Agglutinated Worm Tube from the Late Cretaceous of Colombia

Total Page:16

File Type:pdf, Size:1020Kb

Agglutinated Worm Tube from the Late Cretaceous of Colombia Cretaceous Research 41 (2013) 107e110 Contents lists available at SciVerse ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes First record of a pectinariid-like (Polychaeta, Annelida) agglutinated worm tube from the Late Cretaceous of Colombia Olev Vinn a,*, Javier Luque b a Department of Geology, University of Tartu, Ravila 14A, Tartu 50411, Estonia b Smithsonian Tropical Research Institute, Balboa-Ancón 0843-03092, Panamá, Panama article info abstract Article history: The earliest agglutinated pectinariid-like tube with a modern appearance is described from the Late Received 11 August 2012 Cretaceous (Santonian, w84 My) of Colombia. The rare agglutinated fossil tube is composed of sorted Accepted in revised form 20 November 2012 skeletal material, quartz sand, and unidentified carbonaceous fragments. It’s solitary and noneencrusting Available online 13 December 2012 life mode, the straight conical shape, and the agglutinated tube wall composed of sand-sized grains, supports affinity with the tube-building Family Pectinariidae. This finding suggests that Pectinariidae Keywords: might have first appeared in the Neotropics at least by the late Mesozoic. Polychaeta Ó 2012 Elsevier Ltd. All rights reserved. Pectinariidae Tubeworms Santonian South America 1. Introduction that produce agglutinated tubes are important constituents of modern oceans, their role in past ecosystems is poorly understood Polychaete worms without mineral tubes are rarely preserved (Fournier et al., 2010). as fossils. However, some polychaetes produce organic, aggluti- The aim of the present paper is to: 1) describe the first specimen nated or calcareous tubes, enhancing the likelihood of preserva- of a pectinariid-like agglutinated worm tube from the Mesozoic of tion. Polychaetes with calcareous tubes have a good fossil record South America; and 2) discuss the evolutionary implications of the and are usually well preserved, but only species within the Ser- described pectinariid-like tube. pulidae, Sabellidae, and Cirratulidae produce these tubes (Vinn and Mutvei, 2009). Conversely, agglutinated tubes have a poor 2. Material fossil record, despite the fact that several modern polychaete families produce them. Therefore, fossil records of agglutinated One pectinariid-like tube was found in light-beige to greyish tubes help us better understand the evolution of tube-building terrigenous mudstones from the Upper Cretaceous Conejo Forma- strategies in polychaete annelids. The oldest agglutinated fossil tion (lower to middle Santonian, w84 My), outcropping near the tubes are known from as far back as the Cambrian (Signor and town of Toca in the Department of Boyacá, Cordillera Oriental McMenamin, 1988). However, it is possible that these fossils do (Latitude 53702800; Longitude 731205300). Other fauna found in this not belong to polychaetes, but to various problematic Palaeozoic deposit include abundant bivalves, principally corbulids and limids, tube-producing worms (Zaton et al., 2012) with affinities that scattered echinoderm remains, linguloid brachiopods, and sporadic suggest that they probably should not be assigned to the annelids decapod crustaceans (Luque et al., in preparation). The agglutinate (Vinn and Mutvei, 2009). The earliest records of agglutinated pectinarid-like tube, as well as most associated fossil invertebrates, tubes with strong polychaete affinities are known from the Late are compressed parallel to lamination. The presence of the Palaeozoic and Mesozoic (Ettensohn, 1981; Zaton et al., 2012). The ammonite Pseudoschloenbachia inconstans (Grossouvre, 1893) diversity and evolution of polychaetes with agglutinated tubes, suggests a lower to middle Santonian age for the beds (Kennedy however, remain poorly known. In addition, although polychaetes et al., 1995; Etayo, personal communication). The specimen is deposited in the Museo Geológico Nacional José Royo y Gómez, Servicio Geológico Colombiano (formerly INGEO- * Corresponding author. MINAS), Bogotá DC, Colombia, under the acronym and catalogue E-mail addresses: [email protected] (O. Vinn), [email protected] (J. Luque). number IMG p880662. 0195-6671/$ e see front matter Ó 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.cretres.2012.11.004 108 O. Vinn, J. Luque / Cretaceous Research 41 (2013) 107e110 3. Results terrigenous fraction consists of fine to medium (w0.34 mm to w0.55 mm), sub-rounded quartz sand grains. The fossil pectinariid tube is composed of a mixture of biogenic Measurements.dtube length: 23.5 mm; anterior diameter: and terrigenous sand grains, generally elongated in shape, and 7.7 mm. agglutinated nearly perpendicular to the tube’s main axis (Fig. 1). The grain size varies from 0.34 to 1.13 mm (n ¼ 21, mean 0.61 mm, 4. Discussion s ¼ 0.19). The principal biogenic constituents of the tube are fine to very coarse sand-sized particles dominated by angular to sub- The grains of the agglutinated tube we describe here are sorted, angular shell fragments, probably of molluscan and/or crustacean with only certain grain sizes present, in contrast to the finer grain origin, followed in minor proportion by fish scales debris and size of the surrounding sediment (average particle sizes ranging unidentified carbonaceous fragments (w0.45 mm to w0.80 mm). from coarse to medium-size silt (w0.060 mm) to clay-size No microfossil tests or debris are present. The far-less-abundant (w0.002 mm)). However, the surrounding sediment contains Fig. 1. Pectinariidae. A, An extant pectinariid polychaete dwelling its agglutinated tube (aperture right) (Photo by Hans Hillewaert). BeE, Agglutinated tube of pectinariid-like specimen IMG p880662 , IMG p880662, from the Upper Cretaceous, Conejo Formation (lower to middle Santonian, w84 My), Department of Boyacá, Cordillera Oriental, Colombia. B, overview (aperture right). C, Detailed view of the grains at the aperture. D, Detailed view of the grains in the middle part of the tube. E, Detailed view of the grains in the proximal part of the tube. O. Vinn, J. Luque / Cretaceous Research 41 (2013) 107e110 109 a small number of larger grains comparable to grain sizes used in an agglutinated polychaete tube (possibly an Amphicteridae) from the wall of possible pectinariid tube. Thus, the dominance of the Early Jurassic of England (Barnard, 1956) that, based on the biogenic detritus among the grains of the agglutinated tube can be shape and orientation of the grains within the tube, has a tube explained by the rarity of terrigenous sand grains and the lack of similar to our specimen. However, that Early Jurassic specimen has microfossils of suitable size in the habitat to make use of them, as a less conical shape than typical for pectinariids. Agglutinated tubes we did not find microfossils of sand-fraction size in the rock matrix. of possible polychaetes are also known from the Jurassic of Poland The pattern of tube walls composed of large grains despite the (Zaton et al., 2012), and the Cretaceous of Oman (Wilson and Taylor, small grain size of the surrounding sediment observed here can be 2001), but in contrast to our Late Cretaceous agglutinated tube, the explained by the ecology of these animals. Pectinariids are deposit former are encrusting on hard substrates and have a much less feeders that ingest volumes of sediment (Fauchald and Jumars, conical shape. Their tubes are also curved unlike the specimen 1979) that can exceed 400 cm3/year (Gordon, 1966). These worms described here. On the other hand, similar pectinariid tubes to the build their tubes of all sand-fraction size grains available in the one described here are known from the Miocene of Japan, but they environment. Thus, during the processing of large volumes of occur on bedding planes as broken and deformed tubes of fine sand sediment with their tentacles, worms find sufficient larger detritus (Katto, 1976). The middle to late Santonian age of our specimen and sand-sized particles from which to build their tubes, despite represents the earliest record of a pectinariid-like tube constructed living in generally very fine-grained sediment. For example, the from sand and macrofossil debris instead of microfossils. extant Pectinaria regalis (Verril, 1900) from Puerto Rico, has a tube that consists of coral and shell fragments, along with foraminiferan 5. Conclusion and molluscan shell fragments (Long, 1973). Petta assimilis McIntosh, 1885 (Pectinariidae), from the South Atlantic, has a tube The evolutionary history of Pectinariidae is poorly understood, composed of agglutinated foraminifera (Hartman, 1967), because due to their sparse fossil record. Despite this, based on this spec- the sediment in the environment was very fine-grained and fora- imen and the literature, we can conclude that agglutinated fossil minifera tests were probably the most available particles of the tubes of similar appearance to those made by Recent Pectinariidae desired sand size (Finger et al., 2008). occurred already in the Late Cretaceous, and may have their origin There are a considerable number of polychaete families con- in pre-Santonian times. This places the origin of Pectinariidae in taining species that have the ability to incorporate sediment in a similar time period to several other groups of tube-producing their tubes. These include: the Sabellariidae, Sabellidae, Oweniidae, polychaetes, including the serpulids and sabellids, which first Alvinellidae, Pectinariidae, Terebellidae, Trichobranchidae, Apisto- appeared in the Mesozoic (Vinn and Mutvei, 2009). branchidae, Longostomatidae,
Recommended publications
  • Invert10 2 217 243 Jirkov for Inet.P65
    Invertebrate Zoology, 2013, 10(2): 217243 © INVERTEBRATE ZOOLOGY, 2013 Identification keys for Terebellomorpha (Polychaeta) of the eastern Atlantic and the North Polar Basin I.A. Jirkov1, M.K. Leontovich2 Department of Hydrobiology, Moscow Lomonosov State University, 119899, Moscow, Russia. e-mail: [email protected]; [email protected] ABSTRACT. New user-friendly identification keys for 117 species of Pectinariidae, Ampharetidae, and Terebellidae from the eastern Atlantic and the North Polar Basin are presented. A new species Auchenoplax worsfoldi sp.n. is described. Three names Amphi- trite affinis, Pista malmgreni, and Terebellides irinae are proposed as junior synonyms to other species. How to cite this article: Jirkov I.A., Leontovich M.K. 2013. Identification keys for Terebellomorpha (Polychaeta) of the eastern Atlantic and the North Polar Basin // Invert. Zool. Vol.10. No.2. P.217243. KEY WORDS: identification key, Polychaeta, Pectinariidae, Ampharetidae, Terebellidae, Eastern Atlantic, North Polar Basin. Êëþ÷è äëÿ îïðåäåëåíèÿ Terebellomorpha (Polychaeta) Âîñòî÷íîé Àòëàíòèêè è Ñåâåðíîãî Ëåäîâèòîãî îêåàíà È.A. Æèðêîâ1, M.K. Ëåîíòîâè÷2 Êàôåäðà ãèäðîáèîëîãèè, Áèîëîãè÷åñêèé ôàêóëüòåò, Ìîñêîâñêèé ãîñóäàðñòâåííûé óíèâåð- ñèòåò èì. Ì.Â. Ëîìîíîñîâà, 119899, Ìîñêâà, Ðîññèÿ. e-mail: [email protected]; [email protected] ÐÅÇÞÌÅ. Ñîñòàâëåíû íîâûå êëþ÷è äëÿ îïðåäåëåíèÿ 117 âèäîâ Pectinariidae, Ampharetidae è Terebellidae Âîñòî÷íîé Àòëàíòèêè è Ñåâåðíîãî Ëåäîâèòîãî îêåàíà. Ïðè ñîñòàâëåíèè êëþ÷åé îñîáîå âíèìàíèå áûëî îáðàùåíî íà ë¸ãêîñòü èõ èñïîëüçî- âàíèÿ. Îïèñàí íîâûé âèä Auchenoplax worsfoldi. Òðè íàçâàíèÿ: Amphitrite affinis, Pista malmgreni, è Terebellides irinae ïðåäëîæåíî ðàññìàòðèâàòü êàê ìëàäøèå ñèíîíèìû äðóãèõ íàçâàíèé. Êàê öèòèðîâàòü ýòó ñòàòüþ: Jirkov I.A., Leontovich M.K. 2013. Identification keys for Terebellomorpha (Polychaeta) of the eastern Atlantic and the North Polar Basin // Invert.
    [Show full text]
  • Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
    Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages.
    [Show full text]
  • A Bioturbation Classification of European Marine Infaunal
    A bioturbation classification of European marine infaunal invertebrates Ana M. Queiros 1, Silvana N. R. Birchenough2, Julie Bremner2, Jasmin A. Godbold3, Ruth E. Parker2, Alicia Romero-Ramirez4, Henning Reiss5,6, Martin Solan3, Paul J. Somerfield1, Carl Van Colen7, Gert Van Hoey8 & Stephen Widdicombe1 1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, U.K. 2The Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft, NR33 OHT, U.K. 3Department of Ocean and Earth Science, National Oceanography Centre, University of Southampton, Waterfront Campus, European Way, Southampton SO14 3ZH, U.K. 4EPOC – UMR5805, Universite Bordeaux 1- CNRS, Station Marine d’Arcachon, 2 Rue du Professeur Jolyet, Arcachon 33120, France 5Faculty of Biosciences and Aquaculture, University of Nordland, Postboks 1490, Bodø 8049, Norway 6Department for Marine Research, Senckenberg Gesellschaft fu¨ r Naturforschung, Su¨ dstrand 40, Wilhelmshaven 26382, Germany 7Marine Biology Research Group, Ghent University, Krijgslaan 281/S8, Ghent 9000, Belgium 8Bio-Environmental Research Group, Institute for Agriculture and Fisheries Research (ILVO-Fisheries), Ankerstraat 1, Ostend 8400, Belgium Keywords Abstract Biodiversity, biogeochemical, ecosystem function, functional group, good Bioturbation, the biogenic modification of sediments through particle rework- environmental status, Marine Strategy ing and burrow ventilation, is a key mediator of many important geochemical Framework Directive, process, trait. processes in marine systems. In situ quantification of bioturbation can be achieved in a myriad of ways, requiring expert knowledge, technology, and Correspondence resources not always available, and not feasible in some settings. Where dedi- Ana M. Queiros, Plymouth Marine cated research programmes do not exist, a practical alternative is the adoption Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, U.K.
    [Show full text]
  • Thelepus Crispus Class: Polychaeta, Sedentaria, Canalipalpata
    Phylum: Annelida Thelepus crispus Class: Polychaeta, Sedentaria, Canalipalpata Order: Terebellida, Terebellomorpha A terebellid worm Family: Terebellidae, Theleponinae Description (Hartman 1969). Notosetae present from Size: Individuals range in size from 70–280 second branchial segment (third body mm in length (Hartman 1969). The greatest segment) and continue almost to the worm body width at segments 10–16 is 13 mm (88 posterior (to 14th segment from end in mature –147 segments). The dissected individual specimens) (Hutchings and Glasby 1986). All on which this description is based was 120 neurosetae short handled, avicular (bird-like) mm in length (from Coos Bay, Fig. 1). uncini, imbedded in a single row on oval- Color: Pinkish orange and cream with bright shaped tori (Figs. 3, 5) where the single row red branchiae, dark pink prostomium and curves into a hook, then a ring in latter gray tentacles and peristomium. segments (Fig. 3). Each uncinus bears a General Morphology: Worm rather stout thick, short fang surmounted by 4–5 small and cigar-shaped. teeth (Hartman 1969) (two in this specimen) Body: Two distinct body regions consisting (Fig. 4). Uncini begin on the fifth body of a broad thorax with neuro- and notopodia segment (third setiger), however, Johnson and a tapering abdomen with only neuropo- (1901) and Hartman (1969) have uncini dia. beginning on setiger two. Anterior: Prostomium reduced, with Eyes/Eyespots: None. ample dorsal flap transversely corrugated Anterior Appendages: Feeding tentacles are dorsally (Fig. 5). Peristomium with circlet of long (Fig. 1), filamentous, white and mucus strongly grooved, unbranched tentacles (Fig. covered. 5), which cannot be retracted fully (as in Am- Branchiae: Branchiae present (subfamily pharctidae).
    [Show full text]
  • In Worms Geoff Read NIWA New Zealand
    Brussels, 28-30 September Polychaeta (Annelida) in WoRMS Geoff Read NIWA New Zealand www.marinespecies.org/polychaeta/index.php Context interface Swimming — an unexpected skill of Polychaeta Acrocirridae Alciopidae Syllidae Nereididae Teuthidodr ilus = squidworm Acrocirridae Polynoidae Swima bombiviridis Syllidae Total WoRMS Polychaeta records, excluding fossils 91 valid families. Entries >98% editor checked, except Echiura (69%) Group in WoRMS all taxa all species valid species names names names Class Polychaeta 23,872 20,135 11,615 Subclass Echiura 296 234 197 Echiura were recently a Subclass Errantia 12,686 10,849 6,210 separate phylum Subclass Polychaeta incertae sedis 354 265 199 Subclass Sedentaria 10,528 8,787 5,009 Non-marine Polychaeta 28 16 (3 terrestrial) Class Clitellata* 1601 1086 (279 Hirudinea) *Total valid non-leech clitellates~5000 spp, 1700 aquatic. (Martin et al. 2008) Annelida diversity "It is now clear that annelids, in addition to including a large number of species, encompass a much greater disparity of body plans than previously anticipated, including animals that are segmented and unsegmented, with and without parapodia, with and without chaetae, coelomate and acoelomate, with straight guts and with U-shaped digestive tracts, from microscopic to gigantic." (Andrade et al. 2015) Andrade et al (2015) “Articulating “archiannelids”: Phylogenomics and annelid relationships, with emphasis on meiofaunal taxa.” Molecular Biology and Evolution, efirst Myzostomida (images Summers et al)EV Nautilus: Riftia Semenov: Terebellidae Annelida latest phylogeny “… it is now well accepted that Annelida includes many taxa formerly considered different phyla or with supposed affiliations with other animal groups, such as Sipuncula, Echiura, Pogonophora and Vestimentifera, Myzostomida, or Diurodrilida (Struck et al.
    [Show full text]
  • Spatial Variation in the Reproductive Biology of Paralvinella Palmiformis (Polychaeta: Alvinellidae) from a Vent Field on the Juan De Fuca Ridge
    MARINE ECOLOGY PROGRESS SERIES Vol. 255: 171–181, 2003 Published June 24 Mar Ecol Prog Ser Spatial variation in the reproductive biology of Paralvinella palmiformis (Polychaeta: Alvinellidae) from a vent field on the Juan de Fuca Ridge Jonathan T. P. Copley1,*, Paul A. Tyler 1, Cindy L. Van Dover 2, Steven J. Philp1 1School of Ocean and Earth Science, Southampton Oceanography Centre, University of Southampton, European Way, Southampton SO14 3ZH, United Kingdom 2Biology Department, College of William & Mary, Williamsburg, Virginia 23187, USA ABSTRACT: The microdistribution and dynamics of deep-sea hydrothermal vent communities often reflect the extreme heterogeneity of their environment. Here we present an assessment of spatial variation in the reproductive development of the alvinellid polychaete Paralvinella palmiformis at the High Rise vent field (Endeavour Segment, Juan de Fuca Ridge, NE Pacific). Samples collected from different locations across the vent field suggest patchy reproductive development for this species. Males and females from several locations contained few or no developing gametes, while gametes were abundant in samples collected at the same time from other locations. Samples lacking gametes were distinguished by body size-frequency distributions with peaks at smaller sizes and the presence or absence of other fauna consistent with early stage assemblages in a successional mosaic model previously proposed for Endeavour Segment communities. Where gametes were present, synchrony of reproductive development between females within samples and between samples was evident. Reproductive synchrony between pairs of samples initially declined over a 7 d interval between sam- ples, suggesting a rapid rate of reproductive development for P. palmiformis. Samples collected 1 mo apart, however, displayed similar frequency distributions of developing gametes.
    [Show full text]
  • Taxonomy and Distribution of Pectinariidae (Annelida) from Iceland with a Comparative Analysis of Uncinal Morphology
    European Journal of Taxonomy 666: 1–32 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.666 www.europeanjournaloftaxonomy.eu 2020 · Parapar J. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:2E0FAA1D-DA9A-4486-805F-9DA3DF928539 Taxonomy and distribution of Pectinariidae (Annelida) from Iceland with a comparative analysis of uncinal morphology Julio PARAPAR 1,*, Verónica PALOMANES 2, Gudmundur V. HELGASON 3 & Juan MOREIRA 4 1,2 Departamento de Bioloxía, Universidade da Coruña, 15008 A Coruña, Spain. 3 Deceased 9 May 2020. Former addresss: RORUM ehf., Brynjólfsgötu 5, 107 Reykjavík, Iceland. 4 Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. 4 Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain. * Corresponding author: [email protected] 2 Email: [email protected] 4 Email: [email protected] 1 urn:lsid:zoobank.org:author:CE188F30-C9B0-44B1-8098-402D2A2F9BA5 2 urn:lsid:zoobank.org:author:6C644341-D35B-42B6-9857-5F119457A424 3 urn:lsid:zoobank.org:author:32B3520E-1D49-4B77-BF81-2AAE3FE76363 4 urn:lsid:zoobank.org:author:B1E38B9B-7751-46E0-BEFD-7C77F7BBBEF0 This paper is dedicated to Guðmundur Vidir Helgason who passed away on 9 May 2020, just before publication of this paper. Project Manager at RORUM, an environmental research and consulting company, he was previously a Project Coordinator for the BIOICE program (Benthic Invertebrates of Icelandic Waters) and Director of the Sandgerði Marine Centre from 1992 to 2013, being one of the organizers of the 7th International Polychaete Conference (Reykjavík, July 2001).
    [Show full text]
  • Identification Guide to the Planktonic Polychaete Larvae Around the Island of Helgoland (German Bight)
    HELGOL.~NDER MEERESUNTERSUCHUNGEN Helgol/inder Meeresunters. 48, 1-58 (1994) Identification guide to the planktonic polychaete larvae around the island of Helgoland (German Bight) S. Plate* & E. Husemann* * Biologische Anstalt Helgoland (Meeresstation); D-27483 Helgoland, Federal Republic of Germany ABSTRACT: The purpose of this work is to provide the means of identifying the planktonic larvae of the polychaete species appearing in the plankton around the island of Helgoland (North Sea). During a three-year survey in this area, the larvae of 54 species out of 24 families belonging to the orders Orbiniida, Spionida, Capitelhda, Phyllodocida, Oweniida, Terebelhda, Sabelhda and the former Archiannelida have been recorded. Illustrated keys to the families, genera and species are presented. To facilitate the identification, additional descriptions and information about the seasonal appearance of the species are given. INTRODUCTION More than 13 000 species of polychaetous annelids take part in the marine benthos communities worldwide. Their distribution, species composition and population density are monitored within various benthos surveys. For the North Sea, especially the German Bight and the Wadden Sea, much information about the benthic polychaete fauna is available (Caspers, 1950; Stripp, 1969; DSrjes, 1977; Rachor & Gerlach, 1978; Gillandt, 1979; Salzwedel et al., 1985; Rachor, 1990; Bosselmann, 1991; Kr6ncke, 1991). In contrast, the holoplanktonic polychaete species and the meroplanktonic polychaete larvae, which are only part of the plankton during a more or less expanded phase of their ontogenesis, have never received much attention. Meroplanktonic polychaete larvae are seldomly recorded during studies monitoring the North Sea plankton (Smidt, 1951; Giere, 1968; Fransz, 1981; Bosselmann, 1989; Belgrano et al., 1990).
    [Show full text]
  • Diversidade Morfológica E Molecular De Polychaeta Do Arquipélago De São Pedro E São Paulo
    UNIVERSIDADE FEDERAL DO RIO DE JANEIRO Campus MACAÉ - PROFESSOR ALOÍSIO TEIXEIRA PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS AMBIENTAIS E CONSERVAÇÃO Rannyele Passos Ribeiro Diversidade Morfológica e Molecular de Polychaeta do Arquipélago de São Pedro e São Paulo MACAÉ 2015 Rannnyele Passos Ribeiro Diversidade Morfológica e Molecular de Polychaeta do Arquipélago de São Pedro e São Paulo Dissertação apresentada ao Programa de Pós- Graduação em Ciências Ambientais e Conservação, Universidade Federal do Rio de Janeiro, Campus Professor Aloísio Teixeira- Macaé, em cumprimento das exigências para a obtenção do título de Mestre em Ciências Ambientais e Conservação. Orientadora: Profa. Christine Ruta Co-orientadores: Profa. Joana Zanol e Prof. Paulo Paiva MACAÉ 2015 Ribeiro, Rannyele Passos. P484d Diversidade morfológica e molecular de Polychaeta o Arquipélago de São Pedro e São Paulo / Rannyele Passos Ribeiro. – Macaé, 2015. 95 f. Orientador: Prof. Christine Ruta Coorientadores: Profa. Joana Zanol Prof. Paulo Paiva Dissertação (mestrado) – Universidade Federal do Rio de Janeiro, Campus Macaé, Programa de Pós-Graduação em Ciências Ambientais e Conservação, 2015. 1. Polychaeta. 2. DNA barcoding . 3. Arquipélago de São Pedro e São Paulo. I. Ruta, Christine, orient. II. Zanol, Joana, coorient. IV. Paiva, Paulo, coorient. V. Título. RANNYELE PASSOS RIBEIRO Diversidade Morfológica e Molecular de Polychaeta do Arquipélago de São Pedro e São Paulo Dissertação aprovada em cumprimento das exigências para obtenção do grau de Mestre em Ciências Ambientais e Conservação, Universidade Federal do Rio de Janeiro Campus Macaé - Professor Aloísio Teixeira, pela seguinte banca examinadora: _____________________________________ Profa. Dra. Christine Ruta Presidente _____________________________________ Prof. Rodrigo Nunes da Fonseca Titular Interno _____________________________________ Prof. Carlos Alberto de Moura Barboza Titular Externo _____________________________________ Prof.
    [Show full text]
  • Taxonomy and Distribution of Pectinariidae (Annelida) from Iceland with a Comparative Analysis of Uncinal Morphology
    European Journal of Taxonomy 666: 1–32 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.666 www.europeanjournaloftaxonomy.eu 2020 · Parapar J. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Research article urn:lsid:zoobank.org:pub:2E0FAA1D-DA9A-4486-805F-9DA3DF928539 Taxonomy and distribution of Pectinariidae (Annelida) from Iceland with a comparative analysis of uncinal morphology Julio PARAPAR 1,*, Verónica PALOMANES 2, Gudmundur V. HELGASON 3 & Juan MOREIRA 4 1,2 Departamento de Bioloxía, Universidade da Coruña, 15008 A Coruña, Spain. 3 Deceased 9 May 2020. Former addresss: RORUM ehf., Brynjólfsgötu 5, 107 Reykjavík, Iceland. 4 Departamento de Biología (Zoología), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. 4 Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain. * Corresponding author: [email protected] 2 Email: [email protected] 4 Email: [email protected] 1 urn:lsid:zoobank.org:author:CE188F30-C9B0-44B1-8098-402D2A2F9BA5 2 urn:lsid:zoobank.org:author:6C644341-D35B-42B6-9857-5F119457A424 3 urn:lsid:zoobank.org:author:32B3520E-1D49-4B77-BF81-2AAE3FE76363 4 urn:lsid:zoobank.org:author:B1E38B9B-7751-46E0-BEFD-7C77F7BBBEF0 This paper is dedicated to Guðmundur Vidir Helgason who passed away on 9 May 2020, just before publication of this paper. Project Manager at RORUM, an environmental research and consulting company, he was previously a Project Coordinator for the BIOICE program (Benthic Invertebrates of Icelandic Waters) and Director of the Sandgerði Marine Centre from 1992 to 2013, being one of the organizers of the 7th International Polychaete Conference (Reykjavík, July 2001).
    [Show full text]
  • Polychaete Worms Definitions and Keys to the Orders, Families and Genera
    THE POLYCHAETE WORMS DEFINITIONS AND KEYS TO THE ORDERS, FAMILIES AND GENERA THE POLYCHAETE WORMS Definitions and Keys to the Orders, Families and Genera By Kristian Fauchald NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY In Conjunction With THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA Science Series 28 February 3, 1977 TABLE OF CONTENTS PREFACE vii ACKNOWLEDGMENTS ix INTRODUCTION 1 CHARACTERS USED TO DEFINE HIGHER TAXA 2 CLASSIFICATION OF POLYCHAETES 7 ORDERS OF POLYCHAETES 9 KEY TO FAMILIES 9 ORDER ORBINIIDA 14 ORDER CTENODRILIDA 19 ORDER PSAMMODRILIDA 20 ORDER COSSURIDA 21 ORDER SPIONIDA 21 ORDER CAPITELLIDA 31 ORDER OPHELIIDA 41 ORDER PHYLLODOCIDA 45 ORDER AMPHINOMIDA 100 ORDER SPINTHERIDA 103 ORDER EUNICIDA 104 ORDER STERNASPIDA 114 ORDER OWENIIDA 114 ORDER FLABELLIGERIDA 115 ORDER FAUVELIOPSIDA 117 ORDER TEREBELLIDA 118 ORDER SABELLIDA 135 FIVE "ARCHIANNELIDAN" FAMILIES 152 GLOSSARY 156 LITERATURE CITED 161 INDEX 180 Preface THE STUDY of polychaetes used to be a leisurely I apologize to my fellow polychaete workers for occupation, practised calmly and slowly, and introducing a complex superstructure in a group which the presence of these worms hardly ever pene- so far has been remarkably innocent of such frills. A trated the consciousness of any but the small group great number of very sound partial schemes have been of invertebrate zoologists and phylogenetlcists inter- suggested from time to time. These have been only ested in annulated creatures. This is hardly the case partially considered. The discussion is complex enough any longer. without the inclusion of speculations as to how each Studies of marine benthos have demonstrated that author would have completed his or her scheme, pro- these animals may be wholly dominant both in num- vided that he or she had had the evidence and inclina- bers of species and in numbers of specimens.
    [Show full text]
  • Alvinella Pompejana) Accepted: 18-04-2020
    International Journal of Fauna and Biological Studies 2020; 7(3): 25-32 ISSN 2347-2677 www.faunajournal.com IJFBS 2020; 7(3): 25-32 Adaptation in extreme underwater vent ecosystem: A Received: 16-03-2020 case study on Pompeii worm (Alvinella pompejana) Accepted: 18-04-2020 Joyanta Bir (1). Khulna University, School of Joyanta Bir, Md Rony Golder and SM Ibrahim Khalil Life Science, Fisheries and Marine Resources Technology Abstract Discipline, 9208, Khulna, Bangladesh The deep-sea habitats such as cold seeps and hydrothermal vents are very challenging environments (2). University of Basque displaying a high biomass compared to the adjacent environment at comparable depth. Because of the Country, Marine Environment high pressure, the high temperature, massive concentrations of toxic compounds and the extreme and Resources (MER), Bilbao, physico-chemical gradients makes the lives very extreme in vent environment. Hypoxia is one of the Spain challenges that these species face to live there. Therefore, most of the dwellers here lives in a highly integrated symbiosis with sulfide-oxidizing chemoautotrophic bacteria. Very few species belonging to Md Rony Golder annelids and crustaceans can survive in this ecosystem through developing specific adaptations of their Khulna University, School of respiratory system, the morphological, physiological and biochemical levels. Here, we review specific Life Science, Fisheries and adaptations mechanisms of a prominent vent dweller Pompeii Worm (Alvinella pompejana) in order to Marine Resources Technology know their morphological, physiological biochemical levels to cope with thrilling hypoxic vent Discipline, 9208, Khulna, environment. Most often Pompeii worm develop ventilation and branchial surfaces to assistance with Bangladesh oxygen extraction, and an increase in excellently tuned oxygen obligatory proteins to help with oxygen stowage and conveyance.
    [Show full text]