. dahliaelargel y following the method describedb y Harris etal. (1993) .Twelv e and ahalv e grams of soil was air-dried for 14days ,an d sieved over 106an d 20-u.mscreens .Th e material remaining on the 20-um sieve was suspended in 50m l 0.08% water agar and 100. 8 ml-subsamplesfro m the soil suspension wereplate d onto 10Petr i dishes containing MSEA. Plates were incubated in the dark at 23°C for three weeks and subsequently thenumbe r of colonies ofV. dahliaewa s counted. Forexperiment s 2 and 3,microsclerotia l suspensions wereprepare d bygrindin g dried inoculum in water using mortar andpestle , sieving over 106an d 20-um screens,an d suspending the material remaining on the lower screen in asmall ,measure d amount of water. Thenumber so f microsclerotia ml"1suspensio n were directlycounte d in small subsamples underth e dissecting microscope.Th e suspension was diluted to achievenumber s of microsclerotia in an amounto f water that would lead, after thoroughly hand-mixing with the soil,t o 100microscleroti a g"1air - drysoi l and ap Fo f 2.0 or 2.8. Smallplasti c pots (h/diam., 5/3 cm) werefille d with 75 go f the infested soil,an d incubated under different conditions asdescribe d below. The pots had lidswit h a small opening to allow for oxygen exchange.Th epot s werekep t atconstan t weight byhan d

51 watering. Samples weretake n after 0,1, 3,6, or 12months .Th e first sample (t= 0 ) wastake n 1 dayafte r incorporation of themicroscleroti a into the soil.A teac h sampling occasion, the whole 75g o f soil wasused , sofo r every sampledifferen t pots were used.Th e density of microsclerotia in soil wasdetermine d asdescribe d above (Harris etal, 1993).Al l experiments were carried out in acompletel y randomized block design with 3blocks .

Effectof temperature (Experiment2) Small plastic pots werefille d with soil containing 100microscleroti a g"1air-dr y soil of inoculum sources Kl, K2,o r K3 at ap Fo f 2.0.Treatment s included constant temperature (-28, 5,o r25°C) , or weekly varying temperature (-28/+5°C; or-28/+25°C) .

Effectof temperature andmoisture content(Experiment 3) Small plastic pots were filled with soil containing 100microscleroti a g"1air-dr y soil of inoculum K3a tp Fo f 2.8. Additional water was added topar t of thepot s toreac h ap Fo f 2.0. Treatments

Q LU oc >LU o o LU DC < —•—5°C, 100% RH I- LU o > —o—5°C,70 % RH oc LU < - • - 25°C, 100% RH -I -J O LU - a - 25°C,70 % RH c/> a: o DC o 6 12 18 24 INCUBATIONTIM E(MONTHS )

Figure 4.1. Effect of temperature, relative humidity, and timeo n the recovery of microsclerotia of Verticillium dahliaei n field-collected 10-cm-long,dea d potato stems incubated on plastic screens.Th e recovery isexpresse d asth eproportio n of germinating microsclerotia of Verticillium dahliae relative toth e germination att = 0 .Germinatio n percentage was determined byplatin g7 5 single microsclerotia toModifie d Soil Extract Agarplates .Th e experiment included three different sources of inoculum. Since nodifference s wereobserve d among inocula, data were merged. Error bars indicate standard deviations of the means for thethre e inocula. Att =0 , average germination percentage was74% .

52 O UJ o cm II UJ o> u UJ UJ < > t < UJ OT s O OT a: v O O s 0 3 6 9 12 INCUBATION TIME (MONTHS)

Figure4.2 .Effec t of constant temperatures (-28, +5,o r +25°C) or weekly changing temperatures (-28/+5°C or-28/+25°C ) on therecover y of microsclerotia of Verticillium dahliaei na n unsterilized sandy soil.Th enumbe r of microsclerotia g"1air-dr y soil relative to the number att = 0 is shown. At t =0 , 100germinabl emicroscleroti a g"1air-dr y soil were incorporated. Prior to incubation, germination percentage asdetermine d byplatin g single microsclerotia was94-95% . The experiment included three different inoculum sources. Sincen o differences were observed among inocula, data were merged. Average recovery of microsclerotia oneda y after incorporation (=t = 0 )wa s 13% (see text).Erro r bars indicate standard deviations of themean s of thethre e inocula.

included temperature (constant 5, 15,o r 25°C,o r weekly alternating 5/25°C) and soil moisture (constant pF 2.0 or 2.8,o r monthly alternating pF2.0/2.8 ) regimes in all possible combinations, giving atota l of 12differen t treatments.Th e pots treated with alternating 5/25°C and/or pF 2.0/2.8 started at 5°C and pFo f 2.8.

Effectsof adding plant tissue(Experiment 4) The threeV. dahliaeinocul a Kl, K2,an d K3wer e incorporated in four ways: (1) 3g o f 1-cm- longpiece s of potato stems containing microsclerotia were buried in the soil, (2)th e material as in (1) wasgroun d using mortar andpestle , (3) as(2 )bu t the ground material was sieved over 106 and 20-um screens,an d the material remaining on the upper sieve was autoclaved (121°C for 20 min)befor e incorporation inth esoil , and (4)a s(2 )bu t without incorporation of thepotat o tissue

53 remaining on the 106u m sieve in soil. Stem pieces in treatment 1 were incorporated after soil had been moistened to pF2. 0b ycarefu l hand-mixing. Ground materials (treatments 2-4) were incorporated into soil by suspending in an amount of water that after thorough hand-mixing resulted in ap Fo f 2.0.Th edensit y of microsclerotia in soil was determined as described above (Harris etah, 1993).Th eremainin g stem segments were ground in amortar , sieved on mesheso f 106an d 20 um, suspended in 50m l0.08 % water agar and 100. 8 ml-subsamplesfro m the suspension were plated onto 10Petr i dishes containing MSEA.Plate s wereincubate d in thedar k at 23° Cfo r three weeks and subsequently thenumbe r of colonies ofV. dahliaewa scounte d and merged with those from soil inth e same treatment.

8, 5°C Q UJ © ,8,15°C UJ II 8, 25°C > I- A O O 8, 5/25°C o H \ UJ UJ *V w ^% 0, 5°C < c> //*T

Figure 4.3. Effect of constant orweekl ychangin g temperature (5, 15,25 ,o r 5/25°C)an d pF(2.0 , 2.8, or 2.0/2.8) on the recovery of microsclerotia of Verticillium dahliaei n anunsterilise d sandy soil.Th enumbe r of microsclerotia g"1air-dr y soilrelativ e to the number att = 0 is shown.A tt = 0,100 microsclerotia g"1air-dr y soil were incorporated. Prior to incubation, germination percentage asdetermine d byplatin g singlemicroscleroti a was94-95% .Th eexperimen t included only one source of inoculum. Average recovery of microsclerotia one day after incorporation (=t = 0)i n soil was 7.7-22% (seetext) .

54 Results

Theeffect s of temperature and relative humidity on the germination percentage of microsclerotia from potato stems placed on aplasti c screen (experiment 1)di dno t differ significantly for the three inoculum sources.Therefore , the datafo r the three sources were merged.Th e germination percentage of microsclerotia gradually decreased for all treatments with exception of incubation at 5°Can d 70%relativ e humidity (Figure4.1 ) which increased to levels equal tothos e atth e onset of the experiment. No microsclerotia were observed only for the 25°C,70 %relativ e humidity treatment. Thethre e inoculum sources also gave similarresult s inrespons e to incubation in soila t varying temperatures (experiment 2), andthes edat awer ecombined .T o illustratethis ,a tth e first sampling occasion oneda y after start of theexperimen t (=t =0) ,densit y of microsclerotia recovered from the soil was 14, 14,an d 12%relativ e toth e 100germinabl emicroscleroti a added toth e soil for inocula Kl, K2,an d K3respectively . After onemonth , densities recovered were 7.3 - 12%(Figur e4.2) .However , later harvests consistently yielded higherrecoveries , varying between 1.2 and 5.9 timesmor etha nth eleve l observed atth estar t of theexperiment . After 12 months of incubation, no significant differences were found between treatments.Th e maximum recovery of microsclerotia found was 81± 14%o f the added microsclerotia for inoculum Kl after 6 months of incubation at25°C . Inexperimen t 3,th e density of microsclerotia recovered directly after the start varied between 5.5 and 31%. Thedensit y of microsclerotia recovered from soil varied markedly in time andfo r the different treatments (Figure 4.3).Fo r all treatments the density recovered decreased after 1 month.Fo r some treatments the recovery then increased, whereas for others it further decreased. The maximum andminimu m densities recorded were4 4 and 1.1%respectively . Even after initially low observed densities,considerabl e increases were recorded at subsequent sampling occasions.Fo rexample ,percentage s of microsclerotia recovered at incubation ofp F2. 0 and 5°Cwer e found tob e 2.9 ± 1.7% after 3months , and after 6 and 12months ,the y were 21± 11an d 32± 9.4 % respectively. No obvious pattern wasfound . Only in the dryer soil (pF2.8 ) densities sometimes exceeded those originally introduced. Inexperimen t 4,whe n whole stems were incubated, densities recovered after 1 day incubation were 3.7 x 103,4.7 x 103,an d4. 2 x 103microscleroti a g"1soi lfo r inoculum sources Kl, K2,an d K3respectively . With the othertreatment s some losses mayhav eoccurre d during handling of the potato stems andconsequentl y densities recovered after 1 day incubation were lower: on average 1.5 x 103, 1.2 x 103,an d 2.7 x 10 microsclerotia g"1soi l for inoculum sources

55 a UJ o UJ II > 1- o o u J- UJ UJ on > < 1- o1- 2 DC UJ UJ £ _l _J o o oV) (0 zcv o o

3 6 9 12 INCUBATION TIME (MONTHS)

Figure4.4 .Effec t of incorporation of plantmateria l on the survival of microsclerotiao f Verticillium dahliaei n anunsterilise d sandyfiel d soil.Th e number of microsclerotia recovered g"1 air-dry soil relative to thenumbe r att = 0 (=on e dayafte r start of theexperiment ) is shown. Asinoculum , field-collected potato stems (FPS)containin g microsclerotia was used. Treatments: mss= incorporatio n of 3g o f 1-cm-longFP S containing microsclerotia; ms+s = separation of microsclerotia from 3g o f FPS bygrindin g and sieving,followe d byincorporatio n of both microsclerotia andFP S into the soil;ms+s s= separatio n of microsclerotia of 3g o f FPSb y grinding and sieving, sterilisation of the ground FPS, followed byincorporatio n of both microsclerotia and the sterileFPS ;m s= separation of microsclerotia of 3g o f FPS by grinding andsieving , followed by incorporation of the microsclerotia alone.Dat a for three different sources of inoculum were merged. Error bars indicate standard deviations of the means of the three inocula.

Kl, K2,an d K3respectively . Inoculum sources K1-K3als oresponde d similarly toth e different treatments andth e data werecombined . The treatment with intact pieces of potato stems incorporated intoth e soil resulted in ashar p decrease inrecover y after 6 months; after 12month s thefungu s could not berecovere d atal l (Figure4.4) .B ycontrast , density of microsclerotia recovered from soils wherepotat o stemtissu ewa s excluded remained high and increased to values higher than thosefoun d atth e start of the experiment (P= 0.10).

56 Discussion

Very few microsclerotia were recovered one day after incorporation of the material into soil, varying between 5.5-31% for experiments 2 and 3. After 1-6 months, therecover yo f microsclerotia decreased even further. Decreased recovery was alsoobserve d after 3an d6 months for experiment 1 and after 1 and 3month s for experiment 4. This decrease was followed by anincreas e for most treatments to levels that were always lower than thenumbe ro f microsclerotia incorporated into soil.Thi s study wasdesigne d toevaluat e theeffec t of temperature, moisture, and organic matter on the survival curve of microsclerotia ofV. dahliae. Since formation of new microsclerotia in unsterile soil in the absence of plants isreportedl yrare , weexpecte d to observe only decreases in densities of microsclerotia in time.However , in all experiments,th e numbers of microsclerotia recovered werei n many cases equal to,o r considerably higher than,previou s harvests.Th e variation inrecover y corresponds with results obtained byWheele r andRow e (1995), whoreporte d strongly varying recoveries,mostl y between 0 and 100%,dependin g on soil type anddryin g time of the soil samples,bu tth e authors couldno t discover acertai n pattern inth eeffec t of dryingo nrecovery .Th e variation in densitieso f microsclerotia found here mayb e due torea l fluctuations in density bydeat h orothe r events affecting the germination of microsclerotia on the agarmedium . Germination andth e subsequent formation of new microsclerotia areprerequisite s for the recovery of amicrosclerotiu mwit h the method used. V. dahliaepossesse s no oronl y very limited competitive saprotrophic ability (Wilhelm, 1951),makin g the formation of new microsclerotia in unsterile soil in the absence of plant roots highly unlikely. Formation of new microsclerotia in soil in the absence of roots hasbee n reported only after amendment of glucose toth e soil (Menzies and Griebel, 1967;Emmatt yan d Green, 1969;Gree n andPapavizas , 1968).I n ourexperiment s no nutrients were added nor wasth esoi l sterilized. In addition, formation of new microsclerotia in soils exposed continuously to -28°C (experiment 2)canno t have occurred andtherefor e cannot explain the apparent two-fold increase of microsclerotia after 3,6, and 12months .I f the measurements of densities of microsclerotia in soilb yWheele r andRow e (1995)reflecte d theamoun t of viablemicrosclerotia , itwoul d have been impossible to measure 0% microsclerotia recovered at one sampling occasion and 100%a ta subsequent date.Thus ,w econclud e it wasunlikel y that formation of new microsclerotia playeda major role. Evans etal. (1966 ) and Green (1980) observed an initial increase of inoculum density after incorporation of field-collected microsclerotia and attributed this to the dissociation of

57 microsclerotia that were initially clumped together in host tissue. Clumping of microsclerotia could not play arol e in ourexperiment s since in experiments 1 and 4 the material was ground before plating.I n experiments 2an d 3th e inoculum consisted of material that had been ground andpasse d through a 106-um sieve.I n addition, the inoculum waschecke d under the dissecting microscope prior to incorporation into soil for presence of clumps of microsclerotia. Theproblem s with quantifying V. dahliaepopulatio n densities in soil are well-known (Wheeler andRowe , 1995; Termorshuizen etal, 1998).Recover y is generally 30-40% atbest , depending on soil characteristics; it mayvar yconsiderabl y between soil sample replicates and complete failure of an assay mayeve n occur (Termorshuizen etal., 1998).Thus ,lo w recovery ratescoul d havebee n due to limitations in the detection procedure.However , sequential samples inth e different experiments were taken independently using freshly prepared agarplates .W e therefore conclude that theconsistentl y observed low recoveries in the first two orthre e sampling occasions were not affected byrando m 'noise'o f the detection procedure. The observed variation in density of microsclerotia in time may alsob e caused by variation in germinabilityo f viable microsclerotia. In other words,microscleroti a mayacquir ea reversible non-constitutive dormancy, which isrelease d in time.Thi s relates to the phenomenon of mycostasis,th e inhibition of germination of fungal propagules in natural soils (Lockwood, 1977).Evidenc e exists that deficiency of nutrients needed for germination is asignifican t factor involved in this phenomenon (Lockwood, 1977).Thus ,i tma yb e postulated that micro-organisms resident on the surface of spores/microsclerotia consume exudates from the propagules of which a certain thresholdconcentratio n isnecessar y for their germination (Hsu andLockwood , 1973; Bristow andLockwood , 1975).I n line with this hypothesis isth e observation of Toyota and Kimura (1993),wh oisolate d bacteria from the surface of chlamydospores ofFusarium oxysporum f.sp. raphanitha t inhibited germination but wereno t antagonistic to fungal growth in vitro.Thi s phenomenon mayoccu r on agarplate s aswel l since the MSEA-medium used toplat e soil samples is semi-selective only and antagonism mayhinde r the germination of microsclerotia. Bacteria resident on the surface of microsclerotia dono t need to be affected byth e antibiotic oxytetracyclin in the agar media,becaus e the microsclerotia are spread on, andno t into,th e medium. Thus,a streatment s andincubatio n time may affect thepresenc e of the saprotrophic micro-organisms onth e surface of microsclerotia, the ability of microsclerotia to germinate may varyaccordingly . As such, variation in recovery of microsclerotia from soil mayrepresen t a technical problem related to theprocedur e used toquantif y V. dahliaei n soil.A n indication that agarplatin g conditions areimportan t isobtaine d from the observation that methods involving the plating of air-dry soil generally perform better than methods involving the plating of soil

58 suspensions (Termorshuizen etal, 1998).Unde r dryplatin g conditions the activityo f micro­ organisms resident atth esurfac e of microsclerotiai slikel yt ob econsiderabl y lowertha n under wetconditions .Th e decrease in recovery of microsclerotia incubated in the absence of soil (experiment 1)ma yb erelate dt oth e samephenomeno n of mycostasis.Th eprevailin g conditions of high humidity mayhav efavoure d the growth of micro-organisms resident in thepotat o stems. The difference in germination percentage of the starting material collected in acommercia l potato field (varying between 67 and 89%),an dtha t of themateria l incubated for 3an d6 months mayb e caused byth e fact that the starting material was air-dry when the microsclerotia were plated, whereasth e microsclerotia that were plated latercam e directly from damppotat o stems. Low recovery rates were recorded consistently after 1 month of incubation in all experiments; and, except in experiment 2,fo r manytreatment s after 3month s of incubation.I f the mycostasis hypothesis iscorrect , low recoveries would correspond tohig h numbers of micro­ organisms on the surface of microsclerotia, caused by arelativel y high leakage of nutrients byth e microsclerotia. This would agreewit h theobservatio n that exudates from sclerotia ofSclerotium rolfsiidecreas eexponentiall y during 26day si nth esoi l (Hyakumachi andLockwood , 1989).A t sampling occasions later than 3-6 months, leakagei s likely declined to low levels,an d populations of micro-organisms onth esurfac e of microsclerotia maydecrease .I nnatura l soils, microsclerotia germinate only,o rmainly ,nea rroot s (Ben-Yephet and Pinkas, 1977;Huisma n and Gerik, 1989),wher ecarbo n supplyi sno t limiting (Lynch andWhipps , 1990).Th eproportio n of germinating microsclerotia in therhizospher e maythe n depend on the amount of root exudation andcompetitio n with the rhizosphere microflora, including the mycostasis-inducing micro­ organisms resident on the surface of microsclerotia. Based on ourresults ,littl eca n be said about factors affecting the survivalo f microsclerotia ofV. dahliae,sinc e wewer e unablet o distinguish between dead and non- germinablebu t viablemicrosclerotia . However, it isclea r thatnearl y all treatments resulted inth e survival for at least 12o r 24 (experiment 1)month so f somefraction s of theV. dahliae population.Thu s wema yconclud e that agrea t portion of microsclerotia isno t sensitive to temperatures between -28 and 25°C andp F 2.0-2.8, andfluctuation s of these values intime . These observations are largely in line with those of Green (1980),wh o concluded that temperature (4 and 28°C) and soil moisture (pF 2.5 and4.2 ) wereno t the main limiting factors in survival of V. dahliaeove r two yearso rmore .I n experiment 1,decreas e of recovery continued throughout theexperimen t for the25° Ctreatments ,whic h mayindicat e atru e decreasei n survival.Incubatio n at25° C and 75% relative humidity was the only treatment that resulted inn o recovery atth efina l samplingoccasio n after 24months .Thi sma yhav ebee n duet odesiccatio n of

59 the microsclerotia. Pataky andBeut e (1983) reported low survival rates of microsclerotiao f Cylindrocladium crotalariae, thecausa l agent of black rot of peanut, when incubated on the soil surface compared to microsclerotia incorporated into the soil, and they attributed this to low soil matric potentials.Mor edetaile d studies on therecover y of microsclerotia ofV. dahliaear e necessary. Bioassays need tob eperforme d with ashor t exposure time to determine whether the germinabilityo f microsclerotia is affected in soil.Fo r example,th e infection density ofV. dahliae on the roots ofArabidopsis thaliana coul d bedetermine d (Chapter 2). Also,th e study of the population of micro-organisms colonizing the surface of microsclerotia deserves more attention. Perhaps these organisms can beexploite d to suppress thegerminatio n of microsclerotia in the rhizosphere of hosts.

60 CHAPTER 5

ABOVE-GROUND APPLICATION OFTALAROMYCES FLAWS TO CONTROL VERTICILLIUMDAHLIAE

Summary

The antagonist Talaromycesflavus wa s applied onto potato stems infected withVerticillium dahliaean dit s effects on survival andinoculu m potential of microsclerotia of the plant pathogen were evaluated. Three weeks after application of 3g alginat e prill formulation ofT. flavus o n 150 1-cm-longpiece s of potato stems,th e antagonist wasgrowin g prominently over the potato stems at 25°C but not at 15°C.Germinabilit yo f microsclerotia wasreduce d only in the three experiments carried out at25° C andno ti n twoexperiment s at 15°C.Afte r 21day s of above- ground incubation, 15potat o stems were incorporated into asand/pottin g soil mixture. Populations ofT. flavus an dV. dahliaewer e determined 4 and 10month s after incubation. The population level ofT. flavus wa s significantly (P< 0.05) higher in the treatments where after its application the potato stems were left 21day s above-ground compared todirec t incorporation of the stems +T. flavus int oth e soil.Thi s was attributed to the relatively low levels of competition occurring above-ground. Thepopulatio n level ofT. flavus persiste d at at least 240colony - forming units g"1soil , and showed a 10t o 12-timesincreas e after 10month s compared to4 months after incubation at 25°C.Populatio n levels ofV. dahliaewer e significantly decreasedb y T.flavus a tbot h incubation temperatures. LeavingT. flavus-treated potat o stems above-ground for 21day s didno t affect the survival of microsclerotia compared todirec t incorporation of the treated potato stems into the soil. Asignifican t inverse relation between population size of T. flavus andtha t of V. dahliaewa s found only for incubation at25°C .T o determine the inoculum potential ofV. dahliae, 4-week-old seedlings ofArabidopsis thaliana wer eplante d either directly after incorporation of thepotat o stemsi n soil at20°C ;o rsoil swer elef t another 21day sa t 15o r 25°C before the bioassay withA. thalianawa scarrie d out at 20°C.Temperatur e did not affect the development of senescence ofA .thaliana, whic h wasretarde d significantly for allT. flavus treatments.Thi s could bedu e torelativel y high levels of T.flavus occurrin g in allexperiments .I t isconclude d that application ofT. flavus o n fresh organic debris containing microsclerotia

61 reduces inoculum densities ofV. dahliae. Theeffec t of population density of T.flavus o n therat e of development of wilt symptoms caused byV. dahliaewarrant s more research.

Introduction

Verticillium dahliaeKleb . isa soilborne pathogen causing wilting and early senescence in many crops (Pegg, 1974).Th e fungus can survive asmicroscleroti a in soil for periods up to 14year s (Wilhelm, 1955)i n the absence of host plants.Th e disease cycle ismonocycli c (Schnathorst, 1981):microscleroti a developing on senescent host tissue incitene w infections onlyi na following crop.Th e number of microsclerotia produced on acertai n host is therefore areliabl e predictorfo r diseasei n asubsequen t hostcro p (Mol, 1995d). Thus, anymetho dtha t reduces formation of new microsclerotia will lessen future problems with verticillium wilt. Several methods toreduc e soilborne inoculum ofV. dahliaesuc h as solarization (Katan etal., 1976)hav e been advocated. Onlyfe w attempts were made toreduc e the amount of microsclerotia onth e standing crop,includin g removal or incorporation of infected crop debris (Mol etal, 1995; Mol andScholte , 1995b).Anothe r approach would bet o apply biocontrol agents above-ground toth e newly formed microsclerotia. Talaromycesflavus (Klocker) Stolk &Samso n isa n antagonist of several sclerotium- forming pathogens includingV. dahliae, Rhizoctonia solani,Sclerotinia sclerotiorum, and Sclerotium rolfsii(Boosalis , 1956;Maroi s etal., 1982;McLare n etal., 1986;Powelso n and Rowe, 1993; Madi etal., 1997;Nagtzaa m etal., 1998).I t has been shown to have potential in suppressing verticillium wilt in, e.g.,eggplan t (Marois etal, 1982) and potato (Fravel et al, 1986;Nagtzaam , 1995).T. flavus is acommo n inhabitant of cultivated soils (Gams, 1992)an d hasbee n registered for control of verticillium wilt in horticultural crops,e.g., strawberr y and cucumber (Zeise, 1997;Koch , 1999). Theconsistenc y of thebiocontro l effect ofT. flavus isreportedl y low (Nagtzaam, 1998), which isofte n attributed to the low competitive ability ofT. flavus in soil. Adams (1990) classified T.flavus as apassiv e mycoparasite that isgenerall y inactive in natural soils.However , several research workers have reported active growth of T.flavus in the rhizosphere. Preference ofT. flavus for therhizosphere , notablyth eroo t tip,ha s been reported (Marois etal, 1984),an d canb eregarde d asa highl y desirable trait, since theroo t tip isconsidere d tob e the main infection site ofV. dahliae(Fitzel l etal, 1980;Geri k andHuisman , 1988).Fahim a and Henis (1995) observed the spread ofT. flavus tone w roots and itspresenc e on microsclerotia near theroo t surface. Populations ofT. flavus were found tob elarge r in the rhizospheres of verticillium-

62 infected roots than in uninfected roots of eggplant (Fahima and Henis, 1995).O n the otherhand , Nagtzaam and Bollen (1997) observed alog-linea r decrease of population sizeo fT. flavus i n the rhizosphere of eggplant and potato with increasing distance from T.flavus-coaXtd seeds ortubers , suggesting apassiv e movement of the antagonist along theroot .Densitie s ofT. flavus werelowe r than 20colony-formin g units m"1roo t length at9 c m ormor edistanc e from the stembas e (Nagtzaam andBollen , 1997). The weak ability ofT. flavus tocoloniz e the soil andth e inconsistent results concerning the ability ofT. flavus tomultipl y in therhizospher e raise thequestio n whether current methodso f application areefficient . When applied assee dcoating , anantagonis t needst o grow alongth e root to protect theplan t againstV. dahliae(Nagtzaa m and Bollen, 1997).Root-dippin g is advised frequently but isexpensiv e and again the antagonist needs to accompany the growing root.A n alternative approach could be to attack newly-formed microsclerotia. The majority of microsclerotia is formed above-ground in senescent shoot tissue (Mol and Scholte, 1995a).Thu s ifT. flavus can inactivate microsclerotia in such tissues before incorporation of thedebri s intoth e soil,competitio n with soilbiot a would be avoided. Atth e sametim e the antagonist would increase in density prior to incorporation intoth e soil.Sprayin gT. flavus directl y onto microsclerotia can causecomplet e inactivation ofV. dahliae(Fahim a etal., 1992) . Thepurpos e of thepresen t study was totes t theeffec t ofT. flavus by above-ground application to microsclerotia-containingpotat o stems followed bymixin g the stems with the soil. The effects on population densities ofth e antagonist and thepathoge n were recorded and the effect on the inoculumpotentia l of thepathoge n was studied in abioassay .

Materials and methods

Deadpotat o stems containing microsclerotia ofV. dahliaewer e collected from apotat o field in the province of Drenthe (Experiments 1 and 3)o r nearWageninge n (Experiment 2) in October 1997an dNovembe r 1998respectively . Thepotat o stems were allowed to dry atroo m temperature,cu t into 1-cm-longpieces ,an d storeddr ya troo m temperature until further use. T.flavus isolateTf- 1 wasprovide d byNagtzaa m (Nagtzaam andBollen , 1997) and originated from asclerotiu m of Sclerotinia minorJagge r in the U.S.A. (Dunn and Lumsden, 1981).Inoculu m ofT. flavus alginate prill wasproduce d as described byFrave l etal. (1985 ) and Lewis and Papavizas (1985).Th e fungus was grown inPetr i dishes containing Potato-Dextrose Agar (PDA,Merck , Darmstadt, Germany) for 21day s at 30°C in thedark . Cleistothecia ofT.

63 flavus were scraped gently from 3-week-oldPD Aplates ,suspende d in water, andcrushed .Th e suspension was filtered through cheesecloth , thenumbe r of ascospores was determined witha haemocytometer and the suspension was diluted toreac h 5.0 x 106ascospore s ml"1.Th e viability of ascospores wasdetermine d bydilutio n plating onto PDA.Te n go f sodium alginate (Janssen Chimica, Belgium) and 110g o f powdered wheat bran weremixe d with 500m l of the suspension containingT. flavus. Th e mixture was dripped into asolutio n of 100m MCaC h wherepellet s of 2 mmforme d bypolymerization . The pellets were washed gentlywit h tap water and allowed todr y on 2layer s of filter paper for 7day s atroo m temperature. After air-drying, the pellets were ground in aRetsc h grinding mill (0.5m mpor e size) (Retsch, Haan, Germany) and stored at4° C until further use.Th e air-dried formulation ofT. flavus containe d 105ascospore sg" 1. One-cm-long pieces of air-dry potato stems (each about 0.05 g)containin g microsclerotia wereplace d on aplasti c screen table (height 6cm )i n aplasti c box (1/w/h,25/10/ 9 cm) containing a 3-cm layero f water to maintain ahig h relative humidity. Threegram s ofT. flavus alginat epril l wasthe n sprinkled dryb yhan d over 150stems .A contro l treatment was sprayed with atwic e autoclaved suspension ofT. flavus alon e (20mi n 121°C;2 4 hinterva l between the two sterilizations).Th e treatments werereplicate d five times.Th e stems were incubated in the darka t 15o r 25°C (experiments 1 and 2)o r25° C onlyfo r 21days .Afte r incubation, 25 microsclerotia collected from 5randoml y selected potato stem pieces wereplate d individually on Modified Soil Extract Agar (MSEA; Harris etal., 1993)fo r everytreatment . After 21day s of incubation at 23°C in the dark germination was assessed under the dissecting microscope. Fifteen randomly selected stem pieces treated withT. flavus o r with twice autoclaved inoculum ofT. flavus tha t had been incubated at 25°C for 0 or 21day s were incorporated intoa sand/ potting soil mixture (2/1, v/v) atp F2. 0 in a40 0 cm3po t (w/d/h, 7/7/8 cm).Th e survival of V. dahliaean dT. flavus wa s assessed by incubating the pots at 15o r 25° Cfo r 4 (experiment 1 and 2)o r 10(experimen t 1)month s and determining microsclerotium and ascospore densities respectively. The densityo f microsclerotia ofV. dahliaei n soil wasdetermine d largely following the method described byHarri s etal. (1993) .I n summary, 12.5 go f soil was air-dried for 14 days, and sieved over 106an d 20 u,mscreens .Th e material remaining on the 20 um sieve was suspended in 50m l 0.08% water agaran d 0.8 ml wasplate d ontoeac h of 10Petr i dishes containing MSEA (detection level 2microscleroti a g"1soil) .Plate s were incubated in the darka t 23° Cfo r 21day s and subsequently the number of colonies ofV. dahliaewa scounted . The density of ascospores ofT. flavus in soil wasdetermine d according toBoosali s (1956).A 10-gsoi l sample was suspended in 50 ml 0.08% water agar, mixed well, and shaken for 30 min at 150rp m

64 on ashake r (Gerhardt),followe d by shaking for 30mi n at60° Ca t 150rp mi n a shakerbat h (GrantInstrument sLtd. , Barrington, Cambridge). One ml of the suspension was spread overa Petri dish containing PDA amended with 50pp m oxytetracyclin using aglas srod .Petr i dishes weredrie d in an airflow cabinet for 30mi n before closure.Th edishe s wereinverte d and incubated at 30°Ci n thedar k for 5day s andth e number of colonies was determined. The inoculum potential ofV. dahliaewa sassesse d in abioassa y withArabidopsis thaliana ecotype Columbia (Chapter 2).Thi swa sdon ewit h soil samples immediately or 21day s after incorporation of theT. /Jaws-treate d anduntreate d potato stemscontainin g microsclerotia of V. dahliaei n soil. Seeds wereallowe dt ogerminat eb yspreadin gthe m overhumi dpottin g soila t 23°C in aclimat e chamber and21-day-ol d seedlings were transplanted toth etes t soils.On e seedling was planted in every pot and 10pot spe rtreatmen t wereprepared . Theplant swer e grown in aclimat echambe r at20° C with 16h light (PhilipsT D 32W/84 HF);waterin g wasdon e

Figure 5.1. Adea d potato stem containing microsclerotia of Verticillium dahliae7 day s after treatment with an alginate prill formulation of Talaromycesflavus an d incubated at 100%relativ e humidity and 25°C .

65 byhan d asnecessary . Senescence of rosette leaves and stems was evaluated separately after 28 and 35days ,respectively , byusin g senescence indices (SI)rangin g from 0 to 5.Fo r therosett e leaves:0 =0-5 %o f therosett e leaves showing some necrosis; 1 =6-15% ; 2= 16-25%; 3= 26 - 50%;4 =51-75% ; and 5= 76-100% .Fo r the stems:0 =n onecrosis ; 1 = stems still green but 1- 5% of leaves showing necrosis;2 = 1-5% of the stems brownish or yellowish, but 6-25%o f the leaves showingnecrosis , and 1-5% of siliquae and/orflower s yellowish orbrownish ; 3= 6-25 % of the stemsbrownis h or yellowish, 26-75%o f the leaves showing necrosis, and 6-25% of the siliquae brownish; 4 = 26-50%o f the stems brown, 26-100% of the leaves showing necrosis,26 - 50% of the siliquae brown and 1-75% of theflower s yellow orbrown ; and 5 =mos t of all stems, leaves,flowers , and siliquae showing necrosis. Analysis of variance was applied (SPSS for MS Windows Release 6.1) after log- transforming thedat a (logio(x-t-l)),becaus e of homoscedasticity. Treatment means were separated byth eTukey-HS D atP < 0.05.Difference s in survival of T.flavus andV. dahliaebetwee n two sampling occasions (Experiment 1)wer ecompare d by analysis of variance of the two temperature treatments separately.

Table 5.1. Germination of microsclerotia of Verticillium dahliae2 1day s after spraying an ascospore suspension of Talaromycesflavus ontodea d potato stems containing microsclerotia of Verticillium dahliae.

Experiment 1 Experiment 2 Experiment 3 T. flavus 15°C 25°C 15°C 25°C 25°C No 40a 1,2 56 a 47 a 64a 74a Yes 23 a 36b 42 a 36b 14 b

Data shown areback-transforme d values after arcsine-root transformation. 2Withi n each column, values followed byth e same letter in acolum n dono t differ significantly, according toTukey' sHS Dtes t (F < 0.05).

66 Results

Effectof applying T. flavus overpotato stemscontaining microsclerotia ofV.dahliae At 25°C , ascospores ofT. flavus in alginate prill germinated 4-7 days after sprinkling over potato stems containing microsclerotia. Thefungu s formed initially yellowish white, later yellow, mycelium over the stems after incubation (Figure 5.1). At an incubation at 15°C,activit y of T. flavus could not be observed at 25x magnification. Germination decreased significantly (F < 0.05) for microsclerotia incubated at 25CC,bu t not significantly at 15°C (Table 5.1).

SurvivalofT. flavus andV. dahliaein soil T.flavus survived aperio d of 10month s in soil atlevel s varying between 2.4 x 102an d6. 6 x 103 ascospores g"1dr y soil (Table 5.2).Th e density of ascospores was significantly (P <0.05 ) increased in soil 1.5 to2. 4time s when thepotat o stems after treating withT. flavus were left above-ground for 21days .Surviva l was significantly (P < 0.05) higher at 25°C than at 15°C. After 4 months of incubation, thepopulatio n ofT. flavus was 1.7 to2. 7 timeshighe ra t 25°Ctha n

Table 5.2. Survival of ascospores of Talaromycesflavus in soil after an alginate prill formulation onto potato stems containing microsclerotia of Verticillium dahliaean d incorporation into soil for 4 or 10month s (experiment 1).

Numbers of ascospores g"1dr ysoi l Temperature (°C) Incubation T.flavus 4 months 10month s above-ground1 15 No No 0' 0 15 No Yes 240a3 265a 15 Yes No 0 0 15 Yes Yes 350ab 640b 25 No No 0 0 25 No Yes 399ab 3068c 25 Yes No 0 0 25 Yes Yes 961b 6628c

1Potat o stems treated withT. flavus were immediately mixed with soil ('No')o rlef t 21day s above-ground at 25° C and 100%relativ e humidity before incorporation into the soil and placement at 15o r 25°C ('Yes'). 2Dat a shown areback-transforme d averagesfro m logio(x+l)values . 3 Within each column, values followed byth e same letter in acolum n do not differ significantly, according toTukey' sHS D test (P< 0.05).

67 at 15°C,an d this difference increased 10t o 12time s after 10month s of incubation (P < 0.01). The density of microsclerotia in soil was subject to alarg e variation, probably duet oth e variation in thenumber s of microsclerotia in the starting material.Ther e was amai n effect of T. flavus leading to asignifican t (P < 0.01) reduction of V. dahliaea t all sampling occasions, especially at 25°C (Table 5.3).Th e data suggest that marked reduction ofV. dahliaeoccur s especially atpopulatio n densities ofT. flavus < 100 0ascospore s g"1soil . No significant correlation wasfoun d between population densities ofT. flavus an d V. dahliaeacros s all individual pots.However , when considering onlyth e 25°C pots,a significan t negative correlation (r= -0.64 ;P < 0.001) was obtained.

Bioassay Disease indices increased steadily asth e plants grew older. Test plants developed slower senescence in theT. ,/ZavM.s-treatment scompare d toth e controls (Figure 5.2). Effects of

Table 5.3.Effec t of applying Talaromycesflavus formulate d intoalginat e prill ontopotat o stems containing microsclerotia of Verticillium dahliaefollowe d byincorporatio n of the potato stems into soil ateithe r 15o r 25°C on the density of Verticillium dahliaeg" 1dr y soil after 4 or 10 months of incubation.

Number of microsclerotia g"1dr y soil Experiment 1 Experiment 2 Temperature (°C) Incubation T. flavus 4 months 10month s 4 months above-ground1 15 No No 1049 b2'3 761c 962b e 15 No Yes 415a b 962c 457 ab 15 Yes No 831a b 1479c 791ab c 15 Yes Yes 340a b 399b e 451 ab 25 No No 1347b 559b e 989c 25 No Yes 103 a 25a 434a 25 Yes No 667 ab 341b e 1368 c 25 Yes Yes 245a b 76a b 948b e

'Potatostem streate d withT. flavus wer eeithe rimmediatel y mixed with the soil ('No')o rlef t 21 daysabove-groun d at 25°C and 100%relativ e humidity before incorporation intoth e soil and placement at 15o r 25°C ('Yes'). Data shown areback-transforme d averages from logio(x+l)values . 3 Within each column, values followed byth e same letter in acolum n do not differ significantly, according toTukey' s HSD test (P< 0.05).

68 EXPERIMENT 1

TREATMENT % Vd-T-IA-B-Tt- —•—Vd+ T- IA-B- Tl- - ••- Vd+T-IA-B-Tf+ —*—Vd+ T15IA-B +Tf - - •*- Vd+T15IA-B+T(+ —•— Vd+ T15 1A+B- Tf- - ••- Vd+T15IA+B-Tf+ —B—Vd+ T15 IA+B+Tf - - ••- Vd+T15IA+B+Tf+

TREATMENT » Vd- T- IA-B- Tl- -•—Vd+T-IA-B-Tt- ••- Vd+T-IA-B-Tf+ —*—Vd+ T25 IA-B+Tf - •*- Vd+T25 IA-B+Tf+ -•— Vd+T25 IA+B-Tf- ••- Vd+T2 5 IA+B-Tf + -B—Vd+ T25 IA+B+ Tl- •Q- Vd+T2 5 IA+B+Tf + WEEKS AFTER TRANSPLANTING

EXPERIMENT 2 TREATMENT STEM > Vd-T-IA-B-Tf- —•—Vd+T-IA-B-Tf- *»'+' - ••- Vd+T-IA-B-Tf+ —*— Vd+T15IA-B+Tf- - •*- Vd+T15IA-B+Tf+ 0 —•— Vd+T1 5 IA+B-Tf - : -. * - ••- Vd+T15IA+B-Tt+ 192. —B^—Vd +T1 5 IA+B+Tf - - O- Vd+T15IA+B+Tf+

TREATMENT —•—Vd-T-IA-B-Tf- —•—Vd+T-IA-B-Tf- - ••- Vd+T-IA-B-Tf+ —*—Vd+ T25 IA-B+ Tf- - •*- Vd+T25 IA-B+Tf+ —•—Vd+ T25 IA+B- Tl- - ••- Vd+T25IA+B-Tf+ —H—Vd+ T25 IA+B+T( - - ••- Vd+ T25 IA+B+Tf + WEEKS AFTER TRANSPLANTING

Figure 5.2. Development of senescence ofArabidopsis thalianagrowin g on differently treated soils. Vd- = soil not infested with Verticilliumdahliae; Vd+= soil infested with V. dahliae. Ti­ ll f+ =potat o stemscontainin g microsclerotia ofV. dahliaetreate d with atwic e sterilized or viable alginatepril l formulation of Talaromycesflavus; IA-/IA + =potat o stems containing microsclerotia after treatment withT. flavus immediatel y incorporated in soil (IA-) or incubated above-ground at 100%relativ e humidity for 21days ;B-/B + = after incorporation ofth epotat o stems into soil, seedlings ofA. thalianawer e eitherplante d immediately (B-) or 21day s later (B+); T-/T15/T25 =treate d or untreated seedlings of A. thaliana were either grown immediately at20° C (T-), or inth e soil incubated first at 15°C (T15) or25° C(T25 ) before carrying outth e bioassay at 20°C.Fo r an explanation ofth e senescence index, seetext .

69 temperature, additional aboveground and/orbelowgroun d incubation prior toperformin g the bioassay gaven o consistent effects onth e area-under-the-disease-progress curve (Figure 5.2, Table 5.4). Dryweigh t valueso fth etes tplant swer ehighl y variable and not significantly different between treatments (resultsno t shown).

Discussion

Talaromycesflavus consistentl y reduced microsclerotial density ofV. dahliaei n soilresultin g in a slower rate of senescence inA. thaliana. At 25°Cth e ascosporepopulatio n ofT. flavus increased considerably withtime ,o n averagefrom 6. 8 x 102t o4. 8 x 103colony-formin g units g"1 soil,indicatin g activegrowt h insoil .Thus ,althoug h active growth ofT. flavus i n soilma yno tb e common (Adams, 1990),i tma yoccu r if largeamount so fhos t material aretogether , aswa s the casei n our experiments,wher e 1-cm-longpotat o stem piecestreate d withT. flavus wer e left intact following incorporation into soil. Whenpotat o stemstreate d withT. flavus wer e left above- ground for 21days ,population s ofT. flavus wer ehighe r thanwhe n thepotat o stemswer e incorporated intoth e soil directly after treatment. Amuc h lower level ofcompetitio n onth e potato stems canb eassume d inth e absence ofsoil . The density ofmicroscleroti a in soilwa s significantly reduced byT. flavus (Tabl e 5.3). For nearly all treatments,ther ewa sn o effect of leaving r./7avi«-treated stems2 1day s above-ground (Table 5.1), indicating that inactivation ofmicroscleroti a byT. flavus occurre d primarily below- ground. An alternative explanation isthat , above-ground, somemicroscleroti a wereweakene d by T.flavus, an d subsequently killed insoi lb yth econtinue d actiono fT. flavus. A t 25°C,a hig h population density ofT. flavus occurre d togetherwit h adeclin e ofV. dahliae,supportin g an activebelow-groun d participation ofT. flavus i nth einactivatio n ofmicrosclerotia . At densities of T.flavus highe r than 1000ascospore s g"1 soil, aconsisten t lowdensit y ofmicroscleroti a was found. T.flavus i sknow n tohav e ahig h optimum temperature for growth (Nagtzaam, 1998)an d ourexperiment s confirm this; active growth occurred at25° Cbu t not oronl y sparsely at 15°C.I t istherefor e surprising thatT. flavus incubate d at 15°Cgav e areductio n inth erat e of senescence ofA. thalianatha t wasno t different from that observed at25°C .A similar effect was observed by Nagtzaam and Bollen (1997)wh o found no significant difference inth e colonization of eggplant andpotat oroot s incubated at 15o r20° C for anisolat e ofT. flavus tha t invitro gre w 30%faste r at 20°Ctha na t 15°C.I n addition,the y evenwer eabl et orecove rT. flavus fro m youngroot so f

70 ,60 ,M 00 . 60 _^ t*-' (N r3 o u cu •d MJ3 TJ cj ^1 « u o O .O -O X> 60"^ u ~ I q \q o\ «i in « 6

a •£ •c *O X> IS a> ^ a •a o TS u OtaX)OOc30ntT30 syw o t- CT\ m •* O g -^ ^ OS rt S-»'*ddi^N«

S ?!

13 IJfliH'O •a "" ° 13 ° 8 T3

•*-» ftfi on .—iTt-i/->^r^^i/itNt~~mo©'/">'t© a S O CO so 'S u •O T3 •+H O O o o a o x> o X> <*H X) eg g tNO\OH ^ in IO t~- © t- TT 3 I c

s Co -w oou^oSoSSogogoSoS

cd O

* 13 J CO CO CO CO O O o o o o o U U U ^ § » ZZZ><>HZZ^>.>.>.ZZ>.>. 3 3 w fi en u .1 § 2 o « ,_~-1_~cncococo~.~,cococaco Z;^ZZZ>->.><>(ZZ><><>H>H

O U SI U CO C co £ .3 U * 3 60* d> -&to S3y a -a U ©©©mmir>>n'o CO S- o CO d

•S cocococococococococococococo UCOUCL)cD(UCL>CL)cL>cDCDCl> . s u 3 co

-5 C co o J2 PF. eggplants grown at 12.5°C.Nagtzaa m etal. (1998 ) obtained significant suppression ofV. dahliae at 15°Ca t apopulatio n level ofT. flavus o f0. 1% (w/w ) orhigher . We applied aslightl y lower amount ofT. flavus inoculu m of0.063 % (w/w).Nagtzaa m andBolle n (1997) concluded that temperature mayhav e acomple x effect onroo t colonization influencing not onlyT. flavus directly but also other soilbiota . In ourexperiments , allbioassay s wereperforme d at20°C . Therefore, instead of exposing bioassay plants to different temperatures ascarrie d outb y Nagtzaam andBolle n (1997), any temperature effect measured inou rbioassa y relates toa difference in development ofT. flavus a tth etim eth e soilswer eincubated , without testplant ,a t 15o r25°C. So ,th e'comple xeffects ' exertedb ytemperatur eo nroo t colonization asmentione d by Nagtzaam and Bollen (1997)ma y alsob epresen t inbul k soil.Alternatively , T.flavus ma yhav e had such highpopulatio n densities that themaximu m possible effects on disease development wereobtaine d in all treatments.I n addition,T. flavus ma y induceresistanc e atrelativel y low population levels,a ssuggeste db yNagtzaa m andBolle n (1997). The considerable effect ofT. flavus o nth e area-under-the-disease-progress curvewa s quite remarkable, given thehig h numbers ofmicroscleroti a (c. 1400g" ' soil) incorporated into thesoil . Although this number may seem high,th e amount ofpotat o stems incorporated into soil inou r experiments (0.18% w/w)wa sbase d onrealisti c calculations. Thehig h densities of microsclerotia measured mayreflec t the effect ofgrindin g of soil samplesbefor e sievingan d plating. Thus,clumpin g ofmicrosclerotia , which inth efield cause s low initial estimates for inoculum density (Evanset al., 1966 ;Mo let al, 1996b),coul dno t occuri n our experiment. There are several options for developing an integrated management system against verticillium wilt. They include tolerant cultivars (Paplomataset al., 1992)o r cultivars accumulating lownumber s ofmicroscleroti a (Daviset al, 1983),an drotatin gwit h non-hosts (Bollen etal, 1989;Xia o etal, 1998); soil infestations can alsob emanage d through soil solarization inth eMediterranea n climate zone (Katan etal, 1976;Pullma n etal, 1981)o rb y biological soildisinfestatio n (Blok etal, 2000) in areasno t allowing the control ofpathogen s in soilb y solar heat.Bot h control methods involveth etarpin g of soilwit h plastic. Tjamos and Fravel (1995) showed that the incorporation ofT. flavus int o soil can lead to increased inactivation ofV. dahliae.Ou rresult s indicate that therei s also scope for the application ofT. flavus onto Verticillium-mfected organic debris followed by soil solarization orbiologica l soil disinfestation.

72 CHAPTER 6

CONTROL OF VERTICILLIUMDAHLIAEISARABIDOPSIS THALIANA AND EGGPLANT (SOLANUMMELONGENA) BY COMBINATION OFPSEUDOMONAS FLUORESCENS ANDTALAROMYCES FLAWS

Summary

The effects of Pseudomonasfluorescens and Talaromycesflavus o n Verticillium dahliaean d verticillium wilt ofArabidopsis thalianaan d eggplant were studied.P. fluorescens strai n P60 inhibited mycelial growth of 20isolate s ofV. dahliaein vitro b y at least 50%an d alsoth e formation of microsclerotia was significantly reduced byP6 0fo r themajorit y of the isolates tested. In bioassays,V. dahliaesignificantl y accelerated senescence ofA . thalianaan d eggplant. However, when plants weretreate d with P60, senescenceprogresse d atth e samerat e asi nth e treatment withoutV. dahliae.Althoug h treatment of plants with P60 did not lead to major reductions in thepercentag e of infected shoots ofA .thaliana, th e amount of microsclerotia produced byV. dahliaeo n senesced shoots was significantly reduced (up to almost 8-fold) inal l four experiments.P. fluorescens coul dno t be isolated from the interior of thehos t tissue,bu t it waspresen t in the rhizosphere of bothA . thalianaan deggplan t upt o 12week s after inoculation atdensitie s ranging from 1.4 x 103- 8.0 x 105cf u g"1 root tissue.Combinatio n of P60 withT. flavus further improved control ofV. dahliae.Compare d toth econtro l treatment, the amounto f microsclerotia formed wasreduce d upt o almost 40-fold bycombine d application of P60 andT. flavus, andcontro l obtainedb yth ecombinatio n was significantly better than the reductions obtained by applications of each agent separately.

Introduction

Verticillium dahliaeKleb .cause s wilt in awid e variety of dicotyledonous crops such ascotton , potato,rose , several nursery trees (maple,ash) ,olive ,an deggplant .V. dahliae forms microsclerotia that enable thepathoge n to survive for many years and to withstand adverse environmental conditions. Microsclerotia play ake yrol e in the life and disease cycle of this vascular pathogen asthe y serve as survival structures and sources of inoculum (Schnathorst,

73 1981).Currently , noenvironmentall y benign methods are available tomanag e verticillium wilti n intensive agriculture in temperate climates. In warmer climates, control by solarization is advocated (Katan, 1981;Melero-Var aet al., 1995).Toleran t crops areonl y available for tomato andcotton .Toleranc e toV. dahliaei s alsopresen t inothe rcrop s such aspotato ,bu t presently these potato cultivars areno t widely used due toth erequirement s of the processing industry and consumers. Several attempts havebee n undertaken to apply antagonistic micro-organisms to control verticillium wilt. Biocontrol agents mayparasitiz e orinactivat e the resident microsclerotia and/or protect thehos tb y limitingroo tinfection . Parasitism orinactivatio n ofresiden t microsclerotia mayb e successful only for polyphagous antagonists, given the generally low densities ofV . dahliaei n soil. Application of mycoparasitesha s been attempted with Trichoderma spp. (Ordentlich etal, 1990;Georgieva , 1992) and Gliocladium spp.(Keinat h etal, 1991),bu tth e results obtained sofa r were not satisfactory enough. Rhizosphere-colonizing antagonists seemt o show morepromisin g results.Amon gthem , Talaromycesflavus hasbee nregistere d for controlo f verticillium wilt in oil-seed rape and other horticultural crops (Zeise, 1997;Koch , 1999). In addition, several promising bacterial species,suc h as Stenotrophomonas maltophila(Ber get al, 1994),Bacillus subtilis (Podil e etal., 1985;Safiyazo v etal, 1995),an d Pseudomonas fluorescens (Leben etal, 1987;Safiyazo v etal, 1995)hav ebee n reported as potential antagonists ofV. dahliae. Combined applications of different biocontrol agents areexpecte d to give more consistent positive results than single agents.Severa l studies reported animprovemen t of disease suppression of soilborne pathogens when different antagonists werecombine d (Park etal., 1988 ; Bin etal, 1991;Fuch s andDefago , 1991;Lemancea u and Alabouvette, 1991).Fo r example,Bi n etal. (1991) showed that application ofP. fluorescens strain 2-79RNiole dt o an increased percentage of sclerotia of Sclerotinia sclerotiorum colonized by Trichoderma spp.compare d to applying Trichoderma spp. alone.Combinatio n ofBacillus pumilus, B. subtilis,an d Curtobacteriumflaccumfaciens provide d better and moreconsisten t control of three cucumber pathogens (Raupach and Kloepper, 1998)tha n singleagents . In this study, weinvestigate d theeffec t ofP. fluorescens strain P60 on verticillium wilti n Arabidopsisthaliana an d eggplant.A. thaliana has been shown tob e a sensitive and valuable bioassay plant forV. dahliae(Chapte r 2). Control ofV. dahliaeb yP. fluorescens P60 was studied intw o types of soil,a pottin g soil and afiel d soil.Th e potential to increase the level of control of V. dahliaeb ycombinatio n of different antagonistic microorganisms was studied bycombinin g P60 with Talaromycesflavus isolate Rl.

74 Materialsan d methods

Isolatesand production of inoculum Twentymonoconidia l isolates of V. dahliaecollecte d from different host plantsan d different locations in theNetherland s (Table 6.1) were used in sensitivity tests with three isolates of P.fluorescens. Microsclerotial inoculum wasprepare d from field-collected potato stems that contained microsclerotia.Th epotat o stems were ground and successively sieved over screens with meshes of 106an d2 0 umrespectively . Theresidu eremainin g onth e2 0 urnsiev ewa s suspended in water containing 0.08% agar.Th e agar was added to obtain asuspensio n in which the microsclerotia weredistribute d homogeneously. Thenumbe r of microsclerotia in the suspension was determined

Table 6.1. Origin of isolates of Verticillium dahliaeuse di n this study.

No. Host plant Organ/Part Location Year K3 Solanumtuberosum L . Stem Veenhuizen 1997 G3 S. tuberosum Potato soil Wageningen 1994 717.96 S. tuberosum stem Rolde 1991 C2 S. tuberosum stem Wageningen 1996 C3 S. tuberosum stem Wageningen 1996 VI S. tuberosum stem Nieuweroord 1996 V3 S. tuberosum stem Nieuw-Balinge 1996 V4 S.tuberosum stem Bruntinge 1996 ES120 Fraxinusexcelsior L . wood Lelystad 1988 A59 Rubusfruticosus L. stem Geldermalsen 1996 S12.2 Syringavulgaris L . wood branch Aalsmeer 1996 AplatI Acerplatanoides L . woodbranc h Grubbenvorst 1993 A56 Rosasp . stem Elst 1996 A45 Fragariasp . stem Elst 1996 A60 Acer sp. stem Swolgen 1993 A63 Forsythia sp. stem Aalsmeer 1997 A17.1 Phloxsp . stem Gendt 1991 A61 - soil Lelystad 1997 A40 Ribesrubrum L. stem Geldermalsen 1996 CI Linumusitatissimum L . stem Netherlands 1995

75 in small subsamplesusin g adissectin g microscope at2 5x magnification. Todetermin e germinability,2 5microscleroti a were plated individually on Petri dishes containing Modified Soil Extract Agar (MSEA) media (Harris etal., 1993)b yusin g aninsec t pin 000 (Emil Arlt, Australia).Th ePetr i dishes wereincubate d up-side down inth edar k at 23°Cfo r 14days , before the number of germinated microsclerotia wascounted . Pseudomonasfluorescens strain sJMP22 ,P32 , andP60 ,provide d byD rJ.M . Raaijmakers (Laboratory of Phytopathology, WAU), wereisolate d from rhizosphere roots of wheat grown ina soilcropped continuously to wheat for 14(JMP22 ) and 27 (P32an dP60 ) years,respectively , in 1998.Th e strains wereculture d on King'smediu m B (KMB) agar (Merck, 64271Darmstadt , Germany) at 25°C for 48 h. Spontaneousrifampicin-resistant (rif ) mutants of JMP22, P32,an d P60 wereprepare d asfollows : P.fluorescens was suspended in 5m l of sterile water to obtain 107 cells ml"1.On ehundre d ul of the suspension wasplate d ontoKM B agar supplemented with cycloheximide (100m gl" 1)an drifampici n (100m gl" 1).Afte r incubation at 25°C for 48 h, single colonies of the strains appearing on the agar were transferred successively for three times toth e same antibiotic-containing medium. Singlecolonie s of the strains from the last plating were stored in amixtur e of 1 ml of 80%glycero l and 1 ml ofLuria-Bertani' s solution (LB) containing 10g l" 1NaCl , 10g l" 1bacteriologica l peptone (Oxoid),an d 5g l" 1yeas t extract (Oxoid) (Sambrooket al., 1989).Th e stability of rif-resistance was tested bysubculturin g on KMBthre e times at25° Cfo r 48 h, followed byplatin g on KMB with and without cycloheximide and rifampicin. Rif-resistance was considered stable if the numbers of colony-forming units wereno t different on these two media. Isolates Rl (Prophyta Biologischer Pflanzenschutz GMBH,Rostock , Germany) andTf l of T.flavus were used in this experiment. Isolate Rl originated from asclerotiu m ofSclerotinia minorJagge r in the U.S.A. (Dunn andLumsden , 1981).Isolat e Rl was formulated ontoa n organic carrier asa water-dispersibl egranul e containing 5x 109ascospore s g'1 granule (Kersten, 1997).Granule s of this isolate with the recommended density of 1.0 x 104ascospore s g"1dr y soil wereprepare d bythoroughl y mixing an ascospore suspension with the soil used. Isolate Tfl, provided byNagtzaa m (Nagtzaam andBollen , 1997),wa sculture d on Potato-Dextrose Agar (PDA,Merck , Darmstadt, Germany).I t was formulated in alginate prill asdescribe d byFrave l et al.(1985 ) andLewi s andPapaviza s (1985).Cleistotheci a ofT. flavus were scraped gentlyfro m 3- week-oldPD A cultures, suspended in water, andcrushed . The suspension was filtered through cheese cloth,th e number of ascospores wasdetermine d with ahaemocytometer , andth e suspension wasdilute d toreac h 107ascospore s ml"1suspension .Th e viability of spores was determined bydilutio n plating ontoPDA .Te n go f sodium alginate (Janssen Chimica, Belgium)

76 and 110g o f powdered wheat bran were mixed with a50 0m l aqueous suspension containing 109 ascospores in total.Th emixtur e was dripped into asolutio n of 100m MCaC U where pellets formed bypolymerisation . Thepellet s were then washed gently with tap water and allowed todr y ontw o layers of filter paper for 7 days atroo m temperature. After air-drying, the pellets were ground in aRetsc h grinding mill (0.5m mpor e size) (Retsch, Haan,Germany ) and stored at4° C until further use.Th e number of viablepropagule s was assessed byplatin g 30-40particle s onto plates with Marois medium, incubated for 5day s at 30°Ci n the dark, and counted undera binocular microscope.Th e inoculum contained 4.5 x 107ascospore s g"1pellet s and 2.6 x 106 particles g"1 dry pellet.

In vitro assays Strains P60,P3 2 and JMP22 of P.fluorescens wer e spot-inoculated on PDA or 1/5 strengtho f Potato-Dextrose Broth (PDB;Difco , Detroit, USA) amended with 15g Technica l Agar No. 3 (Oxoid, Basingstoke,England ) at adistanc e of 1 cmfro m the edge of aPetr i dish (diam.9 cm) . After incubation at 25°Cfo r 24h , a5-m m plug ofV. dahliaewa s placed in the middle of the dish.Th ePetr i dishes were incubated upsidedow n in the dark at 20°C for 25days ,an d all treatments were replicated five times.Radia l growth ofV. dahliaewa s measured when the control dishes were almost covered. The amount of microsclerotia formed byV. dahliaewa s scored semi- quantitatively (0= n o microsclerotia, 1 =microscleroti a covering < 25% of the colony, 2= 25- 75%, and 3= > 75%) .Th e experiment wascarrie d out threetimes . Inhibition ofT. flavus T f1 and Rl byP6 0 wasteste d asdescribe d abovefo rV. dahliae. The plates were incubated at 25o r 30°C, for 14days .Th eexperimen t was carried out twice.

Inplanta assays Colonization ofthe rhizosphere byPseudomonas fluorescens. Seedlings ofArabidopsis thaliana (L.)Heyhn . ecotype Columbia andeggplan t (Solanum melongena L.) cv. Black Beauty were grown in sieved potting soil. Soil collected from afiel d on theexperimenta l farm 'Meterikse Veld' atHors t (Limburg, theNetherlands ) which was aloam y sand with apH-KC l of 6.5 anda n organic matter content of 2.3% was alsoused . Four orthree-week-ol d seedlings ofA . thaliana or eggplant, respectively, wereroot-dippe d in either abacteria l suspension of 107cell s ml"1fo r 3 min or sterile water, blotted on sterile filter paper to remove excess water and planted in 10 replications in small plastic pots (w/w/h, 7/7/8). Incubation took place in aclimat e chamber at 20°C with 16h light (PhilipsT D 32W/84 HF)an d 8h dark , and watering was done byhan d as necessary. At 1,4, 8, and 12week s after inoculation roots plus rhizosphere soil were collectedb y gently shaking the roots toremov e loosely adhering soil.On e gramme of root material including

77 rhizosphere soil was suspended in 5m l sterile water and shaken vigorously for 1 min on aVorte x mixer, sonicated for 1 min. in anultrasoni c cleaner (Bransonic 12),shake n again on aVorte x mixer for 1 min and serially diluted.Fift y \xLo f every dilution were spread onto KB amended with cycloheximide (100 mgl" 1)an drifampici n (100m gl" 1).Presenc e of P.fluorescens P60i n the interior of the plant waschecke d byplatin g 1-cm-longste mpiece s either after surface sterilization in 1%NaCI Ofo r 30 sec,washin g twice in sterile water, blotting dry on sterile filter paper, and plating on KBcontainin g rifampicin andcycloheximid e orb yfirs t grinding in asteril e mortar, adding 5m l sterile water, andplatin g 1 ml of this suspension on the same medium. All plates were incubated at25° C andcolonie s wereenumerate d after 72h .

Effectof P. fluorescens onverticillium wilt.Seedling s were grown asdescribe d above.Th e following treatments were included: (1)Hal f of thepot s with either loamy sand or potting mixture were infested with 50germinabl emicroscleroti a ofV. dahliaeisolat e A17.1 g"1 drysoil ; (2)root-dippin g for 3mi n of 4o r 3-week-old seedlings ofA . thalianao reggplant , respectively,i n a bacterial suspension of P.fluorescens P60 of 107cell s ml"1,o r water; (3)plantin g the seedlings in loamy sand, described above,o rpottin g soil mixed with sand (2:1, v/v).Th e treatments were replicated 5times .Seedling s were grown under controlled conditions as described above. Senescence wasevaluate d for rosette leaves and stems (including stems, stem leaves,flowers , and siliquae) separately byusin g asenescenc e index (SI)rangin g from 0 to 5.Fo r the rosette leaves:0 =0-5 %o f the rosette leaves showing some necrosis; 1 =6-15% ;2 = 16-25%; 3 =26-50% ;4 = 51-75%; and 5= 76-100% .Fo r the stems:0 =n o necrosis; 1 = stems still green but 1-5 % of leaves showing necrosis; 2= 1-5% of the stems brownish oryellowish , 1-25% of the leaves showing necrosis, and 1-5% of siliquae and/orflower s yellowish orbrownish ; 3= 6-25 %o f the stems brownish or yellowish, 26-75%o f the leaves showing necrosis, and 6-25% of the siliquae brownish;4 =26-50 %o f the stems brown, 26-100%o f the leaves showing necrosis, 26-50%o f the siliquae brown, and 1-75% of the flowers yellow orbrown ; and 5= most of all stems,leaves , flowers, and siliquae showing necrosis.Th eA. thalianates t plants were harvested after total senescence, andth e amount of newly formed microsclerotia in the shoot was determined as follows. Microsclerotia were separated from shoot tissue by grinding and sieved over screens with meshes of 106an d 20 umrespectively . Theresidu e remaining on the 20 u.msiev ewa s suspended in watercontainin g 0.08% agar.Th e agar was added to obtain asuspensio n in which the microsclerotia were distributed homogeneously. The number of microsclerotia in the suspension was determined in small subsamples using adissectin g microscope at 25 x magnification. The infection percentage ofV. dahliaei n eggplant was determined byplatin g 1- cm-longpiece s ofplan t stems.Th e stem pieces were placed on Ethanol Agar after surface

78 sterilization in 1%NaCI Ofo r 30 sec,washin g twice in sterile water, and blotting dryo n sterile filter paper. The wholeexperimen t wascarrie d out in duplicate.

Combination ofP. fluorescens and T.flavus.Th e following treatments wereincluded : (1) Infestation of the soil with 50germinabl emicroscleroti a g"1dr y soil of isolates AplatIo rES120 , ornot ; (2)root-dippin g for 3mi n of 4-week-old seedlings ofA .thaliana i n abacteria l suspension of P.fluorescens P60o f 107cell s ml"1suspension , orwater ; (3)plantin g the seedlings in loamy sand mixed withT. flavus isolateR l at adensit y of 1.0 x 104ascospore s g"1o f soil, or withoutT. flavus; (4)exposin g the seedlings toP. fluorescens P60 andT. flavus Rl jointly atful l doses as described above or at halved doses (i.e.5 x 106cell s ml"1 suspension and 5x 103ascospore sg" 1 soil respectively).Th e experiment wascarrie d out in 8replicates . Plants were grown as described above.Plant s wereharveste d when completely dead, andth e amount of microsclerotia in the shoot was determined as described above.

Ul > <• 60 T 111 ? ri u. b x J £§40} I go < 20 -I HI o>-

o> CM ^ to m n »- T- o *- 2 ?! s •S 3 < t < S ° ISOLATE OF VERTICILLIUMDAHUAE <

•O N PDA DON 1/5 STRENGTH PDB

Figure 6.1. Effect of Pseudomonasfluorescens strain P60o n mycelial growth of 20isolate so f Verticillium dahliaeo n Potato-Dextrose Agar (PDA)o r 1/5 strength Potato-Dextrose Broth amended with 15g l" 1aga r (PDB)relativ e togrowt h ofV. dahliaealone .

79 Statisticalanalysis. Th e area-under-the-senescence-progress curve (AUSPC) was determined according to Campbell &Madde n (1990).Al l experiments werecarrie d out in a completely randomised block design. Data were analysed byusin g analysis of variance (SPSS for MS Windows Release 6.1), andtreatmen t means were separated byTukey-HS D test atP <0.05 .

Results

Effectof P. fluorescens on V. dahliaein vitro OnPDA , mycelial growth of 20isolate s ofV. dahliaewa sreduce d by 31-64% when challenged with P.fluorescens P60 (Figure 6.1). On 1/5 strength PDB,th e inhibition byP6 0 was slightly less andrange d from 29-52%.Analysi s of variance didno t indicate asignifican t difference between V. dahliae isolates. Isolate 717.96o fV. dahliaedi d not produce microsclerotia. All other isolates produced more microsclerotia on PDA than on 1/5 strength PDB agar. P.fluorescens P60 reduced formation of microsclerotia on PDA for most isolates ofV. dahliae(Tabl e 6.2).V. dahliae isolates AplatIA60 ,A63 ,an d A17.1appeare d to bequit e sensitive toP. fluorescens P60wit h

co 1000 z HI -1 O o V. Wu HOST PLANT a: in AND SOIL TYPE x a. 100 CO CO < O OArabidopsisthaliana , z o Ed Loamy sand 5 o • Arabidopsisthaliana , Q CO Pottingsoi l 3 i- 111 o • Eggplant, CaO. o Loamy sand O O 3 S u. CJ

4 8 12 WEEKS AFTER INOCULATION

Figure6.2 . Colonization of therhizospher e ofArabidopsis thaliana an d eggplant by Pseudomonasfluorescens strain P60 atvariou s times after root-dipping with 107cell s ml"1o f4 - or 3-week-old seedlings respectively.

80 respect toth eformatio n ofmicrosclerotia , whilst isolates K3,ES120 , C2,V3 ,an dV 4wer e relatively insensitive (Table6.2) . On 1/5 strength PDB agar,contro l plates showed noo rver yfe w microsclerotia (average index 0.85);whe n challenged with P.fluorescens P60, microsclerotia wereno tforme d atall .Simila r data wereobtaine d fortw oothe rPseudomonas isolates (datano t shown).Fo rth e plant assays,P6 0wa schose n because itgav emor ereductio n onformatio n of microsclerotia ofV. dahliaein vitro tha n theothe r strains.

Table 6.2.Effec t ofPseudomonas fluorescens P60o nth eformatio n ofmicroscleroti ao f Verticillium dahliaeo nPotato-Dextros e Agar.

V. dahliaeisolat e Control P.fluorescens P6 0 K3 2.0± 0.0 1 1.311.5 G3 3.0±0.0 1.310.6 717.96 0.0± 0.0 0.010.0 C2 2.0± 0. 0 1.010.0 C3 1.7 ±0.6 0.3 10.6 VI 2.7±0.6 1.710.6 V3 2.3 10.6 1.310.6 V4 2.7± 0. 6 1.310.6 ES120 1.010.0 1.310.6 A59 2.710.6 1.710.6 S12.2 1.710.6 0.010.0 AplatI 2.0 10.0 0.710.6 A56 2.010.0 0.710.6 A45 2.3± 0.6 1.011.0 A60 2.310.6 0.3 10.6 A63 2.7 10.6 0.710.6 A17.1 3.010.0 1.011.0 A61 1.310.6 0.710.6 A40 1.710.6 0.7 10.6 CI 1.710.6 0.71 0. 6 Average 2.0± 0. 4 0.910.6

'0- nomicrosclerotia , 1 =microscleroti a covering <25 % ofth ecolony , 2= 25-75% , 3= > 75% . Values indicated areaverage s ±S.D . of 3replicates . EXPERIMENT 1, POTTING SOIL EXPERIMENT 2, POTTING SOIL

X UJ Q

UJ U z oUJ w u z Ul W

9 4 S TREATMENT WEEKS AFTER TRANSPLANTING -•-Vd- P60- -•-Vd- P60+ EXPERIMENT 3, LOAMY SAND EXPERIMENT 4, LOAMY SAND -*-Vd+ P60- -H-Vd+ P60+

7 8 9 4 5 6 WEEKS AFTER TRANSPLANTING Figure 6.3.Senescens e progress of rosette leaves and stems ofArabidopsis thaliana,root-dippe d orno t with 107cell s ml"1 ofPseudomonas fluorescens strai n P60,o n two soil types infested with 0 or 50microscleroti a g"1soi l of Verticillium dahliaeisolat e A17.1. Senescence Index (from 0= healthyt o 5= dead )i sexplaine d in detail in Materials andMethods .

82 (B) ISOLATE ES 120

5 TREATMENT -NoVd -Vd -Vd + Tf -Vd + P60 -Vd+ P60 + Tf -Vd + 1/2P60 + 1/2Tf

6 7 8 5 6 7 WEEKS AFTER TRANSPLANTING

Figure6.4 . Progress of senescense in rosette leaves and stems ofArabidopsis thaliana, root- dipped or not with 107cell s ml"1o f Pseudomonasfluorescens strain P60infeste d with 0 or5 0 microsclerotia g"1soi l of Verticillium dahliaeisolat e AplatI(A )o rES12 0 (B),an dwit h 0 or 104 ascospores g" soil of Talaromycesflavus isolate Rl. Senescence Index (0= healthy , 5= dead )i s explained in detail in Materials andMethods .

Colonization ofthe rhizosphere byP. fluorescens P.fluorescens P60 was able tocoloniz e therhizospher e of A. thalianaan d eggplant; it couldno t be isolated from the interior of theroo t tissue.Number s of colony-forming units in the rhizosphere ranged from 1.4 x 103t o 8x 105cf u g"1 roots;n o major differences in population densities were observed between the different test plants and soils (Figure 6.2).

Controlof verticillium wiltby P. fluorescens P60 Development of senescence inA. thalianawa s significantly accelerated byV. dahliae.I nbot h soil types,introductio n of P60 nullified the effect ofV. dahliaeresultin g in plants that showed senescence rates similar to thoseobserve d in treatments withoutV. dahliae(Figur e 6.3 and Table 6.3 ).P6 0 slightly reduced stem infection inA. thaliana byV. dahliaei n 3ou t of 4 experiments (upt o 25%).Mor eimportantly , the amount of microsclerotia produced in the shoot decreased 5t o 8-fold upon treatment with P60 (Table 6.3). Infection of the stem bases of eggplant were reduced

83 byP6 0fro m 27t o 2.1%; rootplating s showed that theinfectio n wasreduce d from 83t o44% . Thesedat a were obtained from oneexperimen t only.

Combinedapplication ofP. fluorescens andT. flavus Initially, the invitro assa y with P60 showed asligh t inhibition ofT. flavus Tf1 andR l at 25an d 30°C,bu t after 4 week of incubation both isolates ofT. flavus continued to grow, completely covering thebacteria l colony. Both P60 andT. flavus Rl slowed down senescence ofA . thaliana tolevel stha tdi dno tdiffe r significantly from thesenescenc eo f plants grown in non-infested soil (Figure6.4) .Th eeffect s of P60 andT. flavus were almost similar andn o differences were observed between the level of suppression of thetw oV. dahliaeisolates .Applicatio n of halved inoculum densities of both antagonists hadth e samedisease-suppressin g effect asth e full strength inocula. This wasconfirme d in analysing the area-under-the-senescence-progress curve (Figure 6.5A). P60 andT. flavus individually reduced thenumber s of microsclerotia approximately 8an d 4-fold respectively. Combination of both biocontrol agentsresulte d in a 26an d4 4 times reduction inth eformatio n of microsclerotia byisolate s A17.1an dES12 0respectively . Similarly, halved inoculum densities reduced thenumbe r of microsclerotia formed bybot h isolates of V. dahliae, to almost the same level as obtained byful l strength inoculum densities of the antagonists (Figure 6.5B).

Discussion

In four bioassays withA. thalianaan d in two assays with eggplant, P.fluorescens strain P60 consistently suppressed verticillium wilt. Suppression byP6 0 was observed in bioassays performed in both apottin g soil and asand y loam field soil.I nthes e assays,relativel yhig h inoculum densities ofV. dahliaewer eused , viz.5 0microscleroti a pergramm e of soil.Inoculu m densities of 2t o 10microscleroti a per gramme of soil generally are thought to incite significant damage in susceptible crops (Ashworth etal., 1979;Nico t &Rouse , 1987).Despit e thehig h inoculum density used in this study, therat e of senescence of the shoot and the number of newly formed microsclerotia peruni t of shoot dryweigh t were substantially reduced inA. thaliana treated with P60.T o ourknowledge ,thi s isth e first time that abiocontro l agent is shown to substantially lower thenumbe r of newlyforme d microsclerotia ofV. dahliae.Thi s reduction is likelyt oaffec t significantly thediseas e development in successive croppings of a susceptible host. P60colonize d therhizospher e of both A. thalianaan deggplant , but could not beisolate d

84 rt rt o «

i-i ON V"i 00

1 ip 1) .a r^ r^ ON ON •a ft o T) •££ o o o -<* £ w NO 00 cfe <*H NO r<\

•a o

cs so

(8 A ^ Q 1 ""! °"! °i O Os r

ed ed .O « Tt (S - 00 r-^ NO

O O ON OS *ri NO m

© © o ©

ON

^ 6 i^ 00 c -g

O in n O 00 (S o 0O i-.

(N oo r-- ^o ON r-^

rs 00*0 t^ rO © f^ '—i

S oo NO OO

e a. l^z^

H S Z Z >H >< (A) QROSETT E •SHOOT

• z5 IE c I"*1! Tar Jib] fib] —|»bc| TQ 3*3 ^3 • ]•• 3*3 aj«b| °z 9 a 7o.

Vd- Vd-AplaU Vd-AplaU Vd-AplaU Vd-AplaU Vd-AplaU Vd-ES120 Vd-ES120 Vd-ES120 Vd-ES120 Vd-ES120 P60- P60- P60- P60» P60* 1/2P60+ P60- P60- P60+ P60+ 1/2P60+ Tl- Tf- Tf+ Tl- Tf+ 1/2Tf+ Tt- Tf+ Tf- Tf+ 1/2TU

TREATMENT

111 O 2 0> I- O t E O o o o & c o UJ -

Vd- Vd-AplaU Vd-AplaU Vd-AplaU Vd-AplatJ Vd-AplaU Vd-ES120 Vd-ES120 Vd-ES120 Vd-ES120 Vd-ES120 P60- P60- P60- P60+ P60+ 1/2P60* P60- P60- P60» P60+ 1/2P60+ Tf- T(- Tt+ Tf- Tft 1/2TU Tf- Tft Tf- Tft 1/2Tf+

TREATMENT

Figure 6.5.Effec t ofPseudomonas fluorescens strain P60 and Talaromycesflavus isolat eR l on (A) area-under-the-disease-progress curve ofArabidopsis thaliana growin g on soil infested with 0 or 50microscleroti ag" 1 soil of Verticillium dahliaeisolate s AplatI or ESI20 and (B)th enumbe r ofmicroscleroti ag" 1 dry shoot tissue(show n areback-transforme d averages after squareroo t transformation). Bars labelled with the same letter areno t significantly different according to the Tukey-HSD test(P < 0.05) .

from the interior ofroo t or shoot. The adverse effects onV. dahliaema y be theresul t of different ormultipl e mechanisms.A first mechanism mayb e antibiosis. Preliminary resultshav e shown that strain P60produce s the antibiotic 2,4-diacetylphloroglucinol (DAPG) (Souza and Raaijmakers, unpublished data)whic h was shown to haveprofoun d effects onbot h mycelial growth and formation ofmicroscleroti a byV. dahliae(Soesanto ,Raaijmaker s and Termorshuizen, unpublished data). Consequently, DAPGproductio n by P60 inth erhizospher e of A. thalianaan d eggplant may havereduce d thenumbe r ofroo t infections and the level of colonization ofth evascula rtissu eb yV. dahliae. Therol eo fDAP G inth e interaction betweenP. fluorescens P60 andV. dahliaei scurrentl y under investigation usingpurifie d DAPG and mutants ofP6 0whic h aredefectiv e in theproductio n ofDAPG .

86 A second mechanism mayb erelate d to induced systemic resistance byP. fluorescens P60.Induce d systemic resistance (ISR)i sa widel y recognized phenomenon by which root- colonizing fluorescent Pseudomonas spp.ca n suppress plant pathogens (Hofte etal., 1991 ; Pieterse etal, 1996;Kloepper etal, 1997;Va n Loon, 1997).Bioassay s {e.g. split-root systems), inwhic h thepathoge n and strainP6 0 arephysicall y separated will berequire d to evaluate therol e played by ISRi n the control ofverticilliu mwil tb y P60 andparticularl y inth ereductio n ofth e number ofnewl y formed microsclerotia. Athir d mechanism may deal with siderophore-mediated competition for FeIII+i n therhizospher e (Bakkeret al, 1993;Duijf f etal, 1993). Joint application ofP. fluorescens P6 0wit h T.flavusreduce d the senescence rate of A. thaliana to aleve l found inplant s grown innon-infeste d soil. Theproductio n of microsclerotia peruni t of shoot dryweigh t was significantly reduced up to 44time s inth e combined applications; the combination wasmor eeffectiv e than application of each antagonist separately. Nagtzaamet al. (1998 )reporte d that combinations ofT.flavus withBacillus subtilis, Fusarium oxysporum, or Gliocladium roseum reduced root colonization and stem infection by V. dahliae to a similar extent asapplicatio n ofth e single antagonists atrates .Althoug h disease control wasno t improved, they concluded that combined applications could makebiocontro l more consistent under arang e ofenvironmenta l conditions.Antagonis t mixtures alsohav ebee n used inothe r host-pathogen systems to improve the level of suppression (Fuchs and Defago, 1991; Lemanceau etal. 1992;Par k etal., 1988).Thes e and other studies show that mixtures can lead to synergistic, additive,o rneutra l effects onth e levelo f diseasesuppression . According to Baker (1990), compatibility between different antagonistic strainso r agents is animportan t aspecto f successful application of antagonist mixtures.Th eresult s ofthi s study suggest that P.fluorescens P6 0an d T.flavus are compatible, given the improvement inth ereductio n ofnewl y formed microsclerotia. Moreover, invitro studie s indicate thatmycelia l growth ofT. flavus wa sno t adversely affected byP60 . We so far haven o direct evidence ifth e twoorganism s adversely affect each other inth e rhizosphere. Possibly both antagonistsprefe r different microhabitats in therhizospher e and the joint effect ofDAP Gproduce d byP. fluorescens P6 0 and either ofglucos e oxidaseproduce d or mycoparasitismb y T flavus synergistically affect thedevelopmen t ofV. dahliae.Thes e aspects arecurrentl y under investigation.

87 CHAPTER7

GENERAL DISCUSSION

A goal ofth eresearc h described inthi sthesi swa st o obtain ecological insight into the dynamics ofmicroscleroti a of Verticillium dahliae.Attentio n waspai d to the formation and survival of microsclerotia. Detailed knowledge about factors influencing theseprocesse s may leadt one w prospects in management ofverticilliu m wilt.Next , possible improvements in thebiologica l control ofverticilliu m wilt were attempted. The ideawa s confirmed that the above-ground application ofth ebiocontro l agent Talaromycesflavus ont o microsclerotia-containing debris would lead toreductio n of inoculum density ofV. dahliae. In addition, the effects ofa diacetylphloroglucinol-producing strain ofPseudomonas fluorescens o nverticilliu m wilt was studied.

Arabidopsisthaliana a s abioassa y tool tostud y the ecology and control ofV. dahliae

Byplantin g asusceptible , quickly reactinghos t onsoi linfeste d withV. dahliae,th e ability ofV. dahliaet oinfec t ahos t and incitediseas e wasteste d directly. Bioassays yield qualitatively different information from that obtained by platingmethods ,whic h aimt o quantify the microsclerotia in soil.Platin g methods areusuall y considered relatively straightforward inthei r interpretation (number ofmicroscleroti a peruni t ofweigh t orvolum e of soil;bu t see discussion inth enex t paragraph),bu t bioassays integrate information on all factors leadingt o infection ofV. dahliae. An important assumption inperformin g suchbioassay s istha t thetes tplant s themselves dono t influence the soil environment. Therefore, regular checks ast owhethe r thetes t plant responds in asimila r way to therelevan t agricultural crop are necessary. In thepresen t study such achec kwa sperformed , where suppression ofverticilliu m wilt wasobtaine d both inA. thaliana and in eggplant (Chapter6) . Bioassays haveth e advantagetha t somewell-know nproblem s associated withplatin g methods arecircumvente d (Termorshuizenet al, 1998).However , it should be appreciated that bioassays areno t free ofproblems . The largevariatio n inrespons e to different microsclerotial densities makes itdifficul t to draw anyreliabl e conclusion about thenumber s ofmicroscleroti a in the soil.Therefore , werecommen d usemainl y for comparative experiments and for detecting very lownumber s ofmicroscleroti a insoi ltha t otherwise may escape detection.

89 Arabidopsis thalianawa s chosen asa bioassa y plant for V. dahliae(Chapte r 2)becaus eo f its short life cycle.Althoug h crucifers seem tob emor e frequently infected byV. longisporum thanb yV. dahliaei nth efield (Okol i etal, 1994;Subbara o etal, 1995;Karapap a etal, 1997), under experimental conditions A. thalianaappear st o be highly susceptible toV. dahliae. Conversely, innon-crucifer s verticilliumwil t isalway s found tob e associated withV. dahliae, andno t V. longisporum (Okoli etal, 1994;Subbara o etal., 1995).However , when eitherV. dahliaeo rV. longisporum isinoculate d oncrucife r ornon-crucife r hosts,respectively , disease regularly develops (Subbarao etal, 1995,Tabret t etal, 1995; Karapapa etal., 1997). Apparently, other mechanisms areresponsibl e for suppressing disease development or dispersal ofth epathoge n inth efield i nth eincompatibl e combinations. Moreresearc h isneede d onth e effect ofV. dahliaeisolate d from arang eo f different hosts asBha t and Subbarao (1999) found effects ofhos t origin ofV. dahliaeisolate s onverticilliu m wilt severity across arang eo fplan t species. A. thaliana was readily infected by different isolates ofV. dahliaefrom potato . Disease symptoms included early senescence but no typical verticillium wilt symptoms. Intensity of infection ofroot s and shoots was correlated with densities of 1,3,10 , 30,an d 100microscleroti a g"1 soil.A log-linea rrelatio n between inoculum density andth e area-under-the-disease progress curvewa s established. Even atth e lowest inoculum density of 1 microsclerotium g"1 soil, 5%o f theroo t lengthwa s infected with V. dahliae,an d 30%o fth e stems.Th emos t sensitive parameter was thenumbe r ofne w microsclerotia formed inth e shoot g"1 shoot dry weight. Thehighe r the inoculum density thegreate rth edensit y ofmicroscleroti a inth e shoot. It isconclude d that multipleroo t infections leadt o amor e intensive colonization ofV. dahliae.Diseas eprogres s was strongest at20°C ,an d less drastic at 10,15, and25°C .Th ebioassa y can optimally beuse d for assessing whether orno t afield soi l isinfeste d with V. dahliae.W e dono t know amor e sensitive bioassaytes tplan t for thispathogen .A n additional advantage ofusin gA. thalianai sth e possibility ofusin g genetically homogeneous material.

Factors affecting formation, recovery, and survival of microsclerotia ofV. dahliae

Microsclerotia areth e survival structures ofV. dahliaetha t supplyth e inoculum for subsequent crops. They are formed in large numbers on allplan t parts,bu tparticularl y in shoot tissue.W e showed that thenumber s ofmicroscleroti a in shoot tissue are affected by the density of microsclerotia in soil (Chapter 2) and temperature (Chapter 3). In addition,presenc e of antagonists also affects the formation ofmicroscleroti a inth eshoo t as shown forPseudomonas fluorescens and Talaromycesflavus (see next paragraph).

90 Temperature appears topla y asignifican t role inmultiplicatio n ofV. dahliae(Chapte r3) . Theoptimu m temperature for microsclerotium production is slightly lowertha n that ofmycelia l growth inpur e culture,bu tbetwee n 15an d 25°Chig hnumber s are generally produced. At low temperatures (5-10°C),th edevelopmen t ofV. dahliaei nplan t tissue is apparently slower thanth e development ofth ehost . Whenfirst grow n at20° C andmove d to different temperatures atth e onset ofsenescence ,th e formation ofmicroscleroti a wasmuc h higher than for plants that were grown attemperature s below 20°Ccontinuously . Theresult s ofth e temperature experiments are difficult to extrapolate for the field situation, wherediurna l and seasonal fluctuations of temperatureprevail . Soilmoistur econten t and airhumidit y also affect colonization byV. dahliae andth erespons e ofth ehos t to colonization. The largevariatio n observed in the temperature experiments indicates thatcertai n variables mayno t havebee n constant. The formation of microsclerotia depends on acascad e ofevents :roo t infection, vascular infection, shoot infection, host effects on thepathogen , andpathoge n effects onhos t growth and senescence. Thenumbe ro f shoot infections also depends on root size. Smalldifference s atth eonse t ofth ecascad ema y result inlarg e differences atth e end. Therefore further studies ofphysiologica l interactions between host andpathoge n are needed. Wilhelm (1955) found thatmicroscleroti a are ablet o survive for up to 14year s in soil. However, this statement doesno tprovid e information about survival rates during thistime . Quantitative datao n the survival ofmicroscleroti a areremarkabl y scarce inth e literature.Th e fact that arotatio n ofa hos t with 1 in4 non-hos t cropsresult s inyield s ofth ehos t that arealmos t equal toyield s obtained on soilswher e ahos t ofV. dahliaeha dneve rbee n grown (Bollen et al, 1989), indicates that aconsiderabl e portion ofth emicroscleroti a canb e inactivated within a few years. Therefore, we studied thedynamic s ofmicroscleroti a during the first 1-2 years inth e absenceo f ahos t (Chapter 4). Werepeatedl y observed lowrecoverie s oneda y after incorporation of inoculum into asoil , followed by adelaye d increase inrecovery . Recoveries reported by Wheeler andRow e (1995) for asingl e soil sample fluctuated more strongly withtime .A hypothesis waspu t forward that may explain thedifference s inrecoverie s observed. An unanswered, crucial question iswhethe r thephenomeno n is also operative in the germination behaviour ofmicroscleroti a in therhizosphere , orwhethe r it only appears inth e agarplates .Thi s couldb eteste d by correlating recovery rate andth enumbe r ofroo t infections in abioassa y plant. Ifvariatio n innumber s ofroo t infections keepspac ewit hvariatio n inrecovery , thismigh t indicate atemporar y non-germinabilityo fmicroscleroti a inth e soil.I fthi s isth ecase ,ther ema y be scope for selecting antagonists that affect germination ofmicrosclerotia . Liketh e observations by Wheeler and Rowe(1995 ) and Termorshuizen etal. (1998) ,ou rresult s indicate that eveni n one soil samplewithi n relatively short timeinterval s of a few months large fluctuations can

91 occur. It should be appreciated thatfluctuations i nrecover y can easilyb e confused with effects of certaintreatments . Weobtaine d indirect evidence that lowrecoverie s can obscure effects on survival.I n Chapter 5,i twa s found that incorporating 0.25 gpotat o stemscontainin g microsclerotia resulted inproductio n ofabou t 1200microscleroti a g"1soi l (applied without T.flavus), after 4 and 10 months ofincubatio n (Table 5.3,p . 63).Thi s amount isremarkabl y high, and itma y be questioned whether the application wasrealistic .Fro m unpublished field data (M.P.M. Nagtzaam, pers. comm.) adr yweigh t production of 616 gm" 2shoo t tissue ofpotat o plants was determined. Assuming that thistissu e contained 1x 106 microsclerotia per gramme shoot tissue, aswa s often thecas e for themateria l collected, an amount of 6.16 x 10smicroscleroti a would have been incorporated inth etop-soi l layer of 20c mo f 1 m2,equallin g 3,080microscleroti a cm"3 or2,36 9 microsclerotia g"1 soil (bulk soil density = 1.3 gcm" 3).However , densities exceeding 100 microsclerotia g"1 soil arerarel y observed inth e field. This canb e ascribed to clumping of microsclerotia inhos ttissue , sotha t shortly after incorporation ofV. dahliae-infectedorgani c debris in soilno t singlemicrosclerotia , butrathe r clumps ofmicroscleroti a are assessed. Inth e experiment wherew emeasure d 1,200 microsclerotia g"1 soil,th e sample was ground before plating, ensuring that discrete microsclerotia, andno t clumpso fmicroscleroti a were counted. In the field thehos t tissuedecompose s andth emicroscleroti a becomegraduall y segregated; some may germinate inth erhizospher e ofa following crop,o rdie .A n increase in inoculum density in time duet o the 'segregation' ofclump so fmicroscleroti a could gohan d inhan d with adecreas e duet o germination and death. Based on ourresults , analternativ e hypothesis for the low numbers ofmicroscleroti a usually measured in springi sth elo wrecover y duet ohig hnumber s ofmicro ­ organisms residing on the surface of microsclerotia.

Biocontrol ofV. dahliaewit hPseudomonas fluorescens and Talaromyces flavus

Both antagonists investigated hadremarkabl y strong effects onV. dahliae.Th eparticula r strain ofP. fluorescens use d in this studyha sno tbee n tested before against pathogens other thanth e causal agent oftake-all , Gaeumannomycesgraminis (Raaijmaker s etal., 1997).Phloroglucinol - producing strainsof P. fluorescens contribut e to the decline of G. graminis in cereals (Raaijmakers and Weller, 1998).Populatio n densities increase in soilswher etake-al l occurs,bu t apparently not in soilswher e otherpathogen s occur. Nevertheless, phloroglucinol-producing strains ofP. fluorescens ar eapparentl y ablet opersis t inth erhizospher e ofdicotyledonou s plants andt o affect pathogens other than G graminis.

92 Themechanism s involved inthi sphenomeno n areno t yet understood. P. fluorescens appeared to clearly depress the formation ofmicroscleroti a by V. dahliaein vitro an d the antibiotic phloroglucinol canb emad eresponsibl e for this, since similar effects were seenwhe n V. dahliaewa s exposed to thepur ecompoun d (ownpreliminar y observations). However, to explain the effects of P.fluorescens (and also Talaromycesflavus) on the numbers of microsclerotia in shoot tissue ofA. thaliana,i tmus tb e assumed that the antagonists infect the shoottissue , ortha tthei r antibiotics (2,4-diacetylphloroglucinolan dtalaro nrespectively ) are taken upb y theplant .P. fluorescens couldno tb eisolate d from within plant tissue (Chapter 6), andinfectio n ofplan t tissueb yT. flavus has never beenreported . Therefore, thepossibilit y of uptake ofphloroglucino l andtalaro n by theplan t needs tob e studied. It seemshoweve r more likely thatbot h antagonists inhibit the germination ofmicrosclerotia , and consequently reduceth e number ofroo t infections by V. dahliae. As shown in Chapter 2,densit y ofmicroscleroti a in soil isdirectl y related to numbers ofroo t infections andnumber s ofmicroscleroti a in shoot tissue. Induced systemic resistance or direct inactivation ofmicroscleroti a are other possible mechanisms.A direc t inactivation ofmicroscleroti a asshow n for T.flavus in Chapter 5,nee dno t beth e only operative mechanism. Thereclearl y is scope for the application of antagonists to control V. dahliae.Lo w temperatures appear tob e less inhibitory toth e application ofT. flavus than thought earlier (Chapter 5).A n extensive screening under theprevailin g climatic and edaphic conditions inth e Netherlands of antagonists may lead to evenmor e efficient strains. Such screenings against verticilliumwil thav eneve rbee nperforme d inth eNetherland s for T.flavus nor forP. fluorescens.

93 REFERENCES

Adams, P.B., 1990.Th epotentia l ofmycoparasite s for biological control ofplan t diseases. Annual Review ofPhytopathology 28:59-72. Allen, S.J., 1994.Th e effects of various cultural practices on the epidemiology of Verticillium wilt of cotton inNe w South Wales,Australia . Book ofAbstracts of the 6thInternational Verticillium Symposium,Dead Sea,Israel. Phytoparasitica 23:51. Al-Rawahi,A.K. , and J.G. Hancock, 1998.Parasitis m and biological control of Verticilliumdahliae by Pythium oligandrum.Plant Disease 92:1100-1106. Ashworth, L.J., O.D. McCutcheon, and A.G. George, 1972. Verticilliumalbo-atrum: the quantitative relationship between inoculum density and infection ofcotton .Phytopathology 62:901-903. Ashworth, L.J., O.C.Huisman , R.G. Grogan, and D.M.Harper , 1976.Coppe r induced fungistasis of microsclerotia of Verticilliumalbo-atrum and its influence on infection of cotton inth e field. Phytopathology 66: 970-977. Ashworth, L.J., O.C. Huisman, D.M. Harper, L.K. Stromberg, and D.M. Bassett, 1979.Verticilliu m wilt disease of cotton: influence of inoculum density in the field. Phytopathology 69:483:489. Atkinson, T.G., 1981. Verticillium wilt of alfalfa: challenge and opportunity. CanadianJournal ofPlant Pathology 3:266-272. Baker, K.F., and R.J. Cook, 1974.Biological control ofplant pathogens. Freeman, San Francisco. Baker, R., 1990.A n overview of current and future strategies andmodel s for biological control. Pp.375 - 389.In: D . Hornby (ed.),Biological control ofsoil-borne plant pathogens. C.A.B. International, Wallingford. Bakker, P.A.H.M., J.M. Raaijmakers, and B. Schippers, 1993.Rol e of iron in the suppression of bacterial plant pathogensb y fluorescent pseudomonads. Pp.269-278 .In: L.L. Barton and B.C. Hemming (ed.),Iron chelation inplants andsoil microorganisms. Academic Press, San Diego. Bejarano-Alcazar, J., J.M. Melero-Vara,M.A . Bianco-Lopez, and R.M. Jimenez-Diaz, 1995.Influenc e of inoculum density of defoliating and non-defoliating pathotypes of Verticilliumdahliae on epidemics of verticillium wilt of cotton in southern Spain.Phytopathology 85:1474-1481. Bejarano-Alcazar, J., M.A. Bianco-Lopez, J.M. Melero-Vara, and R.M. Jimenez-Diaz, 1996. Etiology, importance, and distribution of verticillium wilt of cotton in southern Spain.Plant Disease 80:1233-1238. Bejarano-Alcazar, J., A.J. Termorshuizen, and R.M. Jimenez-Diaz, 1999. Single-site root inoculations on eggplant with microsclerotia of Verticillium dahliae.Phytoparasitica 27:279-289. Bell,A.A. , 1992.Verticilliu m wilt.Pp . 87-126.In: R.J.Hillock s (ed.).Cotton diseases. C.A.B. International, Wallingford, UK. Ben-Yephet, Y., and Y.Pinkas , 1977. Germination of individual microsclerotia of Verticilliumdahliae. Phytoparasitica 5:159-166. Berg, G., 1997.Bacteria l antagonists to Verticillium dahliae var. longisporum Stark in the rhizosphere of oilseed rape.Book ofAbstracts of the 7th International VerticilliumSymposium, Athens,Greece , p. 64. Berg,G. , and G. Ballin, 1994.Bacteria l antagonists to Verticilliumdahliae Kleb.Journal of Phytopathology 141:99-110. Berg, G., C. Knaape, G. Ballin, and D. Seidel, 1994.Biologica l control of Verticilliumdahliae Kleb.b y naturally occurring rhizosphere bacteria.Archive ofPhytopathology andPlant Protection 29:249- 262. Bhat, R.G., and K.V. Subbarao, 1999.Hos t range specificity in Verticilliumdahliae. Phytopathology 89:1218-1225. Bin, L., G.R. Knudsen, and D.J. Eschen, 1991. Influence of an antagonistic strain ofPseudomonas fluorescens on growth and ability of Trichoderma harzianum to colonize sclerotia ofSclerotinia sclerotiorum in soil.Phytopathology 81:994-1000.

95 Bianco-Lopez, M.A., R.M. Jimenez Diaz, and J.M. Caballero, 1984. Symptomatology, incidence and distribution of Verticillium wilt of olive trees inAndalucia . Phytopathologia Mediterranea23:1 - 8. Blok,W.J. , J.G. Lamers,A.J . Termorshuizen, and G.J. Bollen, 2000. Control of soilbome plant pathogens by incorporating fresh organic amendments followed by tarping.Phytopathology 90 {inpress). Bollen, G.J., O.Hoekstra ,K . Scholte,T.W . Hofman, M.J. Celetti, and A. Schirring, 1989.Incidenc e of soilbornepathogen s inpotat o related toth e frequency ofpotat o growing on a clay loam.Pp . 203- 222.In: J.Vos ,CD . van Loon, and G.J. Bollen (eds.),Effects of crop rotation on potato production inthe temperatezones. Kluwer Scientific Publishers, Dordrecht. Boosalis,M.G. , 1956.Effec t of soil temperature and green manure amendment of unsterilized soil on parasitism ofRhizoctonia solani byPenicillium vermiculatum and Trichodermasp . Phytopathology 46:473-478. Bowden, R.L., and D.I. Rouse, 1991. Effects of Verticillium dahliae on gas exchange of potato. Phytopathology 81:293-301. Bowen, G.D., and A.D.Rovira , 1976.Microbia l colonization ofplan t roots.Annual Review of Phytopathology 14:121-144. Bowers,J.H. , S.T.Nameth , R.M. Riedel, and R.C.Rowe , 1996.Infectio n and colonization ofpotat o roots by Verticilliumdahliae as affected byPratylenchus penetrans andP. crenatus. Phytopathology 86:614-621. Brinkerhoff, L.A., 1969.Th e influence of temperature, aeration, and soil microflora on microsclerotial development of Verticillium albo-atrumi n abscised cotton leaves.Phytopathology 59:805-808. Bristow, P.R., andJ.L . Lockwood, 1975.Soi l fungistasis: role of spore exudates in the inhibition of nutrient-independent propagules.Journal of GeneralMicrobiology 90:140-146. Campbell, C.L., and L.V. Madden, 1990.Introduction toplant disease epidemiology. John Willey & Sons,Ne w York. Church, V.J., andH.A . McCartney, 1995. Occurrence of Verticilliumdahliae on sunflower (Helianthus annuus) inth e UK.Annals ofApplied Biology 127:49-56. Cirulli, M., F. Ciccarese, and M. Amenduni, 1994.Evaluatio n of Italian clones of artichoke for resistance to Verticillium dahliae. Plant Disease 78:680-682. Conn, K.L., and G. Lazarovits, 1998.Impac t of animal manures on verticillium wilt, potato scab, and soil microbial populations. CanadianJournal ofPlant Pathology 21:81-92 . Cook, R.J., 1973.Influenc e of lowplan t and soil water potential on diseases caused by soilborne fungi. Phytopathology 63:451-458. Daebeler, F.,D .Amelung , and K. Zeise, 1988.Verticilliu m wilt on winter rape occurrence and importance.Nachrichtenblatt fur denPflanzenschutz inder DDR 42:71-73 . Davis,J.R. , and D.O.Everson , 1986.Relatio n of Verticillium dahliae in soil andpotat o tissue, irrigation method, and N-fertility toverticilliu m wilt of potato.Phytopathology 76:730-736. Davis,J.R. , J.J. Pavek, and D.L. Corsini, 1983.A sensitive method for quantifying Verticillium dahliae colonization inplan t tissue and evaluating resistance among potato genotypes. Phytopathology 73:1009-1014. Davis, J.R., O.C.Huisman , D.T. Westermann, S.L. Hafez, D.O. Everson, L.H. Sorensen, and A.T. Schneider, 1996.Effect s of green manures on verticillium wilt of potato.Phytopathology 86:444- 453. DeVay, J.E., L.L. Forrester, R.H. Garber, and E.J. Butterfield, 1974.Characteristic s and concentration of propagules of Verticillium dahliae in air-dried field soils inrelatio n to theprevalenc e of Verticillium wilt in cotton. Phytopathology 64:22-29. Domsch,K.H. , W. Gams,an d T. Anderson, 1980.Compendium of soil fungi, vol. 1.Academi c Press, London. Douglas, V.S.,W.D . Gubler, and J. Hansen, 1997.Fiel d resistance of California strawberries to Verticillium dahliae atthre e conidial inoculum concentrations. HortScience 32:711-713.

96 Duijff, B.J., J.W. Meijer, P.A.H.M. Bakker, and B. Schippers, 1993.Siderophore-mediate d competition for iron and induced resistance in the suppression of Fusarium wilt of carnation by fluorescent Pseudomonas spp.Netherlands Journal ofPlant Pathology 99:277-289. Dunn, M.T., and R.D. Lumsden, 1981. Fungi associated with Sclerotinia minor buried in various soils. Phytopathology 71:766. Eastburn, D.M., and R.J. Chang, 1994. Verticillium dahliae:a causal agent of root discoloration of horseradish in Illinois.Plant Disease 78:496-498. Emmatty, D.A., and R.J. Green, 1969.Fungistasi s and thebehaviou r of the microsclerotia of Verticillium albo-atrumi n soil.Phytopathology 59:1590-1595. Evans, G., W.C. Snyder, and S. Wilhelm, 1966.Inoculu m increase of the verticillium wilt fungus in cotton.Phytopathology 56:590-594. Evans, G., CD. McKeen, and A.C.Gleeson , 1974.A quantitativ e bioassay for determining low numbers of microsclerotia of Verticillium dahliae in field soils. CanadianJournal of Microbiology 20:119-124. Fahima,T. , and Y.Henis , 1980. Interactions between pathogen, host, andbiocontro l agent: Multiplication of Trichodermahamatum an d Talaromycesflavus onroot s of diseased and healthy hosts. Pp. 165-180.In: D . Hornby (ed.),Biological control ofsoilborne plant pathogens. C.A.B. International, Wallingford. Fahima, T., L. Madi, and Y.Henis , 1992.Ultrastructur e and germinability of Verticilliumdahliae microsclerotia parasitized by Talaromycesflavus on agar medium and in treated soil.Biocontrol Science and Technology2:69-78 . Fahima, T., and Y. Henis, 1995.Quantitativ e assessment of the interaction between the antagonistic fungus Talaromycesflavus and the wilt pathogen Verticilliumdahliae on eggplant roots.Plant andSoil 176:129-137. Farley, J.D., S.Wilhelm , and W.C. Snyder, 1971. Repeated germination and sporulation of microsclerotia of Verticilliumalbo-atrum in soil.Phytopathology 61:260-264. Faulkner, L.R., W.J. Bolander, and C.B. Skotland, 1970.Interactio n of Verticilliumdahliae and Pratylenchus minyusi n verticillium wilt ofpeppermint : Influence of the nematode as determined by a double root technique.Phytopathology 60:100-103. Ferrandino, F.J., 1995.Ho w verticillium wilt affects yield of eggplant, tomatoes and potatoes.Frontiers ofPlant Science47:2-5 . Fernandez, M.C., and C.G. Tobar, 1989.Identificatio n of Verticillium dahliae Kleb. on artichoke(Cynara scolymus). Agricultura TecnicaSantiago 49:161-163 . Fitt, B.D.L., J.W. Cook, and S.Burhenne , 1991. Verticillium on linseed (Linum usitatissimum) in the United Kingdom.Annals ofApplied Biology 28:91-94. Fitt, B.D.L., F.Bauers , S.Burhenne , and V.H. Paul, 1992.Occurrenc e of Verticilliumdahliae on linseed (Linumusitatissimum) inth e UK and Germany.Plant Pathology 41:86-90. Fitzell, R., G. Evans, and P.C. Fahy, 1980.Studie s on the colonisation ofplan troot sb y Verticillium dahliae with use of immunofluorescent staining.Australian Journal ofBotany 28:357-368. Francl, L.J., L.V. Madden, R.C.Rowe , and R.M. Ridel, 1990.Correlatio n of growing season environmental variables andth e effect of early dying on potato yield.Phytopathology 80:425- 432. Fravel, D.R., J.J. Marois, R.D.Lumsden , and W.J. Connick, 1985.Encapsulatio n ofpotentia l biocontrol agents in an alginate-clay matrix.Phytopathology 75:774-777. Fravel, D.R., J.R. Davis, and L.H. Sorensen, 1986. Effect of Talaromycesflavus and metham sodium on Verticillium wilt incidence andpotat o yield 1984-1985.Biological and Cultural Testsfor Controlof Plant Diseases 1:17. Fravel, D.R., 1996.Interactio n ofbiocontro l fungi with sublethal rates of metham sodium for control of Verticilliumdahliae. CropProtection 15:115-119.

97 Friebertshauser,G.E. , and J.E. DeVay , 1982.Differentia l effects of the defoliating and nondefoliating pathotypes of VerticilHum dahliae upon the growth and development of Gossypium hirsutum. Phytopathology 72:872-877. Fuchs, J., and G. Defago, 1991. Protection oftomatoe s againstFusarium oxysporum f.sp. lycopersicib y combining anon-pathogeni c Fusarium with different bacteria in untreated soil.Pp . 51-56.In: C. Keel, B.Roller , and G. Defago (Eds.),Plant growthpromoting rhizobacteria. Interlaken, Switzerland. Gams, W., 1992.Th e analysis of communities of saprophytic microfungi with special reference to soil fungi. Pp. 183-223.In: W. Winterhoff (ed.),Fungi invegetation science. Kluwer Academic Publishers, Dordrecht. Gaudreault, S.M., M.L. Powelson, N.W.Christensen , and F.J. Crowe, 1995. Soil water pressure and Verticilliumdahliae interactions on potato.Phytopathology 85:1542-1546. Georgieva, O., 1992.Antagonisti c characteristics of Trichoderma koningii towards Verticilliumdahliae onpepper. Bulletin OILBSROP 15:18-20. Gerik, J.S.,an d O.C.Huisman , 1985.Mod e of colonization ofroot s by Verticilliuman dFusarium. Pp. 80-83.In: C.A . Parker, A.D.Rovira ,K.J . Moore, andP.T.W . Wong (eds.).Ecology and management ofsoilborne plant pathogens. The American Phytopathological Society, St.Paul , Minnesota, U.S.A. Gerik, J.S.,an d O.C. Huisman, 1988.Stud y of field-grown cotton roots infected with Verticilliumdahliae using an immunoenzymatic technique.Phytopathology 78:1174-1178. Green, R.J., and G.C.Papavizas , 1968.Th e effect of carbon source, carbon tonitroge n ratios, and organic amendments on survival ofpropagule s of Verticilliumalbo-atrum i n soil. Phytopathology 58:567-570. Green, R.J., 1969. Survival and inoculum potential of conidia andmicroscleroti a of Verticilliumalbo- atrum in soil.Phytopathology 59:874-876. Green, R.J., 1980. Soil factors affecting survival ofmicroscleroti a of Verticillium dahliae. Phytopathology 70:353-355. Hall. R., and L.V. Busch, 1971. Verticilliumwil t of chrysanthemum: colonization of leaves in relation to symptom development. CanadianJournal ofBotany 49:181-185 . Harris,D.C. , J.R. Yang, and M.S. Ridout, 1993.Th e detection and estimation of Verticilliumdahliae i n naturally infested soil.Plant Pathology 42:238-250. Harrison, J.A.C., 1971. Association between the potato cyst nematode Heterodera rostochiensis Woll. and Verticillium dahliae Kleb. inth e early dying disease ofpotatoes .Annals ofApplied Biology 67:185-193. Harrison, M.D., 1976.Th e effect of barley straw on the survival of Verticilliumalbo-atrum in naturally infested field soil.American PotatoJournal 53:385-394. Hashimoto, K., 1989.Studie s on verticillium wilt of eggplant. Bulletin of theSaitama Horticultural Experiment Station 2, 110pp . Haverkort, A.J., D.I. Rouse, and L.J. Turkensteen, 1990.Th e influence of Verticilliumdahliae and drought onpotat o crop growth. 1.Effect s on gas exchange and stomatal behaviour of individual leaves andcro p canopies.Netherlands Journal ofPlant Pathology 96:273-289. Hawke, M.A., and G. Lazarovits, 1994.Productio n and manipulation of individual microsclerotia of Verticillium dahliae for use in studies of survival.Phytopathology 84:883-890. Hawke,M.A. , and G. Lazarovits, 1995.Th e role of melanin inth e survival of microsclerotia of Verticilliumdahliae. Phytoparasitica 23:54. Heale. J.B., andD.P . Gupta, 1972.Mechanis m of vascular wilting induced by Verticilliumalbo-atrum. Transactionsof theBritish mycological Society 58:19-28. Heale,J.B. ,an d I. Isaac, 1965.Environmenta l factors inth eproductio n of dark resting structures in Verticilliumalbo-atrum, V. dahliae and V. tricorpus. Transactionsof theBritish mycological Society 48:39-50.

98 Heffer, V.J., and R.P.Regan , 1996.Firs t report of verticillium wilt caused by Verticillium dahliae of ash trees in Pacific Northwest nurseries. Plant Disease 80:342. Hiemstra, J.A., 1998.Som e general features of verticillium wilt in trees. Pp. 5-11.In: J.A. Hiemstra, and D.C. Harris (Eds.),A compendium of verticillium wiltin treespecies. Ponsen & Looijen, Wageningen, the Netherlands. Hofte, M., K.Y. Seong, E. Jurkevitch, and W. Verstraete, 1991. Pyoverdin production by theplan t growth beneficial Pseudomonas strain 7NSK2:ecologica l significance in soil.Plant and Soil 130:249- 257. Hsu, S.C., and J.L. Lockwood, 1973.Soi l fungistasis: Behaviour ofnutrient-independen t spores and sclerotia in a model system.Phytopathology 63:334-337. Huisman, O.C., and L.J. Ashworth, 1976.Influenc e of crop rotation on survival of Verticilliumalbo- atrum in soils.Phytopathology 66:978-981. Huisman, O.C., 1982.Interrelation s ofroo t growth dynamics toepidemiology ofroot-invadin g fungi. Annual Review ofPhytopathology 20:303-327. Huisman, O.C., 1988. Seasonal colonization of roots of field-grown cotton by Verticilliumdahliae andV. tricorpus.Phytopathology 78:708-716. Huisman, O.C., and J.S.Gerik , 1989.Dynamic s of colonization ofplan t rootsb y Verticilliumdahliae and other fungi. Pp. 1-17. In:Tjamos , E.C. and C.H.Beckma n (eds.), Vascularwilt diseases of plants. Springer Verlag, Berlin. Hyakumachi, M., and J.L. Lockwood, 1989.Relatio n of carbon loss from sclerotia of Sclerotium rolfsii during incubation in soil to decreased germinability and pathogenic aggressiveness. Phytopathology 79:1059-1063. Ioannou,N. , R.W. Schneider, R.G. Grogan, and J.M. Duniway, 1977a. Effect of water potential and temperature on growth, sporulation, andproductio n of microsclerotia by Verticillium dahliae. Phytopathology 67:637-644. Ioannou, N.,R.W . Schneider, andR.G . Grogan, 1977b.Effec t of flooding on the soil gas composition and the production of microsclerotia by Verticillium dahliae in the field. Phytopathology 67:651-656. Isaac, I., 1953.A further comparative study of pathogenic isolates of Verticillium:V. nubilum Pethybr. and V. tricorpus sp.nov . Transactionsof the British mycological Society 36:180-195. Jackson, C.W., and J.B.Heale , 1985.Relationshi p between DNA content and spore volume in sixteen isolates of Verticilliumlecanii and twone w diploids of V. dahliae (= V. dahliae var.longisporum Stark).Journal of GeneralMicrobiology 131:3229-3236. Jeger, M.J., G.A. Hide,P.H.J.F .va n den Boogert, A.J. Termorshuizen, and P.va n Baarlen, 1996. Pathology and control of soilborne fungal pathogens ofpotato .Potato Research 39:437-469. Jimenez-Diaz, R.M., and R.L.Millar , 1988.Sporulatio n on infected tissues,an dpresenc e of airborne Verticilliumalbo-atrum i n alfalfa fields inNe w York.Plant Pathology 37:64-70. Joaquim, T.R., and R.C.Rowe , 1991. Vegetative compatibility and virulence of strains of Verticillium dahliae from soil andpotat o plants.Phytopathology 81:552-558. Johnston, S.A., J. Lashomb, and G.C.Hamilton , 1994.Evaluatio n of the integration of soil fumigation and microbial antagonists for the control Verticillium wilt of eggplant, 1993.Biological and Cultural Tests9:28 . Jordan, V.W.L., B. Sneh, and B.P.Eddy , 1972.Influenc e of organic soil amendments on Verticillium dahliae and onth e microbial composition ofth e strawberry rhizosphere.Annals ofApplied Biology 70:139-148. Karapapa, V.K., B.W. Bainbridge, and J.B.Heale , 1997.Morphologica l and molecular characterization of Verticilliumlongisporum comb,nov. , pathogenic to oilseed rape.Mycological Research 101:1281-1294. Katan, J., A. Greenberger, A.Alon , and A. Grinstein, 1976.Sola r heating by polyethylene mulching for the control of diseases caused by soil-borne plant pathogens.Phytopathology 66:683-688. Katan, J., 1980. Solar pasteurization of soils for disease control: Statusan d prospects.Plant Disease 64:450-454.

99 Katan,J. , 1981. Solarheatin g (serialization)o f soil for control of soilbornepests .Annual Review of Phytopathology 19:211-236. Keinath, A.P., andD.R . Fravel, 1992.Inductio n of soil suppressiveness to verticillium wilt ofpotat o by successive croppings.American PotatoJournal 69:503-513. Keinath, A.P.,D.R . Fravel, and G.C.Papavizas , 1991. Potential of Gliocladium roseum for biocontrol of Verticilliumdahliae. Phytopathology 81:644-648. Kersten,H. , 1997. Formulation of afungicide , based on ascospores of Talaromycesflavus to control Verticillium dahliae. Book ofAbstracts ofthe 7thInternational VerticilliumSymposium, Athens, Greece,p .67 . Klisiewicz, J.M., 1975.Surviva l and dissemination of Verticilliumi n infected safflower seed. Phytopathology 65:696-698. Kloepper, J.W., S.Tuzun , G.W. Zehnder, and G. Wei, 1997.Multipl e disease protection by rhizobacteria that induce systemic resistance-historical precedence.Phytopathology 136-137. Koch, E., 1999.Evaluatio n of commercial products for microbial control of soil-borne plant diseases. CropProtection 18:119-125. Koch, E., and A.J. Slusarenko, 1990.Funga l pathogens ofArabidopsis thaliana (L.) Heyhn.Botanica Helvetica 100:257-269. Koike, S.T., J.H. Nelson, and D.K. Perry, 1991. Verticillium wilt ofprote a (Leucospermum cordifolium) caused by Verticilliumdahliae. Plant Disease 75:1074. Koike, S.T., and K.V. Subbarao, 1995.Verticilliu m wilt of cauliflower: ane w disease in California. Phytoparasitica 23:52. Koike, S.T., K.V. Subbarao, R.M. Davis,T.R . Gordon, and J.C.Hubbard , 1994.Verticilliu m wilt of cauliflower in California. Plant Disease 78:1116-1121. Koike, ST., C.L. Xiao,J.C .Hubard , K.F. Schulbach, and K.V. Subbarao, 1997.Effect s of broccoli residue onth e cauliflower-Verticillium dahliae host.Book ofAbstracts ofthe 7th International Verticillium Symposium, Athens, Greece,p . 80. Korolev, N., and T.Katan , 1999.Vegetativ e compatibility grouping in Verticilliumnigrescens andV. tricorpus.Mycological Research 103:65-76. Lacy, M.L., and C.E. Horner, 1966.Behaviou r of Verticillium dahliae in the rhizosphere and on roots of plants susceptible,resistant , and immune towilt .Phytopathology 56:427-430. Latorre, B.A., and P.T. Allende, 1983.Occurrenc e and incidence of Verticillium wilt in Chilean avocado groves.Plant Disease 67:445-447. Lazarovits, G., M.A. Hawke,Th.H.A . Olthof, and J. Coutu-Sundy, 1991. Influence of temperature on survival ofPratylenchus penetrans and ofmicroscleroti a of Verticilliumdahliae in soil. CanadianJournal ofPlant Pathology 13:106-111. Leben, S.D., J.A. Wadi,an d G.D.Easton , 1987.Effect s ofPseudomonas fluorescens onpotat o plant growth and control of Verticillium dahliae.Phytopathology 77:1592-1595. Lemanceau, P., and C. Alabouvette, 1991. Biological control of fusarium diseases by fluorescent Pseudomonas andnon-pathogeni c Fusarium. CropProtection 10:279-286. Lemanceau, P.,P.A.H.M . Bakker, W.J. deKogel , C.Alabouvette , and B. Schippers, 1992.Effec t of pseudobactin 358productio n byPseudomonas putida WCS358 on suppression of fusarium wilt of carnationsb y nonpathogenic Fusarium oxysporumFo47 .Applied and Environmental Microbiology 58:2978-2982. Lewis, J.A., and G.C. Papavizas, 1985.Characteristic s of alginatepellet s formulated withTrichoderma and Gliocladium and their effect on theproliferatio n of the fungi in soil.Plant Pathology 34:571- 577. Lockwood, J.L., 1977.Fungistasi s in soils.Biological Reviews52:1-43 . Luisi,N. ,F .Ciccarese , G. Sicoli,M .Amenduni ,an d G. Barbera, 1994.Outbreak s of verticillium wilto n almond and pathogenic variations among isolates of V. dahliae.Acta Horticulturae 373:287-292. Luisi,N. , and G. Sicoli, 1993.Sever e dieback of almond trees in Italy caused by Verticilliumdahliae Kleb.Informatore Fitopatologico 43:45-48.

100 Lynch, J.M., and J.M. Whipps, 1990.Substrat e flow in therhizosphere .Plant andSoil 129:1-10. MacGuidwin, A.E., and D.I. Rouse, 1990a. Effect ofMeloidogyne hapla, alone or in combination with subthreshold populations of Verticilliumdahliae, on disease symptomatology and yield ofpotato . Phytopathology 80:482-486. MacGuidwin, A.E.,an d D.I. Rouse, 1990b.Rol e ofPratylenchus penetrans inpotat o early dying disease of Russet Burbank potato.Phytopathology 80:1077-1082. Madi, L.,T . Katan, and Y.Henis , 1992.Inheritanc e of antagonistic properties and lytic enzyme activities in sexual crosses of Talaromycesflavus. Annals ofApplied Biology 121:565-576. Madi,L. ,T . Katan, J. Katan, and Y.Henis , 1997.Biologica l control ofSclerotium rolfsii and Verticillium dahliae by Talaromycesflavus ismediate d by different mechanisms.Phytopathology 87:1054- 1060. Mai, W.F., and G.S. Abawi, 1987.Interaction s amongroot-kno t nematodes and fusarium wilt fungi on host plants.Annual Review ofPhytopathology 25:317-338. Malik, N.K., and J.M. Milton, 1980. Survival of Verticillium inmonocotyledonou splants . Transactions of theBritish mycologicalSociety 75:496-498. Mansoori, B.,J.M . Milton, and C.J. Smith, 1995.Isolatio n and partial purification of aphytotoxi n related topathogeni c Verticilliumspecies .Journal ofPhytopathology 143:33-36. Marois, J.J., D.R. Fravel, and G.C.Papavizas , 1984.Abilit y of Talaromycesflavus to occupy the rhizosphere and its interaction with Verticilliumdahliae. SoilBiology andBiochemistry 16:387- 390. Marois,J.J. , S.A Johnston, M.T. Dunn, and G.C. Papavizas, 1982.Biologica l control of verticillium wilt of eggplant in the field. Plant Disease 66:1166-1168. Mathre,D.E. , 1986.Occurrenc e of Verticillium dahliae onbarley .Plant Disease 70:981. Mathre,D.E. , 1989.Pathogenicit y of an isolate of Verticilliumdahliae from barley. Plant Disease 73:164-167. McKeen, CD., and H.J. Thorpe, 1981. Verticillium wilt ofpotat o in southwestern Ontario and survival of Verticilliumalbo-atrum an d V. dahliae in field soil. CanadianJournal ofPlant Pathology 3:40- 46. McLaren, D.L., H.C. Huang, and S.R. Rimmer, 1986.Hyperparasitis m ofSclerotinia sclerotiorum by Talaromycesflavus. CanadianJournal ofPlant Pathology 8:43-48. Melero-Vara, J.M., M.A. Bianco-Lopez, J. Bejarano-Alcazar, and R.M. Jimenez-Diaz, 1995.Contro l of verticillium wilt ofcotto n by means of soil solarization and tolerant cultivars in southern Spain. Plant Pathology 44:250-260. Menzies, J.D., and G.E. Griebel, 1967. Survival and saprophytic growth of Verticilliumdahliae in uncropped soil.Phytopathology 57:703-709. Miller, J.F., and T.J. Gulya, 1995.Registratio n of germplasm. CropScience 35:286. Mol, L., 1995a. The influence ofplan t roots on the germination of microsclerotia of Verticilliumdahliae inth e soil.Phytoparasitica 23:54. Mol, L., 1995b. Effect of plant roots on the germination of microsclerotia of Verticilliumdahliae. II. Quantitative analyses of the luring effects of crops.European Journal ofPlant Pathology 101:679-685. Mol, L., 1995c.Formatio n of microsclerotia of Verticillium dahliae on various crops. Netherlands Journal ofAgricultural Science 43:205-215. Mol, L., 1995d. Agronomic studies on thepopulatio n dynamics of Verticilliumdahliae. Ph.D. Thesis Wageningen Agricultural University, 159 pp. Mol, L., K. Scholte, and J. Vos, 1995.Effect s of crop rotation and removal of crop debris on the soil population of two isolates of Verticilliumdahliae. Plant Pathology 44:1070-1074. Mol, L., J.M. van Halteren, K. Scholte,an d P.C. Struik, 1996a. Effects of crop species, crop cultivars and isolates of Verticilliumdahliae on thepopulatio n of microsclerotia in the soil,an d consequences for crop yield. Plant Pathology 45:205-214.

101 Mol,L. ,O.C .Huisman , K. Scholte,an d P.C. Struik, 1996b.Theoretica l approach to the dynamics of the inoculum density of Verticillium dahliae in the soil: first test of a simple model.Plant Pathology 45:192-204. Mol,L. , and H.W. van Riesen, 1995. Effect ofplan t roots on the germination of microsclerotia of Verticillium dahliae. I.Us e of root observation boxes to assess differences among crops. EuropeanJournal ofPlant Pathology 101:673-678. Mol, L.,an d K. Scholte, 1995a. Formation ofmicroscleroti a of Verticilliumdahliae Kleb. on various plant parts of two potato cultivars.Potato Research 38:143-150. Mol, L.,an d K. Scholte, 1995b.Effec t of haulm treatments on the formation ofmicroscleroti a of Verticilliumdahliae Kleb.o n potato.Potato Research 38:151-157. Mol, L.,K . Scholte, and J. Vos, 1995.Effect s of croprotatio n andremova l of crop debris on the soil population of two isolates of Verticilliumdahliae. Plant Pathology 44:1070-1074. Nadakavukaren, M.J., and C.E. Horner, 1959.A n alcohol agar medium selective for determining Verticillium microsclerotia in soil.Phytopathology 49:527-528. Nagtzaam, M.P.N., 1998.Biologica l control of Verticillium dahliae by Talaromycesflavus. PhD Thesis. Wageningen Agricultural University, Wageningen, the Netherlands. Nagtzaam, M.P.N., and G.J. Bollen, 1997.Colonizatio n ofroot s of eggplant andpotat o by Talaromyces flavus from coated seed. SoilBiology andBiochemistry 29:1499-1507. Nagtzaam, M.P.M., G.J. Bollen, andA.J .Termorshuizen , 1998.Efficac y of Talaromycesflavus alone or in combination with other antagonists in controlling Verticilliumdahliae in growth chamber experiments.Journal ofPhytopathology 146:165-173. Nagtzaam, M.P.M., A.J. Termorshuizen, and G.J. Bollen, 1997.Th erelationshi p between soil inoculum density andplan t infection asa basis for aquantitativ e bioassay of Verticillium dahliae. European Journal ofPlant Pathology 103:597-605. Nicot, P.C, and D.I. Rouse, 1987.Relationshi p between soil inoculum density of Verticilliumdahliae and systemic colonization ofpotat o stems in commercial fields over time. Phytopathology 77:1346-1355. Okoli, C.A.N., J.H. Carder, andD.J . Barbara, 1994.Restrictio n fragment length polymorphisms (RFLPs) and therelationship s of some host-adapted isolates of Verticilliumdahliae. Plant Pathology 43:33-40. Olsson, S., and B.Nordbring-Hertz , 1985.Microscleroti a germination of Verticilliumdahliae as affected byrap e rhizosphere.FEMS Microbial Ecology 31:293-299. Ordentlich, A., A.Nachmias , and I. Chet, 1990.Integrate d control of Verticilliumdahliae inpotat o by Trichodermaharzianum and captan. CropProtection 9:363-366. Orenstein, J., A.Nachmias , and H.Lips , 1989.Inhibitio n of tomato root growth in culture by a Verticillium dahliae phytotoxin. Phytoparasitica 17:269-278. Oyarzun,P.J. , G. Dijst, F.C. Zoon, and P.W.T. Maas, 1997.Compariso n of soil receptivity to Thielaviopsisbasicola, Aphanomyces euteiches, andFusarium solani f.sp.pisi causing root rot in pea.Phytopathology 87:534-541 . Oyarzun, P.J., M. Gerlagh, and J.C.Zadoks , 1998.Factor s associated with soil receptivity to some fungal rootro tpathogen s oipeas. Applied SoilEcology 10: 151-169. Palloix, A., E.Pochard , T. Phaly, and A.M. Daubeze, 1990.Recurren t selection for resistance to Verticilliumdahliae in pepper. Euphytica 47:79-89. Paplomatas, E.J., D.M. Bassett, J.C. Broome, and J.E. DeVay, 1992.Incidenc e of verticillium wilt and yield losses of cotton cultivar (Gossypium hirsutum) based on soil inoculum density of Verticilliumdahliae. Phytopathology 82:1417-1420. Paplomatas, E.J., S.Tzalavaras , and J.E. Davis, 1997. Use of Verticilliumtricorpus as abiocontro l of Rhizoctonia solani oncotto n seedlings.Book ofAbstracts ofthe 7thInternational Verticillium Symposium, Athens,Greece ,p .66 .

102 Park, C.S.,T.C . Paulitz, and R. Baker, 1988.Biocontro l of fusarium wilt of cucumber resulting from interactions between Pseudomonasputida andnonpathogeni c isolates of Fusarium oxysporum. Phytopathology 78:190-194. Pataky, J.K., and M.K. Beute, 1983.Effect s of inoculum burial, temperature, and soil moisture on survival of Cylindrocladiumcrotalariae microsclerotia inNort h Carolina. Plant Disease 67:1379-1382. Pegg, G.F., 1974.Verticilliu m diseases.Review ofPlant Pathology 53:157-182. Pierson, C.F., S.S. Gothoskar, J.C. Walker, and M.A. Stahmann, 1955.Histologica l studies on the role of pectic enzymes inth e development of fusarium wilt symptoms in tomato. Phytopathology 45:524-527. Pieterse, C.M.J., S.C.M.va n Wees, J.A. van Pelt, A.Trijssenaar , Y.A.M. van 't Westende, E.M. Bolink, and L.C. van Loon, 1996. Systemic resistance inArabidopsis thaliana induced by biocontrol bacteria. Mededelingen van deFaculteit Landbouwwetenschappen Rijkuniversiteit, Gent 61(2A):209-220. Piatt, H.W., J. Robb,R . Nazar, and X. Hu, 1995.Verticilliu m wilt ofpotatoes : causal agents and pathogen detection. Phytoparasitica 23:47. Podile, A.R., G.S.Prasad , and H.C. Dube, 1985.Bacillus subtilis as antagonist tovascula r wiltpathogens . CurrentScience 54:864-865. Polak, A., 1989.Melani n as a virulence factor in pathogenic fungi. Mycoses 33:215-224. Polizzi, G., 1996.Wil t ofLagunaria patersonii caused by Verticilliumdahliae. Informatore Fitopatologico 46:46-49. Powelson, M.L., and R.C. Rowe, 1993.Biolog y andmanagemen t of early dying ofpotatoes . Annual Review ofPhytopathology 31:111-126 . Pullman, G.S., J.E. DeVay, and R.H. Garber, 1981.Soi l solarization and thermal death: a logarithmic relationship between time andtemperatur e for four soilborne plant pathogens. Phytopathology 71:959-965. Pullman, G.S.,an d J.E. DeVay, 1982.Epidemiolog y of verticillium wilt of cotton: arelationshi p between inoculum density and disease progression. Phytopathology 72:549-554. Raaijmakers, J.M., D.M. Weller, and L.S.Thomashow , 1997.Frequenc y of antibiotic-producing Pseudomonas spp. innatura l environments.Applied andEnvironmental Microbiology 63:881- 887. Raaijmakers, J.M., and D.M. Weller, 1998.Natura l plant protection by 2,4-diacetylphloroglucinol- producing Pseudomonas spp. intake-al l decline soils.Molecular Plant-Microbe Interactions 11:144-152. Raupach, G.S., and J.W. Kloepper, 1998.Mixtur e of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens.Phytopathology 88:1158-1164. Resende, M.L.V., J. Flood, and R.M. Cooper, 1994.Hos t specialization of Verticilliumdahliae, with emphasis on isolates from cocoa (Theobromacacao). Plant Pathology 43:104-111. Richardson, M.J., 1990. An annotated list ofseed-borne diseases, 4th ed.Th e International Seed Testing Association, Zurich, Switzerland. Rijkers, A.J.M., J.A. Hiemstra, and G.J. Bollen, 1992.Formatio n ofmicroscleroti a of Verticillium dahliae inpetiole s of infected ashtrees .Netherlands Journal ofPlant Pathology 98:261-264 . Rowe, R.C., J.R. Davis,M.L . Powelson, and D.I. Rouse, 1987.Potat o early dying: causal agents and management strategies.Plant Disease 71:482-489. Rowe, R.C, D.A. Johnson, W.R. Beery, and M.A. Omer, 1997.Vegetativ e compatibility analysis of strains of Verticilliumdahliae from potat o seed tubers andplant s from the western and eastern United States.Book ofAbstracts ofthe 7thInternational VerticilliumSymposium, Athens, Greece,p .23 . Sackston, W.E., and J.W. Martens, 1959.Disseminatio n of Verticilliumalbo-atrum on seed of sunflower {Helianthus annuus). CanadianJournal ofBotany 37:759-768.

103 Safiyazov, J.S.,R.N . Mannanov, and R.K. Sattarova, 1995.Th e use ofbacteria l antagonists for control of cotton diseases.Field CropsResearch 43:51-54. Sambrook, J., E.F.Fritsch , and T. Maniatis, 1989. Molecular cloning,a laboratory manual, 2nded. Book 3.Col d Spring Harbor Laboratory Press,Ne w York. Schnathorst, W.C., 1981. Life cycle and epidemiology of Verticillium.Pp . 81-111.In: M.E. Mace, A.A. Bell,an d C.H. Beckman (Eds.),Fungal wiltdiseases ofplants. Academic Press,Ne w York. Schreiber, L.R., and R.J. Green, 1963.Effec t of root exudates on germination of conidia and microsclerotia of Verticillium albo-atruminhibite d by the soil fungistatic principle. Phytopathology 53:260-264. Shi, G.Y., G.L. Jian, W.J. Sun,an d J. Feng, 1998.Discussio n of theresearc h status and direction on cotton verticillium wilt in China.Acta Phytophylacica Sinica 25:103-107. Sijmons, P.C.,F.M.W . Grundler, N.vo n Mende,P.R . Burrows, and U. Wyss, 1991.Arabidopsis thaliana asa ne w model host for plant-parasitic nematodes. ThePlant Journal 1:245-254. Slattery, R.J., 1981. Inoculum potential of Verticillium-infestedpotat o cultivars.American Potato Journal 58:135-142. Smith,V.L. , and R.C.Rowe , 1984.Characteristi c and distribution ofpropagule s of Verticilliumdahliae in Ohio potato field soilsan d assessment oftw o assay methods.Phytopathology 74:553-556. Sosnova, V., andZ . Polak, 1975.Susceptibilit y ofArabidopsis thaliana to infection with some plant viruses.Biologica Planta 17:156-158. Stapleton, J.J.,E.J . Paplomatas, R.J. Wakeman, and J.E. DeVay, 1993.Establishmen t of apricot and almond trees using soil mulching with transparent (solarization) and blackpolyethylen e film: effects on verticillium wilt and tree health.Plant Pathology 42:333-338. Stark,C , 1961. Das Auftreten der Kert(Cj7/!«m-Tracheomykosen inHamburger Gartenbaukulturen. Gartenbauwissenschaft 26:493-528. Subbarao,K.V. , A.Chassot , T.R. Gordon, J.C. Hubbard, P.Bonello ,R . Mullin, D. Okamoto, R.M.Davis , and S.T. Koike, 1995.Geneti c relationships and crosspathogenicitie s of Verticilliumdahliae isolates from cauliflower and other crops.Phytopathology 85:1105-1112. Subbarao,K.V. , J.C.Hubbard , and S.T. Koike, 1999.Evaluatio n ofbroccoli residue incorporation into field soil for verticillium wilt control in cauliflower. Plant Disease 83:124-129. Susnoschi, M., J. Krikun, and Z.Zuta , 1974.Variet y trial ofpotatoe s resistant to verticillium wilt. American PotatoJournal 52:227-231. Tabrett, A.M., J.H. Carder, S.Coomber , and D.J. Barbara, 1995.Arabidopsis thaliana as an experimental host ofhaploi d isolates of Verticillium dahliae.Book ofAbstracts of the 6th International Verticillium Symposium, Dead Sea, Israel.Phytoparasitica 23:49. Taylor, J.B., 1969.Fluctuatio n innatura l soil populations of Verticilliumtricorpus. CanadianJournal of Botany M:1}>1-1A§. Termorshuizen, A.J., J.R. Davis,G . Gort, D.C. Harris,O.C .Huisman , G. Lazarovits, T. Locke, J.M. Melero Vara, L.Mol , E.J. Paplomatas, H.W. Piatt,M . Powelson, D.I. Rouse,R.C .Rowe ,an d L. Tsror, 1998.Interlaborator y comparison ofmethod s to quantify microsclerotia of Verticillium dahliae in soil.Applied andEnvironmental Microbiology 64:3846-3853. Thanassoulopoulos, C.C., 1993.Sprea d ofverticilliu m wilt by nursery plants in olive groves in the Halkidiki areas (Greece).Bulletin OEPP23:517-520. Tjamos, E.C., and D.R. Fravel, 1995.Detrimenta l effects of sublethal heating and Talaromycesflavus on microsclerotia of Verticillium dahliae. Phytopathology 85:388-392. Toyota, K., and M. Kimura, 1993.Colonisatio n of chlamydospores ofFusarium oxysporum f.sp. raphani by soil bacteria and their effects on germination. SoilBiology and Biochemistry 25:193-197. Tsror, L.,O .Erlich , S.Amitai , and M. Hazanovsky, 1998.Verticilliu m wilt ofpaprik a caused by ahighl y virulent isolate of Verticillium dahliae. Plant Disease 82:437-439. Tsror, L.,L . Livescu, and A.Nachmias , 1990.Effec t of light duration and growth season on verticillium wilt in potato.Phytoparasitica 18:331-339.

104 Tsuji, J., and S.C. Somerville, 1992.Firs trepor t ofnatura l infection ofArabidopsis thaliana by Xanthomonas campestrispv . campestris.Plant Disease 76:539. Van der Koppel, M.M., and A. Schots, 1995.Monoclona l antibody-based double-antibody sandwich- ELISA for detection of Verticillium spp. in ornamentals.Phytopathology 85:608-612. Van der Spek, J., 1972.Interna l carriage of Verticillium dahliae by seeds and its consequences. Mededelingen Faculteit LandbouwwetenschappenRijksuniversiteit Gent, 37:567-573. Van Loon, L.C., 1997.Induce d resistance inplant s and therol e ofpathogenesis-relate d proteins. European Journal ofPlant Pathology 103:753-765. Whalen, M.C.,R.W . Innes, A.F.Bent , and B.J. Staskawicz, 1991. Identification ofPseudomonas syringae pathogens ofArabidopsis and abacteria l locus determining avirulence on both Arabidopsis and soybean. ThePlant Cell 3:49-59. Wheeler, T.A., and R. Rowe, 1995.Influenc e of soil characteristics and assay techniques on quantification of Verticilliumdahliae in Ohio soils.Plant Disease 79:29-34 . Wilhelm, S., 1951. Is Verticilliumalbo-atrum a soil invader or a soil inhabitant?Phytopathology 41: 944- 945. Wilhelm, S., 1955.Longevit y ofth everticilliu m wilt fungus inth e laboratory and field. Phytopathology 45:180-181. Williams, R.H. and J.M. Whipps, 1995.Growt h and transmission of Coniothyrium minitans in soil. IOBC/WPRSBulletin 18:39-43. Winston, P.W., and D.H. Bates, 1960. Saturated solutions for the control ofhumidit y in biological research. Ecology 41:232-237. Xiao, C.L., K.V. Subbarao, K.F. Schulbach, and S.T. Koike, 1998.Effect s of crop rotation and irrigation on Verticilliumdahliae microsclerotia in soil and wilt in cauliflower. Phytopathology 88:1046- 1055. Zeise, K., 1997.Th e potential of Talaromycesflavus (Klocker) Stolk & Samson in controlling Verticillium dahliae. Book ofAbstracts of the 7thInternational VerticilliumSymposium, Athens. Greece,p . 61. Zilberstein, Y., I. Chet, and Y. Henis, 1983.Influenc e ofmicroscleroti a source of Verticilliumdahliae o n inoculum quality. Transactionsof theBritish mycological Society 81:613-617.

105 SUMMARY

The soilborne pathogen Verticillium dahliaeKleb . causes wilt in awid erang eo f hosts.I t affects manycrops ,th emos t economically significant being cotton, potato, andolive .I n addition many othercrop s can be affected seriously, including vegetables,fruits , fruit trees,fibre , oil-seed crops, ornamentals and shade trees.Generall y monocotyledonous plants are considered non-hosts with thenotabl e exception of barley.Th epathoge n occurs world-wide in thetemperat e and subtropical zones of all continents,bu t only sporadically in the tropics.I t forms highly persistent survival structures, themicrosclerotia , which allow extended survival in the absenceo f hosts. Given the widehos t range ofV. dahliae, croprotatio n provides only limited protection against thedisease , an alternation with monocotyledonous crops such ascereal s yieldingth ebes tresults . Control of verticillium wilt has largelybee n based on chemical soil disinfestation but,becaus eo f nonselective modes of action andenvironmenta l impact, such use isincreasingl y restrictedb y national governments. However, noeconomi c alternatives arecurrentl y available except for soil solarization in theMediterranea n areas.Microscleroti a are generally regarded asth etarge t structures tob econtrolle d through strategies ofbiologica l orcultura l control,bu t their dynamics andecolog y within the life cycle ofV. dahliaehav eonl y rarelybee n studied in detail.Th e factors affecting formation, survival,an ddeat h of microsclerotia ofV. dahliaear eth etopic so f this thesis. In afirs t partfundamenta l ecological studies weredirecte d on theformatio n and survival of microsclerotia. Detailed quantitative knowledge about factors influencing these processes may leadt one w prospects tocontrol .I n asecon dpar t animprovemen t of thecontro l of verticillium wilt byus e of biocontrol agents wasattempted . Wehypothesize d that the above-ground application of thebiocontro l agent Talaromycesflavus onto microsclerotia-containingdebri s would reduceth e inoculum density ofV. dahliae. In addition, theeffect s of addinga diacetylphloroglucinol-producing strain of Pseudomonasfluorescens o n verticillium wilt were studied.Thi s strain hadbee n found tob eeffectiv e in suppressing take-all in wheat,cause db y Gaeumannomyces graminis. Arabidopsis thalianawa sfoun d tob ea suitabl ebioassa y plant todetec t low soil-borne inoculum levels ofV. dahliae(Chapte r 2). Although crucifers arepredominantl y infected in the field byV. longisporum,A. thalianawa sreadil y infected underth etes t conditions by four isolateso fV. dahliae. Disease symptoms consisted of early senescence,bu t no typical verticillium wilt symptoms were observed. Increasing amounts of infection of both root and shoot were noted at densities of 1,3,10 , 30,an d 100microscleroti a g"1soil . Alog-linea r relation

107 between inoculum density and the area-under-the-disease progress curve wasestablished . Even at the lowest inoculum density tested of 1 microsclerotium g"1soil , 5%o f theroo t length became infected withV. dahliae,an d 30%o f the stem.Th e most sensitive measure was the amounto f new microsclerotia formed in the shoot. Thehighe r theinoculu m density the greater the density of microsclerotiai n the shoot g"1shoo t dryweight , indicating that multiple root infections lead to a moreintens e colonization ofV. dahliae. Disease progress wasfastes t at 20°C,an d slower at 10, 15,an d25°C. Thi sbioassa y appearsparticularl y suited for assessing whether afiel d soil is infested withV. dahliae. Theformatio n of microsclerotia of six isolates ofV. dahliaewa s studied at different temperatures both invitro an d onA. thaliana(Chapte r 3).Seedling s ofA . thalianawer e root- dipped in aconidia l suspension, planted, andeithe r placed at 5,10,15, or 25°C,o r left at20° C until the onset of senescence, after which part of the plants wastransferre d to 5, 10,15, or25°C . Generally, theoptima l temperature for production of microsclerotia was 20°C.Tw o isolates produced about ten times more microsclerotia than each of the other four isolates. In amultipl e 2 regression analysis for theseisolate s high R adj.-values of 0.77 and0.6 6 wereobtaine d in multiple regressions, with temperature andit s square ashighl y significant (P< 0.001) independent 2 variables.R adj.-values for the otherisolate s varied between only0.2 8 and 0.39.Th e acto f movingplant st odifferen t temperatures atth e onset of senescence ledt o microsclerotial densities that were intermediate toplant s that had grown atconstan t temperatures. This suggests that vascularcolonizatio n rate and rate of formation of microsclerotia areequall y affected by temperature.Th e senescence rate of plants appeared unimportant except for plants grown at 25°C, which showed highest amounts of microsclerotia peruni t of plant weight in themos t rapidlysenescin gplants .I t isconclude d that temperature and isolate areprimar y factors involved in the formation of microsclerotia in hosttissue . In Chapter 4,th e influence of various conditions on the survival of microsclerotia of V. dahliaewa s studied usingfield-collecte d potatostem scontainin g dense masses of naturally- formed microsclerotia. The survival of microsclerotia for up totw o years in potato stemsno t incorporated in soil was studied under various conditions of temperature and relative humidity. Theeffect s of temperature,pF ,includin g weekly variations in temperature and/or pF, and various modes of incorporating potato stem tissue on the survival of microsclerotia for up to one yeari n a sandyunsterilize d soil was also studied for microsclerotia from different sources.N o significant isolate effect wasfound . Therecover y of microsclerotia one day after the starto f experiments wasremarkabl y low, varying between 5.5 and 31% of the number added toth e soil. Recovery continued atthi s levelo reve n lower in allexperiment s for 1 month incubation and, with several treatments, also after 3an d 6months . After 3t o 12months , this decline in recovery

108 wasfrequentl y followed by an upt o 5time s increase in recovery.Thes e recoveries didno t exceed the number of microsclerotia initially incorporated into the soil. Changes inrecover yma y be due to variation in theleve l of soil fungistasis which is affected byth erat e of nutrient leakage from microsclerotia. Chapter 5deal s with the effects of application of the antagonist Talaromycesflavus ont o potato stemsinfecte d withV. dahliaeo nth esurviva l andinoculu m potential of pathogen.Th e antagonistT. flavus was applied ontopotat o stems infected with Verticillium dahliaean d its effects on survival and inoculum potential of microsclerotia of theplan t pathogen were evaluated.Thre e weeks after application of 3g alginate prill formulation ofT. flavus on 1501 - cm-longpiece s of potato stems,th e antagonist was growing prominently over the potato stemsa t 25°Cbu tno t at 15°C.Germinabilit yo f microsclerotia wasreduce d onlyi nth ethre e experiments carried out at25° C and not intw oexperiment s at 15°C.Afte r 21day so f above-ground incubation, 15potat o stems were incorporated into asand/pottin g soil mixture.Population s of T. flavus andV. dahliaewer e determined 4 and 10month s after incubation. Thepopulatio n levelo f T.flavus was significantly (P< 0.05) higher in thetreatment s where after its application the potato stems werelef t 21day s above-ground compared todirec t incorporation of thestem s+ T. flavus into the soil.Thi s was attributed to therelativel y low levels of competition occurring above-ground. Thepopulatio n level ofT. flavus persisted ata tleas t 240colony-formin g unitsg" 1 soil, and showed a 10t o 12-timesincreas e after 10month s compared to4 months after incubation at 25°C.Populatio n levels ofV. dahliaewer e significantly decreased byT. flavus at both incubation temperatures. LeavingT. flavus-treaxed potat o stems above-ground for 21day s didno t affect the survival of microsclerotia compared to direct incorporation of thetreate d potato stemsint oth e soil.A significan t inverserelatio n between population sizeo fT. flavus andtha to f V. dahliaewa sfoun d only for incubation at25°C .T o determine the inoculum potential of V. dahliae, 4-week-old seedlings ofArabidopsis thalianawer e planted either directly after incorporation of thepotat o stems in soil at 20°C;o r soils werelef t another 21day s at 15o r25° C before thebioassa y with A. thalianawa scarrie d out at 20°C.Temperatur e didno t affect the development of senescence ofA .thaliana, whic h wasretarde d significantly for allT. flavus treatments.Thi s could be duet orelativel y high levels of T.flavus occurring in allexperiments .I t isconclude d that application of T.flavus on fresh organic debris containing microsclerotia reduces inoculum densities ofV. dahliae. Theeffec t of population density ofT. flavus onth erat e of development of wilt symptoms caused byV. dahliaewarrant s more research. In addition toT. flavus, effects of a2,4-diacetylphloroglucinol-producin gstrai no f Pseudomonasfluorescens wereexamine d in Chapter 6.P. fluorescens strai n P60 inhibited mycelial growth of 20isolate s of V. dahliaein vitro b y atleas t 50%an dals o the formation of

109 microsclerotia was significantly reduced byP6 0fo r themajorit y of the isolates tested.I n bioassays,V. dahliaesignificantl y accelerated senescence ofA .thaliana an d eggplant. However, when plants were treated with P60,senescenc e progressed atth e samerat e asi n the treatment withoutV. dahliae.Althoug h treatment of plants with P60 didno t lead tomajo r reductions in the percentage of infected shoots ofA .thaliana, the amount of microsclerotia produced byV. dahliae on senesced shoots was significantly reduced (upt o almost 8-fold) in all four experiments.P. fluorescenscoul d not beisolate d from the interior of the host tissue,bu t it waspresen t inth e rhizosphere of bothA . thalianaan deggplan t upt o 12week s after inoculation atdensitie s ranging from 1.4 x 103- 8. 0 x 105cf u g"1roots .Combinatio n of P60 withT. flavus further improved control ofV. dahliae.Compare d toth e control treatment, the amount of microsclerotia formed wasreduce d upt oalmos t40-fol d bycombine d application of P60an dT. flavus, and control obtained byth ecombinatio n was significantly better than thereduction s obtained by applications of each agent separately. Three main issues areidentifie d in the general discussion (Chapter 7): (1)th e usefulness of applying bioassays to quantify the inoculum potential ofV. dahliae,(2 )factor s affecting the number of microsclerotia in soil,an d (3)biocontro l ofV. dahliae.Bioassay s essentially provide different information from plating techniques that onlyenumerat e the microsclerotia. The bioassay presented appears tob e highly sensitive and seems well-suited to detect low soil infestations that aredifficul t todetec tb y othermethods . Moreover, it is very suitable for usei n comparative,experimenta l studies.Factor s affecting thenumbe r of microsclerotia in soil canb e divided into those affecting the formation of new microsclerotia, and those affecting survival and recovery of thefungus . Indeterminin g thedensit y of microsclerotia in soil,recover y maypla ya n important, confounding, role.Suggestion s aremad e for further studies in this field, with special emphasis on the question how low recovery rates may affect the interpretation of processes in soil.Ther e are clear opportunities for developing methods for controlling verticillium wilt using antagonists.I t isrecommende d that different strains of both P.fluorescens andT. flavus against verticillium wilt are screened. Iti s supposed that thereduce d formation of new microsclerotia in shoot tissue induced bybot h antagonists isdu e to areduce d number of root infections of V. dahliae, ort o induced resistance.

110 SAMENVATTING

Verticilliumdahliae i see nbodemschimme l dieverwelkingsziekt e veroorzaakt bij talva n gewassen. Debelangrijkst e waardplanten zijn katoen, aardappel en olijf, maaree n groot aantal andere,economisc h belangrijke gewassen kunnen worden aangetast, waaronder aardbei,roos , esdoorn,e se nchrysant . Monocotyle gewassen, zoalsgranen , zijn geen waardplanten, hoewel gerst hieropee n uitzonderling is.V. dahliaekom t wereldwijd voor ingebiede n met een gematigd of subtropisch klimaat.D e schimmel vormtklein e (diameter ca.6 0 |im),meercellige , zwarte overlevingsstructuren die microsclerotien genoemdworden . Gezien de grote waardplantenreeks kan vruchtwisseling met granen slechts in geringemat ebijdrage n totbeheersin g van de verwelkingsziekte. Bestrijding van verticillium-verwelkingsziektei sto t nu toe gebaseerd geweest opchemisch egrondontsmetting , maar detoelatin g voor dezebestrijdingsmethod e wordt steedsmee ringeperkt , omdat grondontsmetting teweini g selectief is, eneffecte n kan hebben op dekwalitei t van het grond- en oppervlaktewater, alsmede deozonlaag . Opdi t moment zijn er weinig andere maatregelen terbeheersin g van de verwelkingsziekte beschikbaar. In landen met een mediterraan klimaat wordt solarisatie uitgevoerd. Hierbij wordt vochtige grond afgedekt met plastic,waarn a inbetrekkelij k kortetij d detemperatuurstijgin g doding vanV. dahliae teweegbrengt. Hoewel reductie van het aantal microsclerotien in debestrijdin g van verwelkingsziekte nagestreefd wordt,i s dedynamie ke n ecologie van deze structuren onvoldoende bekend. Daaromzij n defactore n died evorming , overleving, en sterfte van microsclerotien vanV. dahliaebei'nvloede n onderwerp van dit proefschrift. Het eerste doel van dit proefschrift wasfundamenteel-ecologisch e kennis over vorming en overleving van microsclerotien teverwerven . Kennis van kwantitatieve effecten van factoren diedez eprocesse n bei'nvloeden zoukunne n leiden totnieuw ebenaderinge n voord ebeheersin g van verticillium-verwelkingsziekte. Het tweede doel wasd ebiologisch e bestrijding van de ziekte met deantagoniste n Talaromycesflavus e nPseudomonas fluorescens. We verwachtten dat bovengrondse toepassing van debodemschimme l T.flavus opgewasreste n die microsclerotien bevatten zou leiden tot een verbeterde bestrijding van deziekte . Verder werden deeffecte n van phloroglucinol-producerende stammen van P.fluorescens op verticillium-verwelkingsziekte onderzocht. Inhoofdstu k 2wer d demogelijkhei d van gebruik vanArabidopsis thalianaal s toetsplant terbepalin g van dedichthei d van microsclerotien vanV. dahliaei n de grond onderzocht. Hoewel in het veld cruciferen, waartoe A. thaliana behoort, hoofdzakelijk doorV. longisporum worden gei'nfecteerd, bleekd eplan t ookt ekunne n worden gei'nfecteerd doorV. dahliae.He t

ill ziektesymptoom bestond uit vervroegde verwelking,maa rvoo r verticillium-verwelkingsziekte typische symptomen werden niet waargenomen. Heteffec t van verschillende dichtheden van microsclerotien vanV. dahliaeo pd e infectie van wortel en Stengel van A. thalianawer d onderzocht. Dehoeveelhei d infectie van wortel en Stengel nam toebi j toenemendedichthei d van microsclerotien en een log-lineairerelati e werd vastgesteld tussen inoculumdichtheid en oppervlak onder deziektevoortschrijdingscurve . Zelfs bij de laagste inoculumdichtheid van1 microsclerotiumpe rgra m grond werd 5%wortelinfecti e en 30%stengelinfecti e gevonden.D e meestgevoelig e parameterblee k dehoeveelhei d nieuwgevormde microsclerotien pergra m spruitweefsel te zijn. Deziekt e ontwikkelde zich het snelst bij 20°C,e n minder bij 10, 15 en 25°C.D ebiotoet s lijkt vooral nuttig tezij n bij devaststellin g van lage inoculumdichtheden van V. dahliaei n de grond. De vorming vanmicrosclerotie n van zesisolate n vanV. dahliaei nA. thalianawer d onderzochtbi j verschillende temperaturen. Inreincultuu r bleek demyceliumgroe i het snelstt e zijn bij 25°C,maa rd eproducti e vanmicrosclerotie n het grootst bij 20°C (twee isolaten) of 15- 20°C (een isolaat).Kiemplante n werden gedoopt in een conidiensuspensie vanV. dahliaee n bij 5,10,15,20, of 25°C geplaatst. Een deel van deplante n werd eerst bij 20°C geplaatst, enpa so p hetmomen t datd eproducti e van microsclerotien bijna begon geplaatst bij 5, 10, 15,o f 25°C.D e hoeveelheid nieuwgevormde microsclerotien bleek afhankelijk van isolaat en temperatuur. Inhe t algemeen wasd eoptimal e temperatuur voorproducti e vanmicrosclerotie n 20°C.Twe e isolaten produceerden ongeveer tien maal meer microsclerotien pereenhei d plantgewicht dan deander e isolaten. Voor dezetwe eisolate n kond e vorming van microsclerotien pereenhei d plantgewicht voorspeld worden met de temperatuur en het kwadraat van detemperatuur . De vorming van microsclerotien bij de andere isolaten kon echter niet worden voorspeld aan de hand van de temperatuur of andere parameters zoalsplantgewich t en effect vanV. dahliae.He t verplaatsen van planten op het moment dat deproducti e van microsclerotien bijna startte van 20°C naar5 , 10,15, of 25°C leiddeto t hoeveelheden microsclerotien pereenhei d plantgewicht dielage n tussen die van planten diecontin u bij 20°C opgegroeid waren en die welkecontin u bij deander e temperaturen opgegroeid waren.Di t suggereert dat temperatuur zowel een groot effect heeft op deontwikkelin g vanV. dahliaei n het vaatstelsel als opd evormin g van microsclerotien. De snelheid waarmeed e plantjes afrijpten bleek ongecorreleerd tezij n met deproducti e van microsclerotien, behalve bij deplante n die waren opgegroeid bij 25°C.Daa r werd een negatief verband gevonden, hetgeen aangeeft dat demeest emicrosclerotie n worden gevormdbi j planten die het snelst afrijpen. Inhoofdstu k 4 werdhe teffec t vantemperatuu r en bodemvochtgehalte opd e overleving van microsclerotien onderzocht. Hiertoe werden verschillende collecties van uit het veld

112 verzamelde,o p aardappelstengels gevormde,microsclerotie n in grond gebrachte n gedurende66n tot tweejaa r gei'ncubeerd onder verschillende omstandigheden. Hoewel een groot aantal extreme behandelingen werden uitgevoerd, waaronderbijvoorbeel d wekelijkse veranderingen in watergehalte en/of temperatuur, wase rgrot e overleving na een tot tweejaa r in praktisch alle behandelingen. Er werd geen effect gevonden van deverschillend e collecties van microsclerotien. Een dagnada t demicrosclerotie n ind egron d waren gebracht, konden slechts 5.5-31% van het totale aantal teruggevonden worden.Di t percentage bleekno g lager voor alle behandelingen een maandn abegi n van deexperimenten ,e n voor verscheidene behandelingen noglage r driee n zes maandenn abegi n van deexperimenten . Na dezeinitiel e daling nam het aantal microsclerotien echter toe,veela l tot niveaushoge r dan dehoeveelhei d die waargenomen werdee n dagn astar t vand eexperimenten , maarlage r dan deoorspronkelij k toegediende hoeveelheid. In dediscussi e werd geopperd dat dezeresultate n niet zozeer te verklaren zijn uit sterfte en groei vanV. dahliaei n degrond , maareerde r op basis van variaties in de sterkte van de bodemfungistase, die zou kunnen worden be'invloeddoo r demat e van exsudatieva n voedingsstoffen uit microsclerotien, waarbijjong e microsclerotien meer zouden exsuderen,e n dus gevoeliger zouden zijn voorbodemfungistase , dan oudere. Inhoofdstu k 5wer d getracht een consistenter biologische bestrijding te krijgen met de antagonist Talaromycesflavus doorme tmicrosclerotie n bezette stukjes aardappelstengels bovengronds te behandelen metee n formulering van deantagonist . Na drie weken incubatie bleek dekiemin g van microsclerotien significant tezij n gereduceerd bij 25°C,maa rnie t bij 15°C.Vervolgen s werden de wel of niet metT. flavus behandeld e aardappelstengels in degron d gebracht. Een ander deel werdme tT. flavus behandel d en onmiddellijk in degron d gebracht.D e populatiedichtheid vanT. flavus blee k viere ntie n maanden naincubati e significant hogert e zijn in debehandelin g waarbij de aardappelstengels eerst drieweke n bovengronds was gei'ncubeerd. Depopulatiedichthei d van T.flavus na mi n alle behandelingen sterk toebi j 25°C,maa r niet bij 15°C.Populatiedichthede n vanV. dahliaeware n significant lager in aanwezigheid van T.flavus, maare r wasgee n effect van het gedurende drie weken bovengronds laten incuberen van metd e antagonist behandelde aardappelstengels.Ee n biotoets werd uitgevoerd met A. thalianao pd e tweebehandelinge n (directe toevoeging aan de grond en incubatie gedurende drie weken van de aardappelstengels gevolgd door toevoeging aan degrond) ,waarbi j kiemplanten direct ind e grond werden geplant, of pas drie weken later.E r werd een duidelijk, significant effect vanT. flavus opd e ontwikkeling van verticillium-verwelkingsziekte waargenomen bij zowel 15al s 25°C, maar andere effecten (temperatuur, incubatie bovengronds) werden niet waargenomen.Di t zou kunnen wijzen opgei'nduceerd eresistenti e alsmechanism e van ziekte-onderdrukking doorT. flavus. Aangezien bovengrondse toepassing vanT. flavus leid tto tee n sterkere toename van de

113 biomassa van deantagonis t werd geconcludeerd dat een dergelijke werkwijze zou kunnen leiden totee n meerconsistent ebestrijdin g van de verticillium-verwelkingsziekte. In hoofdstuk 6wer d het effect van debacteri e Pseudomonasfluorescens opd e verticillium-verwelkingsziekte onderzocht. Inhe t bijzonder werd isolaat P60 onderzocht, diehe t antibioticum 2,4-diacetylphloroglucinol produceert. Dit isolaat werd verkregen uit een grond waaropcontin u tarwe werd geteeld, en waar spontane achteruitgang van detarwehalmdoder , Gaeumannomycesgraminis, i swaargenomen .Di t isolaat, alsmede twee andere, veroorzaakten op agarmedium een reductie in groei van minimaal 50%,alsmed e significante reductie ind e vormingva n microsclerotien voord emeest e van de 20onderzocht e isolaten vanV. dahliae. Het effect vanP. fluorescens P6 0 werd onderzocht inbiotoetse n metA. thalianae n aubergine op potgrond enee n uit het veld verzameldelemig ezandgrond . Behandeling van kiemplantendoo r dopen in een suspensie van P.fluorescens vertraagd e de veroudering van deplante n opgron d met 50microsclerotie n pergra m grond, zodat die gelijk was aan die van decontrol e zonder microsclerotien. Hoewel hetinfectiepercentag e in allebehandelinge n hoog was (100%i nd e controles en 75-100% in debehandelinge n met P.fluorescens), blee k de vorming van nieuwe microsclerotien ind esprui t van afgerijpte A. thaliana4.1-7. 5x tezij n gereduceerd. Debacteri e bleek zich tehandhave n in derhizosfeer , maarko n niet worden gei'soleerdui t plantenweefsel. Combinatie vanP. fluorescens me tT. flavus leidd e tot een geringe vermindering van deziekte , en totee n verdere vermindering van dehoeveelhei d nieuw-gevormde microsclerotien. Mogelijk beschermen de twee antagonisten verschillende delen van de wortel. In de algemene discussie (hoofdstuk 7) werd debiotoets , dedichthei d van microsclerotien in de grond,e n debiologisch e bestrijding van de verticillium-verwelkingsziekte besproken. Biotoetsen leveren informatie die anders isda n deinformati e die voortkomtui t bepalingen van dedichthei d van demicrosclerotie n in degron d door uitplaattechnieken. Met biotoetsen worden problemen metuitplaattechnieke n omzeild, maar deresultate n van biotoetsen zijn in het algemeen variabel en deinoculumpotentiaal , demaa t die bij biotoetsen wordt vastgesteld, is moeilijk teinterpreteren . De hier voorgestelde biotoets isechte r zeer gevoelige n kan goed dienst doen bij de vaststelling van geringe besmettingen van degron d met V. dahliae. Factoren die het aantal microsclerotien in degron dbei'nvloede n betreffen denieuw e vorminge n de overleving.Bi j debepalin g vanhe t aantal microsclerotien in de grond speelt demat eva n terugwinning uit degron d een belangrijke rol.Enkel e suggesties voor verder onderzoek werden gedaan, waarbij denadru k werd gelegd op devraa g of de lageterugwinningspercentage s relevant zijn voor biologische processen in degrond . Dit onderzoek opent veelbelovende vooruitzichten voorbiologisch e bestrijding vanV. dahliae.Aanbevole n wordt een verdere selectie temake n uit een groot aantal isolaten van P.fluorescens e nT. flavus.

114 RINGKASAN

Patogen tular-tanah Verticillium dahliaeKleb .menyebabka n penyakit layudenga nkisara n tanaman inang yang luas.V. dahliaemempengaruh i pertumbuhan banyak tanaman, danyan g nyata sangat penting secara ekonomiadala htanama n kapas,kentan g dan zaitun. Selain itu, pertumbuhan tanaman-tanaman lainnyatermasu k sayur, buah, serat danpenghasi lminyak ,sert a hiasda npepohona ndapa t secaraseriu sdipengaruh i olehjamu r ini.Pad aumumnya , tanaman berkeping tunggal tidak dianggap sebagai tanaman inangnya, tetapi suatuperkecualia n telah dilaporkan untuk tanaman "barley". Patogen tersebar luas di daerah beriklim sedang dan subtropika di semuabenua , tetapi hanyatersera k di daerahtropika . Patogen membentuk struktur untuk bertahan hidup yangtingg i persistensinya, yaitumikrosklerotium , yang mampubertaha n hidup didala m tanahdala mjangka wakt u lamatanp a adanya tanaman inang. Berdasarkan kisaran inangjamu r V. dahliaeyan g luas,mak apergilira n tanaman hanya mampu melindungi tanaman secaraterbata s terhadap penyakit yang ditimbulkannya, dengan satu pilihan terbaik padatanama n berkeping tunggal, seperti serealia. Pengendalian penyakit layu vertisilium secara luastela h didasarkanpad adisinfestas i tanah secarakimia .Aka n tetapi, dikarenakan cara kerjanya yangtida k khususpad aorganism e tertentu danpengaru h negatimya terhadap lingkungan, makapelaranga n penggunaannya secaranasiona l olehpemerinta h setempat makinmeningkat . Penggantian carapengendalia n yang ekonomis dimas a sekarangbelu m tersedia selain denganpemataharia n tanah didaera hMediterania . Mikroslerotium umumnya dianggap sebagai struktur sasaran yangharu sdikendalika n melalui beberapa strategi, seperti pengendalian secarahayat i dan carabercoco k tanam,tetap i dinamika dan ekologi tentang mikrosklerotium didala m daur hidup V. dahliaejaran g dikaji secararinci .Faktor-fakto r yang mempengaruhi pembentukan, carabertaha n hidup, dankematia n mikrosklerotium V. dahliae adalah menjadi pokok kajian di dalam tesisini . Padabagia n pertama, kajian secaraekolog i tentangpengetahua n dasar ditujukan terhadap pembentukan dan carabertaha n hidupmikrosklerotium . Pengetahuan kuantitatif tentang faktor- faktor yangmempengaruh i proses ini secararinc i kemungkinan ditujukan untuk menemukan prospek baru dalam pengendalian suatupatogen . Padabagia n kedua,peningkata n pengendalian layu vertisilium dengan menggunakanagensi apengendal i hayati dilakukan. Kami menghipotesiskan bahwapenerapa n agensiapengendal i hayati Talaromycesflavus d ipermukaa n tanah,terhada p sisa-sisa tanaman yang mengandungmikrosklerotium , akanmengurang i kepadatan inokulum V. dahliae.Selai n itu,jug a dikaji pengaruh penambahan strain bakteri Pseudomonasfluorescens penghasi l antibiotika 2,4-diacetylphloroglucinol terhadap penyakit layu vertisilium. Strain ini telah ditemukan secara efektif menekanpenyaki t "take-all"pad agandum , yang disebabkan olehjamu r Gaeumannomycesgraminis.

115 Arabidopsisthaliana diketahu i sesuai sebagaitanama n uji hayati untuk mendeteksi tingkat inokulum yang rendah dari tular-tanah Verticillium dahliae(Ba b 2).Walaupu n tumbuhan golongan krusifer ini di lapang telahdiketahu i nyata diinfeksi oleh V. longisporum, tetapi pada kondisi uji, A. thalianadapa t diinfeksi oleh empatjeni s isolat V. dahliae.Gejal a penyakit yang ditimbulkannya adalah termasuk penuaan awal, sedangkan gejala layuvertisiliu m yang khastida k nampak.Banyakny a infeksi padaaka r dan tanaman bagian atasyan g meningkat terjadi pada kepadatan 1,3,10, 30,da n 100mikrosklerotiu m pergra m tanah. Hubungan log-linier antara kepadatan inokulum dan daerah dibawa h lengkungkemajua n penyakit adalahnyata . Bahkan padakepadata n inoulum terendah yang diuji, yaitu 1 mikrosklerotium per gram tanah, 5%dar i panjang akar dan 30%dar ibatan g tanaman menjadi terinfeksi olehV. dahliae.Pengukura n yang palingpek a adalah denganmengetahu i banyaknya mikrosklerotium baru yang dibentuk pada tanamanbagia n atas.Maki n tinggikepadata n inokulum, makamaki nbesa r kepadatan mikrosklerotium padatanama n bagian ataspe r grambera t keringnya, yang menunjukkan bahwa telah terjadi penggandaan infeksi akaryan gmenuj u padamaki n seringnyapengkolonia n oleh jamurV. dahliae.Laj u kecepatan penyakit terjadi sangat cepatpad a suhu 20°C, dan lebihrenda h pada suhu 10, 15,da n 25°C.Uj i hayati ini nampaknya secarakhusu s sesuai untuk menilai apakah suatu tanah lapang terinfeksi olehV. dahliae. Pembentukanmikrosklerotiu m dari enamisola t V. dahliaedikaj i pada suhuyan g berbeda secara uji invitro da npad aA. thaliana(Ba b 3).Aka r semaiA. thalianadirenda m di dalam suatu larutan konidium, kemudian ditanam, danditempatka n baikpad a suhu 5, 10, 15,da n 25°Cata u pada suhu 20°C sampairose t mengalami penuaan, dan sesudahnya dipindahkan ke suhu 5,10, 15, atau 25°C.Pad aumumnya , suhu optimum untuk menghasilkan mikrosklerotium adalah20°C . Duaisola tjamu r ini masing-masing mampumenghasilka n mikrosklerotium kira-kira 10kal i lebihbanya k biladibandingka n dengankeempa t isolat lainnya. Pada suatu analisis regresi ganda 2 untuk isolate-isolate ini diperoleh nilaiR adjyan g tinggi,yait u 0,77 dan 0,66, dengan suhuda n 2 nilai kuadratnya sebagai peubah tetap yang sangat nyata (P< 0,001). Nilai R adjuntu k isolate- isolate lainnya hanyaberaga m antara 0,28 dan 0,39. Kegiatan pemindahan tanaman ke suhuyan g berbedapad a saat roset daunmengalam i penuaan menyebabkan kepadatan mikrosklerotium yang nampak ditenga hjik a dibandingkan dengan tanaman yang ditumbuhkan pada suhu tetap.Ha l tersebut memberikan dugaan bahwa laju kecepatan pengkolonianjaringa n vaskuler dan pembentukan mikrosklerotium adalah sama-sama dipengaruhi oleh suhu. Laju kecepatan penuaan tanaman nampak tidak begitu penting kecuali untuk tanaman yang tumbuhpad a suhu 25°C,yan g memperlihatkanjumla h mikroscklerotium tertinggi peruni t berat tanaman padatanama n yang mengalami penuaan paling cepat. Hal ini disimpulkanbahw a suhuda n isolat merupakan faktor utamayan gberpera n dalam pembentukan mikrosklerotium didala mjaringa n inang.

116 PadaBa b 4,kajia n tentang pengaruh berbagai kondisi terhadap dayataha nhidu p mikrosklerotiumjamu rV. dahliaedilakuka n dengan menggunakanbatan g tanaman kentang yang dikumpulkan dari lapang, yangmengandun g kepadatan mikrosklerotium tinggi dan terbentuk secara alami.Day a tahanhidu p mikrosklerotium sampai selamadu atahu n di dalam batang tanaman kentang yangtida k dibenamkan ke dalam tanah dikaji padaberbaga i kondisi suhu dan kelembapan relatif. Juga dikaji pengaruh suhu,pF ,termasu kkeragama nminggua n pada suhu dan/ataupF ,da nberbaga i carapembenama njaringa n batang tanaman kentang terhadap daya tahanhidu p mikrosklerotium dariberbaga i sumber sampai selama satutahu n di dalam tanah berpasir yang tidak disterilkan. Hasilnya, tidak dijumpai pengaruh isolat secaranyata . Pemulihan mikrosklerotium dalam waktu sehari setelah dimulainyapenelitia n adalah sangat rendah, yang beragam antara 5,5 dan 3,1% darijumla h mikrosklerotium yang ditambahkan ke dalam tanah. Pemulihan berlanjut padatingka t iniata ubahka n lebihrenda h di semuapenelitia n setelah satu bulan inkubasi,denga n beberapaperlakuan ,jug a setelah 3da n 6bulan . Setelah 3sampa i 12 bulan,penuruna n pemulihan ini sering diikuti olehpeningkata n pemulihan sampai 5kal i lebih tinggi.Aka n tetapi,pemuliha n inibelu mperna hmelua spad ajumla h mikrosklerotium mula-mula yangdibenamka n ke dalam tanah,yan gmenunjukka n bahwa sepertinya tidak adapembentuka n mikrosklerotium baru. Perubahan yangterjad i ini kemungkinan disebabkan olehkeragama n di dalam tingkat fungistasis di dalam tanahyan g dipengaruhi oleh laju pelepasan nutrisi dari mikrosklerotium. Bab 5berkaita n denganpengaru h penerapan antagonis Talaromycesflavus padabatan g tanaman kentang yang terinfeksi oleh V. dahliaeterhada p dayataha n danpotens i inokulum patogen. AntagonisT. flavus diterapkan padapermukaa nbatan g tanaman kentangyan g terinfeksi olehV. dahliae,da npengaruhny a terhadap dayataha nhidu p danpotens i inokulum mikrosklerotium patogen tanaman diuji. Tigamingg u setelah penerapan 3g ,T. flavus yang diformulasikan dalam butiran "alginate"terhada p 150kepin g batangkentan g yang dipotong sepanjang 1 cmmamp utumbu h secarateta p dipermukaa n batang kentang pada suhu 25°C,tetap i tidak pada suhu 15°C.Penguranga n perkecambahan mikrosklerotium hanya terjadi di tiga penelitian pada suhu 25°C dantida k padadu apenelitia n di suhu 15°C.Setela h penginkubasian selama 21har i dipermukaa n tanah, 15kepin g batangtanama n kentang dibenamkan ke dalampo t berukuran 400cm 3yan gberis i campuranantar apasi r dantana hpot . Populasi T.flavus danV. dahliaeditelit i selama 4 dan 10bula n setelah inkubasi. Tingkat populasi T.flavus adalah nyata lebih tinggi (P< 0,05) padaperlakua n batang tanaman kentang yang didiamkan selama 21har id i permukaan tanahjik a dibandingkan yang langsung dibenamkan kedala m tanah. Hal ini memperlihatkanrendahny a tingkat persaingan dipermukaa n tanah. Tingkat populasiT. flavus bertahan pada teraturpad apalin g sedikit 240uni t pembentuk koloni (upk) per gramtanah , dan memperlihatkan peningkatan sebesar 10sampa i 12kal i setelah 10 bulan bila dibandingkan

117 dengan setelah diinkubasikan selama4 bula npad a suhu 25°C .Tingka t populasi V. dahliae menurun secaranyat a karenaT. flavus dikedu a suhupenginkubasian . Meninggalkan keping batangtanama n kentang yang telah diperlakukan denganT. flavus dan dibiarkan di permukaan tanah selama 21har i tidak mempengaruhi dayataha nhidu pmikrosklerotium ,jik a dibandingkan denganpembenama n langsungbatan g tersebut kedala mtanah .Hubunga n terbalik yangnyat a antaraukura n populasiT. flavus da nV. dahliaehany a dijumpai untuk penginkubasian pada suhu 25°C. SemaiArabidopsis thaliana berumur empatmingg u ditanam untuk menentukan potensi inokulumV. dahliae, baik secara langsung setelah pembenaman kepingbatan g tanaman kentang kedala m tanahpad a suhu 20°C atauk etana h yangdibiarka n dahulu selama 21har i lagipad a suhu 15maupu n25° C sebelum uji hayati dengan A. thalianadilakuka n pada suhu 20°C.Ha l ini dilakukan untuk meneliti potensi inokulumjamu r V. dahliae.Perkembanga npenuaa n A. thaliana tidak dipengaruhi oleh suhu,tetap i dihambat secaranyat a oleh semuaperlakua n denganT. flavus. Hal ini dapat disebabkan oleh tingkat T.flavus yan grelati f tinggi yang terjadi di semua penelitian. Kesimpulan yang dapat diambil adalahpenerapa n T.flavus pad a sisa-sisa bahan organik segar yangmengandun g mikrosklerotium mampumengurang i kepadatan inokulum V. dahliae. Perlunyapenelitia n lanjutan tentang pengarah kepadatanpopulas i T.flavus terhada p laju perkembangan gejala penyakit layuyan g disebabkan oleh V. dahliae. Padakaitanny a denganT. flavus, pengaru h strain bakteriPseudomonas fluoresceins, yan g menghasilkan antibiotika 2,4-diacetylphloroglucinol, diuji padaBa b 6.P. fluorescens strai n 60 (P60)menghamba tpalin g sedikit 50%pertumbuha n miselium dari 20 isolat V. dahliaesecar ain vitroda njug amengurang i pembentukan mikrosklerotium yangterjad i di sebagian besar isolat yang diuji. Padauj i hayati,V. dahliaesecar anyat amempercepa t penuaanA. thalianada nterung . Akan tetapi,ketik a tanaman tersebut diperlakukan dengan P60,penuaa n melaju pada laju yang sama seperti padaperlakua n tanpaV. dahliae. Walaupun perlakuan tanaman-tanaman dengan P60 tidak berakibat utamapad apenguranga n persentase bagian atasA. thalianayan g terinfeksi, jumlah mikrosklerotium yang dihasilkan oleh V. dahliaepad abagia n atas tanaman yangtu a berkurang secaranyat a (sampaihampi r 8kali ) dikeempa t penelitian.P. fluorescens tida k dapat diisolasi daribagia n dalamjaringa n inang, tetapi P.fluorescens terdapa t di daerah perakaranA. thaliana dan terung sampai 12mingg u setelahpenginokulasia n pada kepadatan yangberaga m antara 1,4 x 103- 8, 0 x 105up k pergra m akar. Penggabungan P60 dengan T.flavus lebi hjau h meningkatkanpengendal i terhadap V. dahliae. Jika dibandingkan dengan perlakuan pembanding, jumlah mikrosklerotium yang terbentuk berkurang sampai hampir 40kal i lipat dengan adanya penerapan gabungan P60 danT. flavus, da npengendalia n yang diperoleh dengan penggabungan tersebut secara nyata lebihbai k daripada hasilpenguranga n yang didapat dengan penerapan agensia tersebut secara terpisah.

118 Tigapoko kpersoala n utamadikena ldala m diskusi umum(Ba b 7):(1 )penggunaa n penerapan uji hayati untuk menghitung potensi inokulum V. dahliae,(2 ) faktor-faktor yang mempengarahijumla h mikrosklerotium di dalam tanah, dan (3)pengendalia n V. dahliaesecar a hayati. Uji hayati pada dasamyamenyediaka ninformas i yangberbed a dari teknik teknik pencawanan yanghany a menghitung mikrosklerotium. Uji hayati yang diperlihatkan menampakkan kepekaan yang tinggi dannampakny a sesuai untuk mendeteksi infestasi tanah yangrenda h yang sukar dideteksi denganmetod eyan g lain. Selainitu , uji hayati sangat sesuai untuk digunakan padakajian-kajia n perbandingan penelitian. Faktor-faktor yang mempengaruhi jumlah mikrosklerotium didala m tanahdapa t dibedakan ke dalam faktor-faktor yang mempengaruhi pembentukan mikrosklerotium baru, danyan g mempengaruhi dayataha n hidup danpemuliha njamu r tersebut. Padapenentua nkepadata n mikrosklerotium di dalam tanah, pemulihan kemungkinan memainkan peranan penting,yan g meskipun mengacaukan.Beberapa saran diusulkan untuk dilakukannya kajian lebih lanjut padabidan g ini,denga npenitik-berata n secarakhusu spad apertanyaa nberap a rendahkah laju pemulihan kemungkinan mempengaruhi proses-proses yang terkait di dalam tanah.Kesempata n yangjela suntu k mengembangkan metode pengendalian layuvertisiliu m denganmenggunaka n antagonis telahtersedia . Strain-strain yang berbeda dari kedua antagonis P.fluorescens da nT. flavus terhada p layu vertisilium dianjurkan untuk dilakukan penyaringan. Hal ini diduga bahwapenguranga n pembentukan mikrosklerotium baru di dalamjaringa n tanaman bagian atas,yan g dirangsang olehkedu a antagonis tersebut, adalah disebabkan oleh suatu penguranganjumla h infeksi akar olehV. dahliae,ata umelalu i ketahanan yang dirangsang.

119 Author's curriculum vitae

Theautho r wasbor n on 26o fJun e 1960a tPati ,i nth e Province of Central Java, Indonesia.H e received hisjunio r andprimar y school at Sokaraja, Banyumas district, andmove d to Purwokerto toobtai n his secondary school at SMANeger i I.I n 1979h e enrolled atth eUniversit y ofJendera l Soedirman,Purwokerto ,from wher eh ereceive d his degreefro m theFacult y ofAgriculture ,th e Department ofPlan t Pests and Diseases inJanuar y 1985.I nMarc h 1985h e started his career asa teacher athi s almamater,th eDepartmen t ofPlan tPest s andDiseases ,th eFacult y ofAgriculture , theUniversit y ofJendera l Soedirman, Purwokerto.A Maste r degree coursewa stake n atth e University ofGadja h Mada,Yogyakarta , in 1986an dcomplete d with aMS c of Phytopathology inApri l 1989.A Ph Dresearc hprojec t started in September 1995a tth eDepartmen t of Phytopathology, WageningenUniversity , theNetherlands ,wit h a scholarship from the Ministry ofEducatio n and Culture,th eRepubli c ofIndonesia ,throug h theHighe rEducatio n Development Project (HEP II)- AD B LoanNo . 1235-INO.Afte r finishing thePh Dresearch , hewil l continue hiswor k asa teache r and researcher atth eUniversit y ofJendera l Soedirman, Purwokerto.

Loekas Soesanto Present address: Department ofPlan t Pests andDiseases , Faculty ofAgriculture , University ofJendera l Soedirman P.O. Box 25 Purwokerto 53101 Indonesia phone:+62 (0)281 38791

120