Glossary Q-Z 304P.P

Total Page:16

File Type:pdf, Size:1020Kb

Glossary Q-Z 304P.P 234 ghÐp bé bèn Di truyÒn cña c¸c alen trong thÓ tø béi tù d-ìng. Mét kiÓu gen AAAa sÏ s¶n xuÊt c¸c giao tö AA, Aa víi tû lÖ 3:1. qualitative trait A trait that shows Qq discontinuous variation - i.e. individuals can be assigned to one of a small number of discrete classes. tÝnh tr¹ng chÊt l-îng Mét tÝnh tr¹ng cho q Denotes the longer of the two thÊy biÕn dÞ kh«ng liªn tôc- nghÜa lμ c¸c c¸ chromosome arms, e.g. human 10q is the thÓ cã thÓ ®-îc g¸n cho mét sè l-îng nhá long arm of human chromosome 10. c¸c líp t¸ch biÖt. q BiÓu thÞ nh¸nh dμi cña hai nh¸nh nhiÔm quantitative genetics The area of s¾c thÓ, vÝ dô ng-êi 10q lμ nh¸nh dμi cña genetics concerned with the inheritance nhiÔm s¾c thÓ sè 10 cña ng-êi. of quantitative traits that show continuous q-beta replicase A viral RNA polymerase variation, as opposed to qualitative traits. secreted by a bacteriophage that infects Since many of the critical targets in both E. coli. It has the property of being able to plant and animal breeding are of this type, copy RNA sequences at a rapid rate. most practical improvement programs involve the application of quantitative q-beta replicaza RNA polymerase virut genetics. ®-îc ph©n tiÕt do thÓ thùc khuÈn l©y nhiÔm E. coli. Cã thuéc tÝnh diÔn ra kh¶ n¨ng sao di truyÒn häc sè l-îng LÜnh vùc di truyÒn chÐp tr×nh tù RNA víi nhÞp ®é nhanh. häc liªn quan víi di truyÒn tÝnh tr¹ng sè l-îng cho thÊy biÕn dÞ liªn tôc, ng-îc víi QSAR viÕt t¾t cña quantitative structure- tÝnh tr¹ng chÊt l-îng. V× nhiÒu môc ®Ých activity relationship phª ph¸n trong nh©n gièng sinh s¶n c¶ QTL viÕt t¾t cña quantitative trait locus. thùc vËt vμ ®éng vËt nu«i ®Òu thuéc lo¹i quadrivalent A chromosome configuration nμy, hÇu hÕt c¸c ch-¬ng tr×nh n©ng cao visible in late prophase and metaphase thùc hμnh bao gåm øng dông di truyÒn häc of the first meiotic division, where four sè l-îng. chromosomes are linked by chiasmata. quantitative inheritance Inheritance of Can occur in autotetraploids when four measurable traits that depend on the homologous chromosomes pair, or in cumulative action of many genes and/or diploids as a result of heterozygosity for involve a significant proportion of non- a reciprocal translocation between two genetic determination. non-homologous chromosomes. di truyÒn sè l-îng Di truyÒn nh÷ng tÝnh ®ång hãa trÞ CÊu h×nh nhiÔm s¾c thÓ nh×n tr¹ng ®o ®-îc mμ phô thuéc vμo ho¹t ®éng thÊy râ trong cuèi k× ®Çu vμ k× gi÷a ph©n tÝch tô cña nhiÒu gen vμ/hoÆc bao gåm mét chia gi¶m ph©n lÇn ®Çu, n¬i bèn nhiÔm s¾c tØ lÖ quan träng yÕu tè x¸c ®Þnh kh«ng di thÓ liªn kÕt do b¾t chÐo. Cã thÓ xuÊt hiÖn truyÒn. trong thÓ tø béi tù d-ìng khi bèn nhiÔm quantitative structure-activity s¾c thÓ t-¬ng ®ång cÆp ®«i, hoÆc trong relationship (Abbreviation QSAR). A l-ìng béi lμ hËu qu¶ cña tÝnh dÞ hîp tö v× computer modelling technique that ho¸n vÞ thuËn nghÞch gi÷a hai nhiÔm s¾c enables the prediction of the likely activity thÓ kh«ng t-¬ng ®ång. of a molecule before it is synthesized. quadruplex The inheritance of alleles in QSAR analysis relies on recognizing autotetraploids. A genotype AAAa will associations of molecular structures and produce gametes AA, Aa in the ratio 3:1. activity from historical data. quantitative trait 235 quan hÖ ho¹t ®éng - cÊu tróc sè l-îng quarantine Isolation for a period after (viÕt t¾t QSAR). Mét kü thuËt m« h×nh tÝnh arrival in a new location, to allow any pre- to¸n cho phÐp dù ®o¸n ho¹t ®éng cña mét existing disease symptoms to appear. ph©n tö gièng hÖt tr-íc khi nã ®-îc tæng Used in the context of regulations hîp. Sù ph©n tÝch QSAR tin cËy vμo nh÷ng restricting the sale or shipment of living mèi quan hÖ nhËn biÕt vÒ cÊu tróc ph©n tö organisms, usually to prevent disease or vμ ho¹t ®éng tõ d÷ liÖu tiÒn sö. pest invasion of an area. quantitative trait A measurable trait that c¸ch ly kiÓm dÞch C« lËp mét thêi kú sau shows continuous variation (e.g. height, khi ®Õn vÞ trÝ míi, cho phÐp bÊt kú nh÷ng weight, colour intensity, etc.) - i.e. the triÖu chøng bÖnh vèn cã tõ tr-íc xuÊt hiÖn. population cannot be classified into a few Dïng trong khung ®iÒu chØnh h¹n chÕ hμng discrete classes. b¸n hoÆc xuÊt khÈu c¸c sinh vËt sèng, tÝnh tr¹ng sè l-îng Mét tÝnh tr¹ng ®o ®-îc th-êng ®Ó ng¨n ngõa t¸c nh©n s©u hoÆc cho thÊy biÕn dÞ liªn tôc (vÝ dô chiÒu cao, bÖnh h¹i cña mét vïng. träng l-îng, ®é mμu, v.v.) - nghÜa lμ mét quaternary structure A level of protein quÇn thÓ kh«ng thÓ ph©n lo¹i thμnh mét structure where several individual sè Ýt líp riªng biÖt. molecules assemble together and form a quantitative trait locus (Abbreviation: functional cluster. A classic example is QTL). A locus where allelic variation is haemoglobin, a complex of four myoglobin- associated with variation in a quantitative like units. See: tertiary structure. trait. The presence of a QTL is inferred cÊu tróc bËc bèn Møc cÊu tróc protein from genetic mapping, where the total n¬i mét sè Ýt ph©n tö riªng lÎ tËp hîp l¹i vμ variation is partitioned into components h×nh thμnh mét khèi ho¹t ®éng. Mét vÝ dô linked to a number of discrete kinh ®iÓn lμ haemoglobin, mét phøc hÖ bèn chromosome regions. ®¬n vÞ gièng nh- myoglobin. Xem: tertiary æ gen tÝnh tr¹ng sè l-îng (viÕt t¾t: QTL). structure. Mét æ gen n¬i biÕn dÞ alen cã liªn quan víi quiescent A temporary suspension or biÕn ®æi tÝnh tr¹ng sè l-îng. Sù cã mÆt cña reduction in the rate of activity or growth, mét QTL ®ùîc dù ®o¸n tõ lËp b¶n ®å gen, while retaining the potential to resume prior n¬i tæng sè biÕn dÞ ®-îc ph©n chia thμnh activity. Applies particularly to cell division. c¸c thμnh phÇn liªn kÕt víi sè l-îng c¸c See: dormancy. vïng nhiÔm s¾c thÓ t¸ch biÖt. tiÒm Èn Mét sù ngõng hoÆc gi¶m t¹m thêi quantum speciation The rapid formation nhÞp ®é ho¹t ®éng hoÆc sinh tr-ëng, khi of new species, primarily by genetic drift. duy tr× tiÒm n¨ng thu gän tr-íc khi ho¹t møc h×nh thμnh loμi Sù h×nh thμnh nhanh ®éng. ¸p dông riªng cho ph©n chia tÕ bμo. c¸c loμi míi, chñ yÕu do tÝch tô gen. Xem: dormancy. 236 cuèng Trôc ng¾n cña mét b«ng nhá. rachis Main axis of a spike; axis of fern leaf (frond) from which pinnae arise; in compound leaves, the extension of the Rr petiole corresponding to the midrib of an entire leaf. sèng Trôc chÝnh cña b«ng; trôc l¸ c©y d-¬ng xØ (h×nh l¸) tõ ®ã l¸ chÐt xuÊt hiÖn; R genes A class of plant genes conferring trong l¸ c©y hçn hîp, phÇn më réng cuèng resistance to a specific strain (or group l¸ t-¬ng øng víi g©n gi÷a toμn bé l¸ c©y. of strains) of a particular pathogen. Their radiation hybrid cell panel (Abbreviation: primary function is to sense the presence RH). A somatic cell hybrid panel in which of the pathogen and to trigger the defence the chromosomes from the species of pathways in the plant. R genes have been interest have been fragmented by cloned from a number of plant species. irradiation prior to cell fusion. The gen R Mét líp gen thùc vËt chuyÓn tÝnh resultant small fragments of chromosomes kh¸ng cho mét chñng (hoÆc nhãm nßi) greatly increase the power of physical nhÊt ®Þnh cña vËt g©y bÖnh riªng biÖt. Chøc mapping in the species of interest. n¨ng gèc cña chóng lμ c¶m nhËn sù cã b¶n tÕ bμo lai bøc x¹ (viÕt t¾t: RH). Mét mÆt cña vËt g©y bÖnh vμ thóc ®Èy ®-êng b¶n lai tÕ bμo x«ma trong ®ã c¸c nhiÔm mßn b¶o vÖ trong thùc vËt. Gen R ®-îc s¾c thÓ tõ loμi quan t©m ®· ®-îc ph©n nh©n dßng tõ mét sè loμi thùc vËt. m¶nh do tr-êng bøc x¹ tr-íc dung hîp tÕ bμo. Nh÷ng ®o¹n nhá kÕt qu¶ cña nhiÔm R1 The first-generation offspring of a recombinant (genetically modified) s¾c thÓ n©ng cao c«ng suÊt lËp b¶n ®å vËt organism. Not standard terminology. See: chÊt cña nh÷ng loμi quan t©m. T0, T1, and T2. radicle The portion of the plant embryo which develops into the primary root. R1 Con c¸i thÕ hÖ ®Çu tiªn cña sinh vËt t¸i tæ hîp (biÕn ®æi gen).
Recommended publications
  • S41598-020-68694-9.Pdf
    www.nature.com/scientificreports OPEN Delayed cytokinesis generates multinuclearity and potential advantages in the amoeba Acanthamoeba castellanii Nef strain Théo Quinet1, Ascel Samba‑Louaka2, Yann Héchard2, Karine Van Doninck1 & Charles Van der Henst1,3,4,5* Multinuclearity is a widespread phenomenon across the living world, yet how it is achieved, and the potential related advantages, are not systematically understood. In this study, we investigate multinuclearity in amoebae. We observe that non‑adherent amoebae are giant multinucleate cells compared to adherent ones. The cells solve their multinuclearity by a stretchy cytokinesis process with cytosolic bridge formation when adherence resumes. After initial adhesion to a new substrate, the progeny of the multinucleate cells is more numerous than the sibling cells generated from uninucleate amoebae. Hence, multinucleate amoebae show an advantage for population growth when the number of cells is quantifed over time. Multiple nuclei per cell are observed in diferent amoeba species, and the lack of adhesion induces multinuclearity in diverse protists such as Acanthamoeba castellanii, Vermamoeba vermiformis, Naegleria gruberi and Hartmannella rhysodes. In this study, we observe that agitation induces a cytokinesis delay, which promotes multinuclearity. Hence, we propose the hypothesis that multinuclearity represents a physiological adaptation under non‑adherent conditions that can lead to biologically relevant advantages. Te canonical view of eukaryotic cells is usually illustrated by an uninucleate organization. However, in the liv- ing world, cells harbouring multiple nuclei are common. Tis multinuclearity can have diferent origins, being either generated (i) by fusion events between uninucleate cells or by (ii) uninucleate cells that replicate their DNA content without cytokinesis.
    [Show full text]
  • Nuclear and Genome Dynamics in Multinucleate Ascomycete Fungi
    Current Biology 21, R786–R793, September 27, 2011 ª2011 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2011.06.042 Nuclear and Genome Dynamics Review in Multinucleate Ascomycete Fungi Marcus Roper1,2, Chris Ellison3, John W. Taylor3, to enhance phenotypic plasticity [5] and is also thought to and N. Louise Glass3,* contribute to fungal virulence [6–8]. Recent and ongoing work reveals two fundamental chal- lenges of multinucleate fungal lifestyles, both in the presence Genetic variation between individuals is essential to evolu- and absence of genotypic diversity — namely, the coordina- tion and adaptation. However, intra-organismic genetic tion of populations of nuclei for growth and other behaviors, variation also shapes the life histories of many organisms, and the suppression of nucleotypic competition during including filamentous fungi. A single fungal syncytium can reproduction and dispersal. The potential for a mycelium to harbor thousands or millions of mobile and potentially harbor fluctuating proportions and distributions of multiple genotypically different nuclei, each having the capacity genotypes led some 20th century mycologists to argue for to regenerate a new organism. Because the dispersal of life-history models that focused on nuclei as the unit of asexual or sexual spores propagates individual nuclei in selection, and on the role of nuclear cooperation and compe- many of these species, selection acting at the level of tition in shaping mycelium growth and behavior [9,10].In nuclei creates the potential for competitive and coopera- particular, nuclear totipotency creates potential for conflict tive genome dynamics. Recent work in Neurospora crassa between heterogeneous nuclear populations within a myce- and Sclerotinia sclerotiorum has illuminated how nuclear lium [11,12].
    [Show full text]
  • Multinucleate Cell Angiohistiocytoma
    To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter Toppan Best-set. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication. These proofs may contain color(colour) figures. Those figures may print black and white in the final printed book if a color(colour) print product has not been planned. The color(colour) figures will appear in color(colour) in all electronic versions of this book. s0060 MULTINUCLEATE CELL ANGIOHISTIOCYTOMA s0065 Definition • Fibroblast-like and histiocyte-like mononuclear cells u0390 p0300 • A distinctive benign dermal proliferation composed • Thickened collagen bundles, frequently hyalinized u0395 of thin-walled capillaries and veins, admixed with • Occasional inflammatory cells, predominantly u0400 scattered multinucleated cells lymphocytes • Hemorrhage absent, no hemosiderin deposition u0405 s0070 Clinical features • Decreased elastic fibers in the dermis can be observed u0410 s0075 Epidemiology • Overlying epidermis normal, but can also be u0415 p0310 • Female predominance (F:M = 3 : 1) hyperplastic u0275 • Middle-aged adult patients • Proliferation restricted to upper and middermis u0420 s0080 Presentation Immunopathology/special stains s0100 p0325 • Slowly growing single or multiple firm, red-brown to • Multinucleated cells display variable CD68 positivity
    [Show full text]
  • Host-Parasite Relationships of Atalodera Spp. (Heteroderidae) M
    234 Journal of Nematology, Volume 15, No. 2, April 1983 and D. I. Edwards. 1972. Interaction of Meloidogyne 18. Volterra, V. 1931. Variations and fluctuations naasi, Pratylenchus penetrans, and Tylenchorhyn- of the number of individuals in animal species chus agri on creeping bentgrass. J. Nematol. 4:~ living together. Pp. 409-448 tn R. N. Chapman ed. 162-165. Animal ecology. New York: McGraw-Hill. Host-Parasite Relationships of Atalodera spp. (Heteroderidae) M. ]~'IUNDO-OCAMPOand J. G. BALDWIN r Abstract: Atalodera ucri, Wouts and Sher, 1971, and ,4. lonicerae, (Wonts, 1973) Luc et al., 1978, induce similar multinucleate syncytia in roots of golden bush and honeysuckle, respec- tively. The syncytium is initiated in the cortex; as it expands, it includes several partially delimited syncytial units and distorts vascular tissue. Outer walls of the syncytium are rela- tively smooth and thickest near the feeding site of the nematode; inner walls are interrupted by perforations which enlarge as syncytial units increa~ in size. The cytoplasm of the syncytium is granular and includes numermts plastids, mit(~chondria, vacuoles, Golgi, and a complex network of membranes. Nuclei are greatly enlarged and amoeboid in shape. Although more than one nucleus sometimes occur in a given syncytial unit, no mitotic activity was observed. Syncytia induced by species of Atalodera chiefly differ from those of Heterodera sensu lato by the absence of cell wall ingrowths; wall ingrowths increase solute transport and characterize transfer cells. In syncytia of Atalodera spp., a high incidence of pits and pit fields in walls adjacent to vasctdar elements suggests that in this case plasmodesmata provide the pathway for increased entry of sohttes.
    [Show full text]
  • Physarum Polycephalum (Plasmodial Slime Mold)
    Physarum polycephalum (plasmodial slime mold) Species: polycephalum Genus: Physarum Family: Physaraceae Order: Physarales Class: Myxomycetes Phylum: Mycetozoa Kingdom: Amoebozoa Conditions for Customer Ownership We hold permits allowing us to transport these organisms. To access permit conditions, click here. Never purchase living specimens without having a disposition strategy in place. There are currently no USDA permits required for this organism. In order to protect our environment, never release a live laboratory organism into the wild. Primary Hazard Considerations Always wash your hands thoroughly before and after you handle your cultures, or anything it has touched. It is recommended to use gloves when working with mold, fungus, or bacteria. Availability Physarum is available year round. Care Habitat • Plasmodial stage are shipped in a Petri dish on Physarum agar with oats. Your Physarum should be bright yellow in color, and fan shaped. If your Physarum takes on a different appearance it may be contaminated. Contaminated cultures occur when a foreign specimen (something other than Physarum) makes its way onto your culture. This culture should be stored at room temperature in a dark place. The culture should be viable for about 1–2 weeks in its current container. • Sclerotia are hardened masses of irregular form consisting of many minute cell-like components. These are shipped on cut strips of filter paper in a tube. The culture should be stored at room temperature and can be stored in this stage for several months. Care: • Physarum is subcultured onto Physarum agar, and is incubated at room temperature or 25 °C. To maintain viability, plasmodial Physarum should be subcultured weekly.
    [Show full text]
  • Slime Molds on Home Lawns
    LAWN & GARDEN Slime Molds on Home Lawns ► Slime molds rarely damage lawns, but their appearance is unsightly to homeowners. Learn the symptoms, cause, and control. Slime molds commonly occur on all warm- and cool- season turfgrasses across Alabama. Most slime mold causing fungi on turfgrasses belong to the genera of Physarum, Fuligo, and Mucilago. Slime molds are saprophytic fungal-like organisms that obtain their nutrients from dead or decaying organic matter in soil or thatch. Slime molds are most prevalent following prolonged periods of leaf wetness, which favors growth. Slime molds use living turfgrass strictly for structural support and rarely cause damage to lawns. However, the sudden appearance of the crusty, gray to black fruiting bodies of a slime mold on the leaves of a manicured lawn often causes homeowners a great deal of anxiety. At times, homeowners mistake slime mold appearance with chemical spills and become concerned about the health of their lawns. Alabama’s humid, warm climate is quite conducive to slime mold activity, particularly during extended periods of rain in late spring and summer. Areas with poor drainage and Figure 2. Slime mold pustules on residential turf. heavy thatch (dead turfgrass tissue lying between the green vegetation of the grass above and the root system below) also favor slime mold growth. Slime molds may Symptoms appear in the same area of a lawn from year to year. Various species of slime molds can result in the growth of many small, round pustules called sporangia (fruiting bodies) on turfgrass leaves in small circular to irregular patches, usually 4 to 8 inches in diameter (figure 1).
    [Show full text]
  • Unit 3 Metazoa - Origin and Evolution
    UNIT 3 METAZOA - ORIGIN AND EVOLUTION Structure 3.1 Introduction Objectives 3.2 Levels of Body Organisation 3.3 Characteristics of Metazoa 3.4 Symmetry Asymmetrical and Spherical Radial and Biradial I Bilateral 3.5 Developmental Patterns Cleavage Fate of Blastopore 3.6 Germ Layers 3.7 Body Cavity and Coelom Pseudocoelom Coelom 3.8 Cephalisation and Segmentation 3.9 Origin and Evolution of Metazoa Syncytial Theory Colonial Theory Polyphyletic Theory Evolution of Metazoa 3.10 Summary 3.11 Terminal Questions 3.12 Answers 3.1 INTRODUCTION You have already seen in Unit-1 that in the two kingdom classification, the unicellular 'animals' used to be clubbed together under a single phylum Protozoa that constituted sub-kingdom - Protozoa. The rest of the animals, all multicellular, were grouped under the sub-kingdom Metazoa under various phyla (the corresponding grouping for plants was Protophyta and Metaphyta). However, under the present concept of Flve Kingdom Classification, this grouping has no relevance. Still, we often continue to use the term Metazoa to refer to the Animalia of the five kingdom classification. In th~sUn~t we start with an explanation of the levels of body organisation in animals and the baslc animal bodjr plan. However, diverse the different invertebrates and vertebrates may appear to the eye, it is possible to group them in four master body plans. These are the unicellular plan, the cell aggregate plan, blind sac plan and tube within a tube plan. The protozoans fall into the first category and the rest three structural plans are seen in the metazoans. We next list out the characteristic features of metazoans.
    [Show full text]
  • Real-Time Dynamics of Plasmodium NDC80 Reveals Unusual Modes of Chromosome Segregation During Parasite Proliferation
    bioRxiv preprint doi: https://doi.org/10.1101/767830; this version posted May 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Real-time dynamics of Plasmodium NDC80 reveals unusual modes of chromosome segregation during parasite proliferation Mohammad Zeeshan1#, Rajan Pandey1#, David J.P. Ferguson2,3, Eelco C. Tromer4, Robert Markus1, Steven Abel5, Declan Brady1, Emilie Daniel1, Rebecca Limenitakis6, Andrew R. Bottrill7, Karine G. Le Roch5, Anthony A. Holder8, Ross F. Waller4, David S. Guttery9 and Rita Tewari1* 1School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK; 2Nuffield Department of Clinical Laboratory Science, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK; 3Department of Biological and Medical Sciences, Faculty of Health and Life Science, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, UK; 4Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QW, UK; 5Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, California, United States of America; 6Institute of Cell Biology, University of Bern, Bern 3012, Switzerland; 7School of Life Sciences, Gibbelt Hill Campus, University of Warwick, Coventry, CV4 7AL, UK; 8Malaria Parasitology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; 9Leicester Cancer Research Centre, University of Leicester, Leicester, LE2 7LX, UK. #These authors contributed equally: Mohammad Zeeshan, Rajan Pandey *For correspondence Rita Tewari: [email protected] Short title: Spatiotemporal Kinetochore dynamics in Plasmodium 1 bioRxiv preprint doi: https://doi.org/10.1101/767830; this version posted May 12, 2020.
    [Show full text]
  • Physarum Polycephalum
    A HOMOTHALLIC STRAIN OF THE MYXOMYCETE PHYSARUM POLYCEPHALUM A. E. WHEALS Department of Genetics, University of Leicester, England Received May 27, 1970 HE life cycle of the Myxomycete Physarum polycephalum comprises two Takemating phases, a macroscopic multinucleate syncytial plasmodium and small uninucleate amoebae. Meiosis occurs during the formation of spores from the plasmodium and these spores hatch to give the haploid amoebae. The forma- tion of plasmodia from amoebae in strains investigated so far has been shown to be heterothallic (DEE1960) involving the fusion of two haploid amoebae and the subsequent fusion of their nuclei (Ross 1957). It is controlled by a mating-type locus (mt) at which four alleles are known (DEE 1966). A clone of amoebae carries only one mating type and plasmodia are normally formed only when clones of different mating type are mixed. P. polycephalum is potentially useful for the study of differentiation since it allows investigation of gene action in two distinct phases of cellular organization and during the synchronous morphogenetic process of sporulation. Unfortunately, although genetic analysis has been shown to be possible (DEE1962), progress has been slow because of the difficulty of selecting mutants. The uninucleate amoebae can be cultured only on bacteria so that the selective procedures and biochemical analyses which can be used on this stage are limited. The plasmodium can be grown in defined medium (DANIELet al. 1963), has synchronous mitosis and sporulation (HOWARD1932) and has been the subject of many biochemical studies (RUSCH1970). It has not seemed worthwhile to attempt isolating mutants at this stage in the life cycle because the plasmodium is multinucleate, diploid, and arises only by outcrossing.
    [Show full text]
  • Ultrastructure of Mitosis and Cytokinesis in the Multinucleate Green Alga Acrosiphonia
    ULTRASTRUCTURE OF MITOSIS AND CYTOKINESIS IN THE MULTINUCLEATE GREEN ALGA ACROSIPHONIA PEGGY R . HUDSON and J . ROBERT WAALAND From the Department of Botany, University of Washington, Seattle, Washington 98195 ABSTRACT The processes of mitosis and cytokinesis in the multinucleate green alga Acrosiphonia have been examined in the light and electron microscopes. The course of events in division includes thickening of the chloroplast and migration of numerous nuclei and other cytoplasmic incusions to form a band in which mitosis occurs, while other nuclei in the same cell but not in the band do not divide . Centrioles and microtubules are associated with migrated and dividing nuclei but not with nonmigrated, nondividing nuclei . Cytokinesis is accomplished in the region of the band, by means of an annular furrow which is preceded by a hoop of microtubules . No other microtubules are associated with the furrow . Characteris- tics of nuclear and cell division in Acrosiphonia are compared with those of other multinucleate cells and with those of other green algae . INTRODUCTION In multinucleate cells, nuclear division may occur band remain scattered in the cytoplasm at some synchronously, asynchronously, or in a wave distance from the band and do not participate in spreading from one part of the cell to another (for mitosis. The recently divided nuclei soon scatter a general discussion, see Agrell, 1964 ; Grell, 1964; into the cytoplasm. Thus, as in uninucleate cells, Erickson, 1964). Cytokinesis may or may not be nuclear and cell division in Acrosiphonia are associated with nuclear division (Grell, 1964; Jbns- closely coordinated spatially and temporally, but son, 1962; Kornmann, 1965, 1966 ; Schussnig, in the multinucleate Acrosiphonia, a substantial 1931, 1954 ; Lewis, 1909).
    [Show full text]
  • Evolution of Multicellular Complexity in the Dictyostelid Social Amoebas
    G C A T T A C G G C A T genes Review Evolution of Multicellular Complexity in The Dictyostelid Social Amoebas Koryu Kin 1,2 and Pauline Schaap 1,* 1 School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; [email protected] 2 Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain * Correspondence: [email protected] Abstract: Multicellularity evolved repeatedly in the history of life, but how it unfolded varies greatly between different lineages. Dictyostelid social amoebas offer a good system to study the evolution of multicellular complexity, with a well-resolved phylogeny and molecular genetic tools being available. We compare the life cycles of the Dictyostelids with closely related amoebozoans to show that complex life cycles were already present in the unicellular common ancestor of Dictyostelids. We propose frost resistance as an early driver of multicellular evolution in Dictyostelids and show that the cell signalling pathways for differentiating spore and stalk cells evolved from that for encystation. The stalk cell differentiation program was further modified, possibly through gene duplication, to evolve a new cell type, cup cells, in Group 4 Dictyostelids. Studies in various multicellular organisms, including Dictyostelids, volvocine algae, and metazoans, suggest as a common principle in the evolution of multicellular complexity that unicellular regulatory programs for adapting to environmental change serve as “proto-cell types” for subsequent evolution of multicellular organisms. Later, new cell types could further evolve by duplicating and diversifying the “proto-cell type” gene regulatory networks. Citation: Kin, K.; Schaap, P.
    [Show full text]
  • Sarcodina: Amoebae
    NOAA Technical Report NMFS Circular 419 Marine Flora and Fauna of the Northeastern United States. Protozoa: Sarcodina: Amoebae Eugene C. Bovee and Thomas K. Sawyer January 1979 U.S. DEPARTMENT OF COMMERCE Juanita M. Kreps, Secretary National Oceanic and Atmospheric Administration Richard A. Frank, Administrator Terry L. Leitzell, Assistant Administrator for Fisheries National Marine Fisheries Service For S;le!:;y the· Superintendent of -DOeum~;:':ts-:-U.S. Government" Printi;:;-g -offict;' Washington, D.C. 20402 Stock No. 003-017-00433-3 FOREWORD This issue of the "Circulars" is part of a subseries entitled "Marine Flora and Fauna of the Northeastern Unit.ed States." This subseries will consist of original, illustrated, modern manuals on the identification, classification, and general biology of the estuarine and coastal marine plants and animals of the northeastern United States. Manuals will be published at irregular intervals on as many taxa of the region as there afe specialists available to collaborate in their preparation. The manuals are an outgrowth of the widely used "Keys to Marine Invertebrates of the Woods Hole Region," edited by R. I. Smith, published in 1964, and produced under the auspices of the Systematics-Ecology Program, Marine Biological Laboratory, Woods Hole, Mass. Instead of revising the "Woods Hole Keys," the staff of the Systematics-Ecology Program decided to ex­ pand the geographic coverage and bathymetric range and produce the keys in an entirely new set of expanded publications. The "Marine Flora and Fauna of the ~ortheastern United States" is being prepared in collaboration with systematic specialists in the United States and abroad. Each manual will be based primarily on recent and ongoing revisionary systematic research and a fresh examination of the plants and animals.
    [Show full text]