Dissection of Xist Functional Elements Involved in X-Chromosome Inactivation

Total Page:16

File Type:pdf, Size:1020Kb

Dissection of Xist Functional Elements Involved in X-Chromosome Inactivation Dissection of Xist Functional Elements Involved in X-Chromosome Inactivation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Colognori, David A. 2019. Dissection of Xist Functional Elements Involved in X-Chromosome Inactivation. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:42029476 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Dissection of Xist functional elements involved in X-chromosome inactivation A dissertation presented by David A. Colognori to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biological and Biomedical Sciences Harvard University Cambridge, Massachusetts May 2019 © 2019 by David A. Colognori All rights reserved. Dissertation Advisor: Jeannie T. Lee David A. Colognori Dissection of Xist functional elements involved in X-chromosome inactivation Abstract X-chromosome inactivation (XCI) is the epigenetic process of silencing one of the two X chromosomes in female mammals to balance X-linked gene dosage with that of males. This process is governed by the long noncoding RNA Xist. Xist is expressed from and coats one X chromosome in cis, leading to recruitment of various protein factors to silence gene expression. However, the functional RNA elements and molecular mechanisms involved in Xist coating and silencing remain ambiguous. The rationale for this work was thus to perform a systematic deletional analysis to identify functional motifs within the endogenous Xist locus in female cells. The screen identified regions important for correct splicing of the Xist transcript, such as the Repeat A region. Others, including Repeat F, were required for proper expression and/or RNA stability. Repeat E was crucial for restricting Xist localization to the inactive X (Xi) territory. Finally, Repeat B was necessary for recruitment of Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2) across the Xi, as well as for proper Xist coating. To gain mechanistic insight into Polycomb targeting and Xist localization, I identified protein trans factors associated with the Repeat B and E motifs. Repeat B function in Polycomb recruitment and Xist coating was shown to be mediated through direct interaction with the RNA- binding protein HNRNPK. Meanwhile, Repeat E function in Xist localization was found to be mediated through interaction with the nuclear matrix protein CIZ1. iii Just as Xist RNA is necessary to spread Polycomb complexes across the Xi, I found that Polycomb complexes are in turn necessary to properly spread Xist RNA. In addition, PRC1 and PRC2 occupancy on Xi was discovered to be mutually interdependent. Hence, Xist, PRC1, and PRC2 require each other to propagate along the Xi, suggesting a positive feedback mechanism between RNA initiator and protein effectors. Perturbing Xist/Polycomb spreading has significant consequences, as deleting Repeat B during de novo XCI establishment causes failure of X- linked gene silencing and disrupts architectural reconfiguration of the X from and active to inactive chromosomal structure. iv Table of Contents Abstract iii Table of Contents v List of Figures and Tables vii Acknowledgements viii Dedication x Chapter 1 Introduction 1 Epigenetics and chromatin 2 Dosage compensation and X-chromosome inactivation 3 The X-inactivation center and X-inactive specific transcript 6 XCI as a paradigm of epigenetic regulation by RNA 7 Features and mechanisms of Xist RNA 8 Xist spreading 9 Xist-mediated gene silencing 11 Polycomb complexes and their function 12 Polycomb recruitment, spreading, and maintenance 16 Xist-mediated Polycomb recruitment 18 Unique chromosomal architecture of the Xi 21 Xist-mediated changes to chromosomal architecture 23 Preface 24 Chapter 2 Xist deletional analysis reveals an interdependency between Xist 26 RNA and Polycomb complexes for spreading along the inactive X Summary 28 Introduction 28 Results 30 Discussion 66 Materials and Methods 68 Chapter 3 Repeat E anchors Xist RNA to the inactive X chromosomal 89 compartment through CDKN1A-interacting protein (CIZ1) Summary 91 Introduction 91 Results 92 Discussion 110 Materials and Methods 112 Chapter 4 Conclusion 120 Controversy over Xist functional domains 121 Advantages of CRISPR/Cas9 technology and cell lines used in this work 122 Xist regions affecting RNA abundance and splicing: 123 Repeats A, F, exons 2-6, 7a/d Xist regions affecting RNA localization: Repeat E 125 v CIZ1 interaction with Repeat E 125 Xist regions affecting RNA coating and Polycomb recruitment: Repeat B 126 HNRNPK interaction with Repeat B 126 Repeat B-HNRNPK interaction is required for Polycomb recruitment 127 Role of Repeat A in Polycomb recruitment 128 Role of Polycomb in Xist-mediated gene silencing 130 Mechanism of Repeat B/HNRNPK-mediated Polycomb recruitment 130 Xist co-opts general factors for XCI 132 Independent versus interdependent recruitment of Polycomb complexes 134 Role of Polycomb in Xist RNA coating 135 Role of Repeat B in architectural reconfiguration of the Xi 137 References 140 Appendix 162 vi List of Figures and Tables Chapter 1 Figure 1.1 – Features of Xist 7 Figure 1.2 – Composition and interplay between PRC1 and PRC2 15 Chapter 2 Figure 2.1 – CRISPR/Cas9 deletion screen identifies Xist functional domains 31 Figure 2.2 – Xist deletions affecting splicing 33 Figure 2.3 – The Repeat B motif affects Xist localization in a CIZ1-independent manner 36 Figure 2.4 – H3K27me3/H2AK119ub IF and Xist RNA FISH for deletions without 37 phenotype Figure 2.5 – Repeat B is required for Xist RNA spreading and Polycomb maintenance 39 Figure 2.6 – Identification of HNRNPK as a Repeat B-interacting protein 42 Figure 2.7 – Direct Repeat B-HNRNPK interaction is required for Xist spreading and 45 Polycomb maintenance Figure 2.8 – Xist and Polycomb complexes depend on each other to spread across the Xi 48 Figure 2.9 – Diffuse Xist cloud morphology is not due to large-scale decompaction of Xi 51 Figure 2.10 – Independent and interdependent recruitment of PRC1 and PRC2 to the Xi 54 Figure 2.11 – Repeat B is required for complete Xist-mediated gene silencing 57 Figure 2.12 – Repeat B is required for proper Xa to Xi architectural reconfiguration 62 Chapter 3 Figure 3.1 – ASH2L antibody exhibits cross-reactivity to an unknown Xi-localizing protein 93 Figure 3.2 – CIZ1 is a novel Xi-localizing protein 96 Figure 3.3 – Xist RNA is required for CIZ1 recruitment to Xi 99 Figure 3.4 – CIZ1 is critical for maintenance of Xist cloud and Xi heterochromatin marks 102 Figure 3.5 – CIZ1 interacts with Xist RNA through the Repeat E region 105 Figure 3.6 – CIZ1 interacts with Xist RNA independently of HNRNPU 108 Chapter 4 Figure 4.1 – Repeat B secondary structure 127 Appendix Table S1 – Sanger sequencing information 163 Table S2 – Mass spectrometry data 198 Table S3 – Guide RNA sequences 215 Table S4 – FISH probe sequences 216 Table S5 – Primer sequences 224 vii Acknowledgements This dissertation would not have been possible without the love and support of countless individuals in my life. Science is intended to be a collaborative effort, and the long journey toward a Ph.D.—both at and away from the bench—accurately reflects that. First and foremost, I would like to thank my family. I am grateful to my mother for recognizing and encouraging my scientific curiosity and creativity from a young age, as well as her patience with my many idiosyncrasies. I thank my sister, the other Ph.D. in our family, for her guidance throughout this difficult journey. I also thank my brother-in-law, Kevin, and my recent nephews, John and Christopher, for making my visits home so enjoyable. I was also fortunate to have several relatives near Boston that went out of their way to make me feel at home and provide a respite from work. Finally, I am grateful to my father for always believing in me and helping me get back up again when I fall. Although he is no longer with us, he is the reason I chose to pursue biological research in the first place. I miss you dad. I was lucky to have amazing friends and housemates in Boston who made these years fly by: Diana Cai, Luvena Ong, Terence Wong, Tim Whipple, Jarom Chung, Shela Durresi, Bing Han, and Bernie Kuan. Thanks for all the game nights, potlucks, and sharing your lives with me. I would also like to thank my high school and college friends for their support from afar, as well as my online gaming friends for all the laughs we shared over the internet. I am indebted to my undergraduate research advisor, Joan Steitz, for starting me down the path of RNA biology. She accepted me into her lab with no prior research experience and taught me the fundamentals of doing good science. I owe my mentors in the Steitz lab, Andrei Alexandrov and Kasandra Riley, for teaching me everything I knew upon entering graduate school. I am grateful to all past and present members of the Lee lab for their advice and support over the years, both scientific and personal. I am especially grateful to Hongjae Sunwoo, Stefan viii Pinter, Cathy Cifuentes-Rojas, Yesu Jeon, and Brian del Rosario for their close mentorship on various projects. Thank you for putting up with all my whining and shenanigans. To my fellow BBS graduate students in the Lee lab (Chen-Yu Wang, John Froberg, Andrea Kriz, Lin Wang, and Johnny Kung), thanks for making my time here so enjoyable.
Recommended publications
  • In Silico Analysis of Regulatory Elements of the Vitamin D Receptor
    Open Access Baghdad Science Journal P-ISSN: 2078-8665 2020, 17(2):463-470 E-ISSN: 2411-7986 DOI: http://dx.doi.org/10.21123/bsj.2020.17.2.0463 In Silico Analysis of Regulatory Elements of the Vitamin D Receptor Shirin Farivar 1 Roya Amirinejad 2 Bahar Naghavi gargari 3 Seyedeh Batool Hassani 4 Zeinab Shirvani-Farsani 1* Received 26/2/2019, Accepted 5/1/2020, Published 1/6/2020 This work is licensed under a Creative Commons Attribution 4.0 International License. Abstract Vitamin D receptor (VDR) is a nuclear transcription factor that controls gene expression. Its impaired expression was found to be related to different diseases. VDR also acts as a regulator of different pathways including differentiation, inflammation, calcium and phosphate absorption, etc. but there is no sufficient knowledge about the regulation of the gene itself. Therefore, a better understanding of the genetic and epigenetic factors regulating the VDR may facilitate the improvement of strategies for the prevention and treatment of diseases associated with dysregulation of VDR. In the present investigation, a set of databases and methods were used to identify putative functional elements in the VDR locus. Histone modifications, CpG Islands, epigenetic marks at VDR locus were indicated. In addition, repeated sequences, enhancers, insulators, transcription factor binding sites and targets of the VDR gene, as well as protein- protein interactions with bioinformatics tools, were reported. Some of these genetic elements had overlapped with CpG Islands. These results revealed important new insight into the molecular mechanisms of the VDR gene regulation in human cells and tissues. Key words: CpG Islands, Epigenetics, In silico analysis, Regulation elements, VDR Introduction: Vitamin D is a steroid hormone that multiple sclerosis (10), Rheumatoid Arthritis and balances calcium and phosphate levels and is Systemic Lupus Erythematosus (11), cardiovascular crucial for bone structure.
    [Show full text]
  • (PPAN) Affects Mitochondrial Homeostasis and Autophagic Flux
    cells Article Loss of Peter Pan (PPAN) Affects Mitochondrial Homeostasis and Autophagic Flux David P. Dannheisig 1, Eileen Beck 1, Enrico Calzia 2, Paul Walther 3, Christian Behrends 4 and Astrid S. Pfister 1,* 1 Institute of Biochemistry and Molecular Biology, Ulm University, D-89081 Ulm, Germany 2 Institute of Anesthesiological Pathophysiology and Process Development, Ulm University, D-89081 Ulm, Germany 3 Central Facility for Electron Microscopy, Ulm University, D-89081 Ulm, Germany 4 Munich Cluster for Systems Neurology, Medical Faculty, Ludwig-Maximilians-University München, D-81377 Munich, Germany * Correspondence: astrid.pfi[email protected]; Tel.: +49-731-500-23390 Received: 5 June 2019; Accepted: 10 August 2019; Published: 14 August 2019 Abstract: Nucleolar stress is a cellular response to inhibition of ribosome biogenesis or nucleolar disruption leading to cell cycle arrest and/or apoptosis. Emerging evidence points to a tight connection between nucleolar stress and autophagy as a mechanism underlying various diseases such as neurodegeneration and treatment of cancer. Peter Pan (PPAN) functions as a key regulator of ribosome biogenesis. We previously showed that human PPAN localizes to nucleoli and mitochondria and that PPAN knockdown triggers a p53-independent nucleolar stress response culminating in mitochondrial apoptosis. Here, we demonstrate a novel role of PPAN in the regulation of mitochondrial homeostasis and autophagy. Our present study characterizes PPAN as a factor required for maintaining mitochondrial integrity and respiration-coupled ATP production. PPAN interacts with cardiolipin, a lipid of the inner mitochondrial membrane. Down-regulation of PPAN enhances autophagic flux in cancer cells. PPAN knockdown promotes recruitment of the E3-ubiquitin ligase Parkin to damaged mitochondria.
    [Show full text]
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • (PWP2) Gene Mapping to 21Q22.3 Ronald G
    Downloaded from genome.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press LETTER Isolation and Genomic Structure of a Human Homolog of the Yeast Periodic Tryptophan Protein 2 (PWP2) Gene Mapping to 21q22.3 Ronald G. Lafrenii~re, 1'4 Daniel L. Rochefort, 1 Nathalie Chr~tien, ~ Catherine E. Neville, 2 Robert G. Korneluk, 2 Lin Zuo, 3 Yalin Wei, 3 Jay Lichter, 3 and Guy A. Rouleau ~ 1Centre for Research in Neuroscience, McGill University, and Department of Neurology, Montreal General Hospital Research Institute, Montreal, Canada H3G 1A4; 2DNA Sequencing Core Facility, Canadian Genetic Diseases Network, Children's Hospital of Eastern Ontario, Ottawa, Canada K1H 8L1; 3Sequana Therapeutics, Inc., La Jolla, California 92037 As part of efforts to identify candidate genes for diseases mapping to the 21q22.3 region, we have assembled a 770-kb cosmid and BAC contig containing eight tightly linked markers. These cosmids and BACs were restriction mapped using eight rare cutting enzymes, with the goal of identifying CpG-rich islands. One such island was identified by the clustering of lqotl, Eagl, Sstll, and BssHIl sites, and corresponded to the Nod linking clone LJI04 described previously. A 7.6-kb l-lindlll fragment containing this CpG-rich island was subcloned and partially sequenced. A homology search using the sequence obtained from either side of the Nod site identified an expressed sequence tag with homology to the yeast periodic tryptophan protein 2 (PWP2). Several cDNAs corresponding to the human PWP2 gene were identified and partially sequenced. Northern blot analysis revealed a 3.3-kb transcript that was well expressed in all tissues tested.
    [Show full text]
  • Transcriptional Regulation of RKIP in Prostate Cancer Progression
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Sciences Transcriptional Regulation of RKIP in Prostate Cancer Progression Submitted by: Sandra Marie Beach In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Sciences Examination Committee Major Advisor: Kam Yeung, Ph.D. Academic William Maltese, Ph.D. Advisory Committee: Sonia Najjar, Ph.D. Han-Fei Ding, M.D., Ph.D. Manohar Ratnam, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: May 16, 2007 Transcriptional Regulation of RKIP in Prostate Cancer Progression Sandra Beach University of Toledo ACKNOWLDEGMENTS I thank my major advisor, Dr. Kam Yeung, for the opportunity to pursue my degree in his laboratory. I am also indebted to my advisory committee members past and present, Drs. Sonia Najjar, Han-Fei Ding, Manohar Ratnam, James Trempe, and Douglas Pittman for generously and judiciously guiding my studies and sharing reagents and equipment. I owe extended thanks to Dr. William Maltese as a committee member and chairman of my department for supporting my degree progress. The entire Department of Biochemistry and Cancer Biology has been most kind and helpful to me. Drs. Roy Collaco and Hong-Juan Cui have shared their excellent technical and practical advice with me throughout my studies. I thank members of the Yeung laboratory, Dr. Sungdae Park, Hui Hui Tang, Miranda Yeung for their support and collegiality. The data mining studies herein would not have been possible without the helpful advice of Dr. Robert Trumbly. I am also grateful for the exceptional assistance and shared microarray data of Dr.
    [Show full text]
  • O-Glcnacylation Regulates the Stability and Enzymatic Activity of the Histone Methyltransferase EZH2
    O-GlcNAcylation regulates the stability and enzymatic activity of the histone methyltransferase EZH2 Pei-Wen Loa, Jiun-Jie Shieb, Chein-Hung Chena, Chung-Yi Wua, Tsui-Ling Hsua, and Chi-Huey Wonga,1 aGenomics Research Center, Academia Sinica, Taipei 115, Taiwan; and bInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan Contributed by Chi-Huey Wong, May 16, 2018 (sent for review February 1, 2018; reviewed by Michael D. Burkart, Benjamin G. Davis, and Gerald W. Hart) Protein O-glycosylation by attachment of β-N-acetylglucosamine maintenance and differentiation in embryonic stem cells (14, 15). (GlcNAc) to the Ser or Thr residue is a major posttranslational It was suggested that O-GlcNAcylation might play an important glycosylation event and is often associated with protein folding, role in the regulation of PRC1-mediated gene expression, and stability, and activity. The methylation of histone H3 at Lys-27 along this line the O-GlcNAcylation of EZH2 at S76 in the PRC2 catalyzed by the methyltransferase EZH2 was known to suppress complex was reported to stablize EZH2 in our previous study (16). gene expression and cancer development, and we previously The PRC2 complex is composed of Enhancer of zeste 2 (EZH2), reported that the O-GlcNAcylation of EZH2 at S76 stabilized Suppressor of Zeste 12 (Suz12), Extraembryonic endoderm (EED), EZH2 and facilitated the formation of H3K27me3 to inhibit tumor AE binding protein 2 (AEBP2), and retinoblastoma binding protein suppression. In this study, we employed a fluorescence-based method 4/7 (RBBP4/7) (17, 18). Within the PRC2 complex, EZH2 catalyzes the di- and trimethylation of histone H3 at lysine 27 (K27) to form of sugar labeling combined with mass spectrometry to investigate H3K27me2/3 to regulate embryonic and cancer development EZH2 glycosylation and identified five O-GlcNAcylation sites.
    [Show full text]
  • Nuclear Organization and the Epigenetic Landscape of the Mus Musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected]
    University of Connecticut OpenCommons@UConn Doctoral Dissertations University of Connecticut Graduate School 8-9-2019 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia Liu University of Connecticut - Storrs, [email protected] Follow this and additional works at: https://opencommons.uconn.edu/dissertations Recommended Citation Liu, Alicia, "Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome" (2019). Doctoral Dissertations. 2273. https://opencommons.uconn.edu/dissertations/2273 Nuclear Organization and the Epigenetic Landscape of the Mus musculus X-Chromosome Alicia J. Liu, Ph.D. University of Connecticut, 2019 ABSTRACT X-linked imprinted genes have been hypothesized to contribute parent-of-origin influences on social cognition. A cluster of imprinted genes Xlr3b, Xlr4b, and Xlr4c, implicated in cognitive defects, are maternally expressed and paternally silent in the murine brain. These genes defy classic mechanisms of autosomal imprinting, suggesting a novel method of imprinted gene regulation. Using Xlr3b and Xlr4c as bait, this study uses 4C-Seq on neonatal whole brain of a 39,XO mouse model, to provide the first in-depth analysis of chromatin dynamics surrounding an imprinted locus on the X-chromosome. Significant differences in long-range contacts exist be- tween XM and XP monosomic samples. In addition, XM interaction profiles contact a greater number of genes linked to cognitive impairment, abnormality of the nervous system, and abnormality of higher mental function. This is not a pattern that is unique to the imprinted Xlr3/4 locus. Additional Alicia J. Liu - University of Connecticut - 2019 4C-Seq experiments show that other genes on the X-chromosome, implicated in intellectual disability and/or ASD, also produce more maternal contacts to other X-linked genes linked to cognitive impairment.
    [Show full text]
  • The Mutational Landscape of Myeloid Leukaemia in Down Syndrome
    cancers Review The Mutational Landscape of Myeloid Leukaemia in Down Syndrome Carini Picardi Morais de Castro 1, Maria Cadefau 1,2 and Sergi Cuartero 1,2,* 1 Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; [email protected] (C.P.M.d.C); [email protected] (M.C.) 2 Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain * Correspondence: [email protected] Simple Summary: Leukaemia occurs when specific mutations promote aberrant transcriptional and proliferation programs, which drive uncontrolled cell division and inhibit the cell’s capacity to differentiate. In this review, we summarize the most frequent genetic lesions found in myeloid leukaemia of Down syndrome, a rare paediatric leukaemia specific to individuals with trisomy 21. The evolution of this disease follows a well-defined sequence of events and represents a unique model to understand how the ordered acquisition of mutations drives malignancy. Abstract: Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators—such as cohesin, CTCF or EZH2—and Citation: de Castro, C.P.M.; Cadefau, in signalling mediators of the JAK/STAT and RAS pathways.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Molecular and Genetic Analysis of Otosclerosis
    A molecular and genetic analysis of otosclerosis Joanna Lauren Ziff Submitted for the degree of PhD University College London January 2014 1 Declaration I, Joanna Ziff, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Where work has been conducted by other members of our laboratory, this has been indicated by an appropriate reference. 2 Abstract Otosclerosis is a common form of conductive hearing loss. It is characterised by abnormal bone remodelling within the otic capsule, leading to formation of sclerotic lesions of the temporal bone. Encroachment of these lesions on to the footplate of the stapes in the middle ear leads to stapes fixation and subsequent conductive hearing loss. The hereditary nature of otosclerosis has long been recognised due to its recurrence within families, but its genetic aetiology is yet to be characterised. Although many familial linkage studies and candidate gene association studies to investigate the genetic nature of otosclerosis have been performed in recent years, progress in identifying disease causing genes has been slow. This is largely due to the highly heterogeneous nature of this condition. The research presented in this thesis examines the molecular and genetic basis of otosclerosis using two next generation sequencing technologies; RNA-sequencing and Whole Exome Sequencing. RNA–sequencing has provided human stapes transcriptomes for healthy and diseased stapes, and in combination with pathway analysis has helped identify genes and molecular processes dysregulated in otosclerotic tissue. Whole Exome Sequencing has been employed to investigate rare variants that segregate with otosclerosis in affected families, and has been followed by a variant filtering strategy, which has prioritised genes found to be dysregulated during RNA-sequencing.
    [Show full text]
  • SMARCA1 Antibody A
    Revision 1 C 0 2 - t SMARCA1 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 0 5 Web: [email protected] 4 www.cellsignal.com 9 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB, IP H Endogenous 130 Rabbit P28370 6594 Product Usage Information 5. Ho, L. and Crabtree, G.R. (2010) Nature 463, 474-84. 6. Landry, J.W. et al. (2011) Genes Dev 25, 275-86. Application Dilution 7. Landry, J. et al. (2008) PLoS Genet 4, e1000241. Western Blotting 1:1000 Immunoprecipitation 1:50 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity SMARCA1 Antibody recognizes endogenous levels of total SMARCA1 protein. Species Reactivity: Human Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to residues near the amino terminus of human SMARCA1 protein. Antibodies are purified by protein A and peptide affinity chromatography. Background SMARCA1 (SNF2L) is one of the two orthologs of the ISWI (imitation switch) ATPases encoded by the mammalian genome (1). The ISWI chromatin remodeling complexes were first identified in Drosophila and have been shown to remodel and alter nucleosome spacing in vitro (2). SMARCA1 is the catalytic subunit of the nucleosome remodeling factor (NURF) and CECR2-containing remodeling factor (CERF) complexes (3-5).
    [Show full text]
  • Involvement of DPP9 in Gene Fusions in Serous Ovarian Carcinoma
    Smebye et al. BMC Cancer (2017) 17:642 DOI 10.1186/s12885-017-3625-6 RESEARCH ARTICLE Open Access Involvement of DPP9 in gene fusions in serous ovarian carcinoma Marianne Lislerud Smebye1,2, Antonio Agostini1,2, Bjarne Johannessen2,3, Jim Thorsen1,2, Ben Davidson4,5, Claes Göran Tropé6, Sverre Heim1,2,5, Rolf Inge Skotheim2,3 and Francesca Micci1,2* Abstract Background: A fusion gene is a hybrid gene consisting of parts from two previously independent genes. Chromosomal rearrangements leading to gene breakage are frequent in high-grade serous ovarian carcinomas and have been reported as a common mechanism for inactivating tumor suppressor genes. However, no fusion genes have been repeatedly reported to be recurrent driver events in ovarian carcinogenesis. We combined genomic and transcriptomic information to identify novel fusion gene candidates and aberrantly expressed genes in ovarian carcinomas. Methods: Examined were 19 previously karyotyped ovarian carcinomas (18 of the serous histotype and one undifferentiated). First, karyotypic aberrations were compared to fusion gene candidates identified by RNA sequencing (RNA-seq). In addition, we used exon-level gene expression microarrays as a screening tool to identify aberrantly expressed genes possibly involved in gene fusion events, and compared the findings to the RNA-seq data. Results: We found a DPP9-PPP6R3 fusion transcript in one tumor showing a matching genomic 11;19-translocation. Another tumor had a rearrangement of DPP9 with PLIN3. Both rearrangements were associated with diminished expression of the 3′ end of DPP9 corresponding to the breakpoints identified by RNA-seq. For the exon-level expression analysis, candidate fusion partner genes were ranked according to deviating expression compared to the median of the sample set.
    [Show full text]