Of Space Law

Total Page:16

File Type:pdf, Size:1020Kb

Of Space Law JOURNAL OF SPACE LAW VOLUME 18, NUMBER 2 1990 JOURNAL OF SPACE LAW A journal devoted to the legal problems arising out of human activities in outer space VOLUME 18 1990 NUMBER 2 EDITORIAL BOARD AND ADVISORS BERGER, HAROLD GALLOWAY, ElLENE Philadelphia, Pennsylvania Washington, D.C. BDCKSTIEGEL, KARL-HEINZ GOEDHUIS, D. Cologne, Germany London, England, BOUREL Y, MICHEL G. HE, QIZHI Paris, France Beijing, China COCCA, ALDO ARMANDO JASENTULIY ANA, NANDASIRI Buenes Aires, Argentina New York, N.Y. DEMBLING, PAUL G. KOPAL, VLADIMIR Washington, D. C. Prague, Czechoslovakia DIEDERIKS-VERSCHOOR, I.H. PH. MCDOUGAL, MYRES S. Baarn, Holland New Haven, Connecticut FASAN, ERNST VERESHCHETIN, V.S. Neunkirchen, Austria Moscow, U.S.S.R. FINCH, EDWARD R., JR. ZANOTTI, ISIDORO New York, N.Y. Washington, D.C. STEPHEN GOROVE, Chairman University, Mississippi All correspondance should be directed to the JOURNAL OF SPACE LAW, University of Mississippi Law Center, University, Mississippi 38677. JOURNAL OF SPACE LAW. The subscription rate for 1991 is $65 (domestic) and $70 (foreign) for two issues. Single issues may be ordered at $36 per issue (postage and handling included). Copyright @ JOURNAL OF SPACE LAW 1990 Suggested abbreviation: J. SPACE L. JOURNAL OF SPACE LAW A journal devoted to the legal problems arising out of human activities in outer space VOLUME 18 1990 NUMBER 2 STUDENT EDITORIAL ASSIST ANTS Rbonda G. Davis, ed. Derwin B. Govan, index & brief news ed. Pamela G. Guren Robin R. Hutchison Kenneth C. Johnston Candidates Alton J. Lefebvre A. Kelly Sessoms D. Jeffrey Wagner FACULTY ADVISER STEPHEN GOROVE All correspondance with reference to this publication should be directed to the Journal of Space Law, University of Mississippi Law Center, University, Mississippi 38677. Journal of Space Law. The subscription rate for 1991 is $65 (domestic) and $70 (foreign) for two issues. Single issues may be ordered at $36 per issue (postage and handling included). Copyright @ Journal of Space Law 1990 Suggested abbreviation: J. Space L. JOURNAL OF SPACE LAW A journal devoted to the legal problems arising out of human activities in outer space VOLUME 18 1990 NUMBER 2 CONTENTS ARTICLES The Growth of Domestic Space Law: A U.S. Example (Stephen Gorove) ................................................................. 99 The Status of Radio Spacecasting Under Space Law (Martin Rothblatt) ............................................................. 113 International Space Plans and Policies: Future Roles of International Organizations (Stephen E. Doy/e) ............ 123 SPECIAL FEATURES Events of Interest ..................................................................... 139 A. Past Events ....................................................................... 139 Reports Developments in Arms Control Negotiations: The Proposed Defense and Space Treaty (Statement of Ambassador David 1. Smith) .................................................................. 139 Workshop on Space Debris Held at the Cospar Congress (I.H.Ph. Diederiks·Verschoor and Lubos Perek) ............... 143 Mobile Satellite Communications: Issues for the 1990's (Milton L. Smith) ............................................................... 147 The New Space Law Database of the Institute of Air and Space Law in Cologne (Karl-Heinz Bockstiegel and Knut Focke). ...... 155 Steady Progress for United Nations Space Activities in 1990 (Yvonne Lodico) ................................................................. 160 The 33rd Colloquium on the Law of Outer Space, Dresden, October 8-13, 1990 (I.H.Ph. Diederiks-Verschoor ) .......... 164 Comments Space Debris and the United Nations (Ste/an Noreiin) .................... 175 Short Accounts National Space Outlook Conference (Stephen E. Doyle} .................. 180 64th Conference of the International Law Association, Queensland, Australia (Karl-Heinz Bockstiegel} .............. 182 "Law and Outer Space," Second Annual Symposium (Stephen Gorove} ............................................................... 183 Space Debris: Scientific and Legal Round Table (Katherine M. Gorove} ....................................................... 185 Other Events .................................................................................. l87 Brief News ...................................................................................... 187 B. Forthcoming Events ........................................................... 189 Book Reviews Lyall, Francis, Law and Space Telecommunications (Jonathan F. Galloway} ...................................................................... 191 Vereshchetin, V.S. (ed.), Novoe v kosmicheskom prave Na puti k mezhdunarodnomu chastnomu kosmicheskom pravu (Michael Yackushev} ......................................................... I92 European Space Agency (ESA), Les Stations Spatiales Habit"es - Aspects Juridiques (Katherine M. Gorove} ....................... 194 Bockstiegel, Karl-Heinz and Benko, Marietta (eds.), Space Law: Basic Legal Documents, Vol. 1.. ................................ 195 Stoker, Carol (ed.), The Case for Mars III: Strategies for Exploration -- General Interest and Overview ................. 196 Recent Publications Books .............................................................................................. 198 Contributions to Books ................................................................... 199 Articles ......................................................................................... 199 Reports ........................................................................................... 20 I Notes/Comments ............................................................................. 202 Short Accounts ............................................................................... 202 Book Reviews/Notices ..................................................................... 202 Official Publications ...................................................................... 204 Current Documents 1. Draft for a Convention on Manned Space Flight.. ............... 209 II. New National Space Policy Directive of September 5, 1990 .................................................................................. 217 III. Legislation on Inventions in Outer Space ......................... 218 IV. Resolution on Space Law of the 64th Conference of the International Law Association held in Queensland, Australia, 19-25 August 1990 ..................... 219 V. International Institute of Space Law of the International Astronautical Federation, Standing Committee on the Status of International Agreements Relating to Activities in Outer Space, Third Annual Report - October 1990 ................................ 221 THE GROWTH OF DOMESTIC SPACE LAW: A U.S. EXAMPLE Stephen Gorove' Introduction More than three decades have passed since the beginning of the Space Age, during which time the United States has not only contributed to the scientific and technological achievements but has also played a leading role in the establishment of rules and regulations governing the activities associated with the exploration and use of outer space. While the international community focused its attention on the world-wide implications of the emerging activities in outer space, and drafted a number of major international agreements, in the domestic field the United States took the leadership in passing several important legislative enactments and in promulgating hundreds of rules and regulations, thereby underscoring the unique role that it has played in charting new pathways in a hitherto unknown field of national space legislation. The NASAct The first landmark of this unparalleled domestic track record was laid by the United States Congress a year after the launch of Sputnik, and is known as the National Aeronautics and Space Act (NASAct) of 1958,1 in which· the United States pledged that its activities in space would be devoted to peaceful purposes and for the benefit for all mankind. 2 In the same enactment, Congress further declared that space activities were to be the responsibility of a civilian agency exercising control over such activities sponsored by the United States, except that actiyities associated with the development of weapons systems, military operations, or national defense would be the responsibility of the Department of Defense} The assigned task of the new agency, known as the National Aeronautics and Space Administration (NASA), has been, inter alia, to plan, direct and conduct space actIvItIes, arrange for the scientific community's participation and provide for the widest practicable and * Director of Space Law and Policy Studies, University of Mississippi Law Center. Member, International Academy of Astronautics. Vice-President, International Institute of Space Law (IAF). 1. Pub. L. No. 85-568, 72 Stat. 426, 42 U.S.C. sec. 2451 et seq. (1988)[hereinafter NASAct]. 2. [d. sec. 102(a). 3. Id. sec.l02(b). 99 100 JOURNAL OF SPACE LAW Vol. 18, No.2. appropriate dissemination of information concerning its activities and the results thereof.4 (aJ International Aspects Apart from its day-to-day functions, NASA has been authorized to engage, under the foreign policy guidance of the President, in a program of international cooperation subject to agreements made by the President with the advice and consent of the Senate.5 While our focus is on U.S. domestic law, in order to foreclose any possibly erroneous impression, it· should be stressed that the preceding provision, as interpreted
Recommended publications
  • Developments in Observations and Theory for Solar Cycle 22 Laurel, Maryland, 8-9 June 1989
    MA Workshop #2: Developments in Observations and Theory for Solar Cycle 22 Laurel, Maryland, 8-9 June 1989 {i<?',.., '- i _'-_'? ; ._,/ , _t MAX Workshop #2: Developments in Observations and Theory for Solar Cycle 22 Laurel, Maryland, 8-9 June 1989 Edited by Robert M. Winglee University of Colorado Boulder, Colorado Brian R. Dennis NASA Goddard Space Flight Center Greenbelt, Maryland Cover An eruptive prominence associated with the X1.6 3B flare of June 20, 1989. This event and its coronal mass ejection were well observed during the first Max '91 Campaign. This digital H-alpha image was obtained at 15:04 UT ( 4 minutes before the peak of the event in soft X-rays) by the Holloman Solar Observatory of the USAF SOON system. TABLE OF CONTENTS Preface ......................... vii Group Summaries High Energy Flare Physics Group Summary .......... ld] J. M. Ryan and J. D. Kurfess Magnetograph Group Summary ............... 17d_ H. P. Jones Theory and Modeling Group ................ 27_ G. D. Holman Summary of Observations of AR 5395 • . ° • . , , . ° , . 31c_z?:? j /I D. M. Zarro and R. M. Winglee Invited Reviews Scientific Objectives of Solar Gamma-Ray Observations ..... 33_;_/ R. E. Lingenfelter The Gamma-Ray Observatory: An Overview ......... D. A. Kniffen When and Where to Look to Observe Major Solar Flares .... 46_ T. Bai Access to MAX'91 Information via Computer Networks .... 6_. A. L. Kiplinger -7 High Energy Flare Physics Capabilities of GRO/OSSE for Observing Solar Flares . J. D. Kurfess, W. N. Johnson, G. H. Share, S. M. Matz and R. J. Murphy The Solar Gamma Ray and Neutron Capabilities of COMPTEL on the Gamma Ray Observatory ............
    [Show full text]
  • NTIA Technical Report TR-78-9 Current Activities in Small Earth
    NTtA-REPORT -78-9 Current Activities in Small Earth Terminal Satellite Domestic Telecommunications Paul I. Wells u.s. DEPARTMENT OF COMMERCE Juanita M. Kreps, Secretary Henry Geller, Assistant Secretary for Communications and Information August 1978 TABLE OF CONTENTS Page LIST OF FIGURES v LIST OF TABLES vi ABSTRACT 1 1. INTRODUCTION. 1 2 . DOMESTIC S,ATELLITES - PRESENT AND PLANNED 2 2.1. Domestic Satellite Technical Characteristics 6 2.1.1. Western Union WESTAR Satellite 6 2.1.2. RCA Americom SATCOM Satellite 6 2.1.3. Comsat General COMSTAR Satellite 8 2.1.4. S~tellite Business Systems ~pacecraft 10 2.2. Domestic Satellite Channel Capacity 10 2.3. Multiple Access in Satellite Communications 11 3. DOMESTIC EARTH STATIONS - PRESENT AND PLANNED 14 3.1. Domesti~ Earth Station Applications 15 3 .1.1. Point~to-poi,nt Communication Services 15 3 .1. 2. Point-'to-Multipoint Communication Services 16 3.2. Domestic Earth Stati6rt Facilities 17 3.3. Domestic Eart'h Station Equipment Costs 19 4. PREPARATION FOR THE GENERAL WARC IN 1979 31 4.1. Allocations for Fixed- and Broad~asting- Satellite Service 36 4.1.1. 2.50 GHz to 2.69 GHz 52 4.1.2. 3.4 GHz to 3.7 GHZ 56 4.1.3. 3.70 GHz to 4.20 GHz 57 4 . 1. 4. 4.40 GHz to 4.70 GHz 57 4.1.5. 5.725 GHz to 5.925 GHz 58 4.1.6. 7.25 GHz to 7.75 GHz 58 4.1.7. 7.90 GHz to 8.40 GHz 58 4.1.8.
    [Show full text]
  • Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment
    NASA Reference Publication 1390 - j Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment K.L. Bedingfield, R.D. Leach, and M.B. Alexander, Editor August 1996 NASA Reference Publication 1390 Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment K.L. Bedingfield Universities Space Research Association • Huntsville, Alabama R.D. Leach Computer Sciences Corporation • Huntsville, Alabama M.B. Alexander, Editor Marshall Space Flight Center • MSFC, Alabama National Aeronautics and Space Administration Marshall Space Flight Center ° MSFC, Alabama 35812 August 1996 PREFACE The effects of the natural space environment on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer provides an overview of seven major areas of the natural space environment including brief definitions, related programmatic issues, and effects on various spacecraft subsystems. The primary focus is to present more than 100 case histories of spacecraft failures and anomalies documented from 1974 through 1994 attributed to the natural space environment. A better understanding of the natural space environment and its effects will enable spacecraft designers and managers to more effectively minimize program risks and costs, optimize design quality, and achieve mission objectives. .o° 111 TABLE OF CONTENTS
    [Show full text]
  • Satellite/Teletext News
    SATELLITE/TELETEXTSATELLITE /TELETEXT NEWSNEWS GARY ARLEN CONTRIBUTING EDITOR WPIX BECOMES WPIX-TV,WPIX -TV, the popular New York City televisiontelevision Channel 1111., isis becoming the newest satellite superstation, transmitted nationwide vviaia a transponder on Westar 66.. WPIX.WPIX , with its full SUPERSTATION compcomplementlement of New York -area sports events, movies, and other programming,programming, will be beamed by United Video, the the same satellite carrier that made WGN WGN-TV, -TV, Chicago, Chicago , into a superstationsuperstation.. ESPN MAY ESPN, the mostly mostly sports network on Satcom 3R, may begin scrambling itsits satellite transmistransmis-­ sion by year's end. The company is in the preliminapreliminaryry stages of analyzing analyzing how, or or if, iitt could could SCRAMBLE begin encoding its signals:signals; it would would be the the first ad- ad-supported supported cable /satellitesatellite network to to installinstall such scrambscramblingling to prevent reception by unauthorized earth stations. ESPN claims that that pick-pick­ ups by home and apartment earth stations diminishes the value of its programming to cable cab le­ - TV operators who pay for the 24-hour24 -hour channel. HBO is already well well along onoil scrambling tests,tests, and Showtime cabcablele /paypay TV network is considering a scrambling system. SKYSKY-HIGH -HIGH More than 550,000550.000 backyard earth stations will be installed this yearyear., twice the number set up during 1983,1983. according to a forecast by KLM Electronics PresidentPresident Peter Dalton, an official of PREDICTIONS the home earth-stationearth -station association, SPACE. IfIf Dalton'sDalton 's prediction comes true,true. upwards of 875,000875,000 dishes will be in place by the end of 1984, including units at apartmentsapartments., schools.schools, and office buildingsbuildings,, as well as home satellite receiversreceivers.
    [Show full text]
  • Countdown Test Cheers Launch Team
    Manifestdestiny Coolfuel National Aeronautics and NASA's newest Mixed Fleet Manifest A safer T-38 fuel with a higher "flash point" Space Administration rearranges several of the next Space Shuttle is being tested at Ellington Field. LyndonB. JohnsonSpace Center missions. Chart on Page 3. Story on Page 4. Houston, Texas vo sp_ace NewSeptember s9, 1988 undupNo. 26 'It's the final stretch' , Countdown test cheers launch team The STS-26 crew boarded Discov- Readiness Review scheduled for i ery on Launch Pad 39B Thursday Tuesday at Kennedy,and, at present, morning to go through a final dress nothing has appeared that would rehearsal of the return to flight with interrupt the flow toward launch, he Kennedy Space Center's Firing Room said. "We're still looking at sometime team. in the last week of Septemberfor The Terminal Countdown Demon- launch." stration Test {TCDT),or "dry count," This week, technicians at the pad began with a call to stations for the are performing a borescope inspec- launch team at 5 tion of the Orbi- nesday, and the oxygen {GOX) simulatedcount- system. Three a.m.CDTWed-.._" _` ' ST S.26 tGer'sOXflogaseow controlus J.scP_o_ _r_,u,_ thdoewnT-began19 hourat The Return to Flight valve parts were Construction workers tear down a temporary wall separating Bldg. 9B from Bldg. gA Wednesday as mark. T-0, the removed from the new 26,000-square-foot facility nears completion. 9B will house Space Station training and test culminationof the test,occurred about Discovery last weekend in an effort equipment, including mockupssuch as the one at left.
    [Show full text]
  • Sts-41B Press Kit February 1984
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE SHUTTLE MISSION STS-41B PRESS KIT FEBRUARY 1984 UNTETHERED EVA; SHUTTLE PALLETT SATELLITE (SPAS-01A); PALAPA-B2 AND WESETAR VI DEPLOYMENT Edited by Richard W. Orloff, 01/2001/Page 1 STS-41B INSIGNIA S83-45520 -- The orbiter is flanked in the oval by an illustration of a PAM-D assisted satellite deployment; and an astronaut making the first non-tethered extravehicular activity; and eleven stars. The crew member at right is equipped with the manned maneuvering unit, a debuting backpack/motor apparatus allowing for much greater freedom of movement than that experienced by any previous space travelers performing EVA. The artist was Robert McCall. The NASA insignia design for space shuttle flights is reserved for use by the astronauts and for other official use as the NASA Administrator may authorize. Public availability has been approved only in the form of illustrations by the various news media. When and if there is any change in this policy, which we do not anticipate, it will be publicly announced. PHOTO CREDIT: NASA or National Aeronautics and Space Administration. Edited by Richard W. Orloff, 01/2001/Page 2 RELEASE NO: 84-4 January 1984 CONTACTS Jim Kukowski/David Garrett Headquarters, Washington, D.C. (Phone: 202/453-8590) Dick Young Kennedy Space Center, Fla. (Phone: 305/867-2468) Terry White Johnson Space Center, Houston, Texas (Phone: 713/483-5111) Bob Ruhl Marshall Space Flight Center, Huntsville, Ala. (Phone: 205/453-0034) Ralph B. Jackson Dryden Flight Research Facility, Edwards, Calif. (Phone: 805/258-8381) Jim Elliott Goddard Space Flight Center, Greenbelt, Md.
    [Show full text]
  • Testing the Theory of Radiation Belt Electron Loss by Hiss and Electromagnetic Ion Cyclotron Waves
    c Copyright 2019 Ling Zheng Testing the theory of radiation belt electron loss by hiss and electromagnetic ion cyclotron waves Ling Zheng A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2019 Reading Committee: Michael P. McCarthy, Chair Robert Holzworth Robert Winglee Program Authorized to Offer Degree: Earth and Space Sciences University of Washington Abstract Testing the theory of radiation belt electron loss by hiss and electromagnetic ion cyclotron waves Ling Zheng Chair of the Supervisory Committee: Professor Michael P. McCarthy Department of Earth and Space Sciences Hiss, chorus and electromagnetic ion cyclotron waves (EMIC wave) are three major wave modes that are widely investigated and included in the radiation belt electron models to explain electron precipitation. The quasi-linear theories of electron loss through pitch angle diffusion by hiss and EMIC waves were proposed in 1970s. Since then the testing of the theories is still going on though some progresses had been made. Comparison of theoretical predictions to electrons distribution at loss cone is one effective way to evaluate the theories. The main obstruction of loss cone testing was from the lack of measurements of the electron loss cone distribution with enough pitch angle and energy resolution and simultaneous wave activities at the heart of radiation belt. This thesis is devoted to testing the hiss and EMIC waves diffusion theories from the perspective of the electron loss cone distribution by utilizing the previously unnoticed overlap of UARS and CRRES missions in 1991. The conclusions are as following: (1) Two cases showing the consistency between quasi-linear theory of hiss diffusion and observed loss cone distribution are found.
    [Show full text]
  • What's Up? the Globalization of Space Jonathan Mcdowell
    What's Up? The Globalization of Space Jonathan McDowell Space Globalization: THE OLD SPACE RACE INTERNATIONALIZATION COMMERCIALIZATION DEMOCRATIZATION Space Demographics – Who and What Space Demographics - Where: Orbitography When they hear 'space', many people think 'astronauts'..... but most of what humanity does in space is done with robots - “artificial satellites” boxes of electronics with big solar-power-generating wings, commanded from Earth Communications Earth Imaging Technology Signals intelligence and training Navigation (GPS) Science Human spaceflight (e.g. astronomy) A quick introduction to satellites About 1000 satellites currently operating Some in low orbit skimming just outside the atmosphere, mostly going from pole to pole Some In 'geostationary orbit' in a ring high above the equator Today, over 1000 active satellites and rising In 1960s, only a few dozen sats operating at any one time We still think of space the way it was in the 1960s Here, the TIROS weather satellite is assembled by a US manufacturer – in this case, RCA in East Windsor, NJ Another US company, Douglas Aircraft, builds the Thor Delta rocket. The satellite is delivered to its owner, the US civil space agency NASA, who also buy the rocket. Here is TIROS 2 on top of the rocket before the nose cone is added Here, the NASA Delta launches TIROS 2 into space from a launch site on US territory – in this case, Cape Canaveral, FL And the satellite operates in orbit under the ownership of NASA, using a NASA mission control center in Greenbelt, MD INTERNATIONALIZATION
    [Show full text]
  • IMTEC-89-46FS Space Operations: Listing of NASA Scientific Missions
    C L Listing of NASA Scientific Missions, 1980-2000 -- ‘;AO,~lM’I’kX :-8!)- .^. .I ., ^_. ._ .- __..... ..-... .- .._.-..-.. -_----__-.- _.____-___-- UnIted States General Accounting Office Washington, D.C. 20548 Information Management and Technology Division B-234056 April 7, 1989 The Honorable Bill Nelson Chairman, Subcommittee on Space Science and Applications Committee on Science, Space, and Technology House of Representatives Dear Mr. Chairman: As requested by your office on March 14, 1989, we are providing a list of the National Aeronautics and Space Administration’s (NASA) active and planned scientific missions, 1980-2000.~ We have included missions with the following status: l launches prior to 1980, and those since 1980 that either ended after 1980 or are currently approved by NASA and remain active; and . planned launches that have been approved or proposed by NASA. As agreed, our compilation covers the following four major scientific disciplines: (1) planetary and lunar, (2) earth sciences, (3) space physics, and (4) astrophysics. Appendixes II-V present this information, includ- ing mission names and acronyms, actual or anticipated launch dates, and the actual or expected end-of-mission dates, in tables and figures. As requested, we did not list other types of NASA missions in biology and life sciences, manufacturing sciences, and communication technology. During this period, NASA has or plans to support 84 scientific missions in these four disciplines: Table! 1: Summary of NASA’s Scientific A Ml88iC>nr, 1980-2000 Active Planned January April 1989 - 1980 - March 1989 December 2000 Total Planetary and Lunar 5 7 12 Earth Sciences 3 27 30 /I Space Physics 6 20 26 Astrophysics 2 14 16 Totals 16 68 84 ‘Missions include NASAjoint ventures with other countries, as well as NASAscientific instruments flown on foreign spacecraft.
    [Show full text]
  • Shuttle Missions 1981-99.Pdf
    1 2 Table of Contents Flight Page Flight Page 1981 STS-49 .................................................................................... 24 STS-1 ...................................................................................... 5 STS-50 .................................................................................... 25 STS-2 ...................................................................................... 5 STS-46 .................................................................................... 25 STS-47 .................................................................................... 26 1982 STS-52 .................................................................................... 26 STS-3 ...................................................................................... 5 STS-53 .................................................................................... 27 STS-4 ...................................................................................... 6 STS-5 ...................................................................................... 6 1993 1983 STS-54 .................................................................................... 27 STS-6 ...................................................................................... 7 STS-56 .................................................................................... 28 STS-7 ...................................................................................... 7 STS-55 ...................................................................................
    [Show full text]
  • United States Space Program Firsts
    KSC Historical Report 18 KHR-18 Rev. December 2003 UNITED STATES SPACE PROGRAM FIRSTS Robotic & Human Mission Firsts Kennedy Space Center Library Archives Kennedy Space Center, Florida Foreword This summary of the United States space program firsts was compiled from various reference publications available in the Kennedy Space Center Library Archives. The list is divided into four sections. Robotic mission firsts, Human mission firsts, Space Shuttle mission firsts and Space Station mission firsts. Researched and prepared by: Barbara E. Green Kennedy Space Center Library Archives Kennedy Space Center, Florida 32899 phone: [321] 867-2407 i Contents Robotic Mission Firsts ……………………..........................……………...........……………1-4 Satellites, missiles and rockets 1950 - 1986 Early Human Spaceflight Firsts …………………………............................……........…..……5-8 Projects Mercury, Gemini, Apollo, Skylab and Apollo Soyuz Test Project 1961 - 1975 Space Shuttle Firsts …………………………….........................…………........……………..9-12 Space Transportation System 1977 - 2003 Space Station Firsts …………………………….........................…………........………………..13 International Space Station 1998-2___ Bibliography …………………………………..............................…………........…………….....…14 ii KHR-18 Rev. December 2003 DATE ROBOTIC EVENTS MISSION 07/24/1950 First missile launched at Cape Canaveral. Bumper V-2 08/20/1953 First Redstone missile was fired. Redstone 1 12/17/1957 First long range weapon launched. Atlas ICBM 01/31/1958 First satellite launched by U.S. Explorer 1 10/11/1958 First observations of Earth’s and interplanetary magnetic field. Pioneer 1 12/13/1958 First capsule containing living cargo, squirrel monkey, Gordo. Although not Bioflight 1 a NASA mission, data was utilized in Project Mercury planning. 12/18/1958 First communications satellite placed in space. Once in place, Brigadier Project Score General Goodpaster passed a message to President Eisenhower 02/17/1959 First fully instrumented Vanguard payload.
    [Show full text]
  • Table of Contents
    THE CAPE Military Space Operations 1971-1992 by Mark C. Cleary 45th Space Wing History Office Table of Contents Preface Chapter I -USAF Space Organizations and Programs Table of Contents Section 1 - Air Force Systems Command and Subordinate Space Agencies at Cape Canaveral Section 2 - The Creation of Air Force Space Command and Transfer of Air Force Space Resources Section 3 - Defense Department Involvement in the Space Shuttle Section 4 - Air Force Space Launch Vehicles: SCOUT, THOR, ATLAS and TITAN Section 5 - Early Space Shuttle Flights Section 6 - Origins of the TITAN IV Program Section 7 - Development of the ATLAS II and DELTA II Launch Vehicles and the TITAN IV/CENTAUR Upper Stage Section 8 - Space Shuttle Support of Military Payloads Section 9 - U.S. and Soviet Military Space Competition in the 1970s and 1980s Chapter II - TITAN and Shuttle Military Space Operations Section 1 - 6555th Aerospace Test Group Responsibilities Section 2 - Launch Squadron Supervision of Military Space Operations in the 1990s Section 3 - TITAN IV Launch Contractors and Eastern Range Support Contractors Section 4 - Quality Assurance and Payload Processing Agencies Section 5 - TITAN IIIC Military Space Missions after 1970 Section 6 - TITAN 34D Military Space Operations and Facilities at the Cape Section 7 - TITAN IV Program Activation and Completion of the TITAN 34D Program Section 8 - TITAN IV Operations after First Launch Section 9 - Space Shuttle Military Missions Chapter III - Medium and Light Military Space Operations Section 1 - Medium Launch Vehicle and Payload Operations Section 2 - Evolution of the NAVSTAR Global Positioning System and Development of the DELTA II Section 3 - DELTA II Processing and Flight Features Section 4 - NAVSTAR II Global Positioning System Missions Section 5 - Strategic Defense Initiative Missions and the NATO IVA Mission Section 6 - ATLAS/CENTAUR Missions at the Cape Section 7 - Modification of Cape Facilities for ATLAS II/CENTAUR Operations Section 8 - ATLAS II/CENTAUR Missions Section 9 - STARBIRD and RED TIGRESS Operations Section 10 - U.S.
    [Show full text]