Facts on File DICTIONARY of BIOTECHNOLOGY and GENETIC ENGINEERING Third Edition 干细胞之家 ←点击进入 干细胞之家 ←点击进入

Total Page:16

File Type:pdf, Size:1020Kb

Facts on File DICTIONARY of BIOTECHNOLOGY and GENETIC ENGINEERING Third Edition 干细胞之家 ←点击进入 干细胞之家 ←点击进入 干细胞之家www.stemcell8.cn ←点击进入 干细胞之家www.stemcell8.cn ←点击进入 The Facts On File DICTIONARY of BIOTECHNOLOGY and GENETIC ENGINEERING Third Edition 干细胞之家www.stemcell8.cn ←点击进入 干细胞之家www.stemcell8.cn ←点击进入 The Facts On File DICTIONARY of BIOTECHNOLOGY and GENETIC ENGINEERING Third Edition Mark L. Steinberg, Ph.D. Sharon D. Cosloy, Ph.D. 干细胞之家www.stemcell8.cn ←点击进入 The Facts On File Dictionary of Biotechnology and Genetic Engineering Third Edition Copyright © 2006, 2001, 1994 by Mark L. Steinberg, Ph.D., and Sharon Cosloy, Ph.D. Illustrations © 2006 by Infobase Publishing All rights reserved. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval systems, without permission in writing from the publisher. For information contact: Facts On File, Inc. An imprint of Infobase Publishing 132 West 31st Street New York NY 10001 Library of Congress Cataloging-in-Publication Data Steinberg, Mark (Mark L.) The Facts on File dictionary of biotechnology and genetic engineering/ Mark L. Steinberg and Sharon D. Cosloy—Third ed. p. cm. — (The Facts On File science library) Includes index. ISBN 0-8160-6351-6 (alk.paper) 1. Biotechnology—Dictionaries. 2. Genetic engineering—Dictionaries. I. Cosloy, Sharon D. II. Title. III. Series. TP248.16.S84 2000 660.6′03—dc21 00-035463 Facts On File books are available at special discounts when purchased in bulk quanti- ties for businesses, associations, institutions, or sales promotions. Please call our Spe- cial Sales Department in New York at (212) 967-8800 or (800) 322-8755. You can fi nd Facts On File on the World Wide Web at http://www.factsonfi le.com Text and cover design by Cathy Rincon Printed in the United States of America MP FOF 10 9 8 7 6 5 4 3 2 This book is printed on acid-free paper. 干细胞之家www.stemcell8.cn ←点击进入 This edition is dedicated to the memory of Dr. Sharon Cosloy by her children, Michael and Rebecca, and her husband, Edward. Sharon was a loving mother, a devoted wife, a dedicated mentor, and an accomplished professor and researcher. And above all, she was a kind and gentle woman with a bright spirit that still lives on today through the people who were fortunate enough to be touched in life by her. From MLS: To Sharon, in memoriam, a good friend and valued colleague. You are greatly missed. 干细胞之家www.stemcell8.cn ←点击进入 干细胞之家www.stemcell8.cn ←点击进入 CONTENTS Preface ix Acknowledgments xi Entries A to Z 1 Appendixes 261 Acronyms (and Other Abbreviations) 262 The Chemical Elements 267 Periodic Table 268 The Genetic Code 269 Purine and Pyrimidine Bases Found 270 in Nucleic Acids Side Chains (R Groups) for 271 Individual Amino Acids Bioinformatics Web Sites 272 Enzymes Used in Gene Cloning 274 干细胞之家www.stemcell8.cn ←点击进入 PREFACE The last decades of the 20th century produced a dramatic revolution in the fi eld of biology in which, for the fi rst time, the ability to modify the genetic makeup of higher organisms in the laboratory rather than by the random forces of natural selection was realized. This new era was born out of criti- cal discoveries in the mid-1970s that led to the appearance of new fi elds of molecular genetics variously known as gene cloning, genetic engineering, and biotechnology. The central theme of genetic engineering is the introduction of genetic material altered in a laboratory into an organism different from that from which it was originally derived. The introduction of genes from higher organisms into microorganisms made it possible to isolate, amplify, study and ultimately engineer individual genes for a variety of specialized purposes. These techniques have also allowed scientists to look closely at the structure, function, and regulation of genes and their proteins. Genetic engineering has given rise to technologies that were unthinkable barely two decades ago: recombinant antibodies to fi ght cancer, the isolation of genes responsible for genetic diseases, the synthesis of unlimited quantities of therapeutic agents, human hormones and critical blood factors in bacterial “factories,” the creation of genetically engineered plants and animals, and the decoding of the human genome—only a few examples of technologies that have been realized even at the time of the fi rst printing of this dictionary. Much of the research in biotechnology and genetic engineering has moved from the academic world into the industrial setting. As a consequence, many new and potential applications are in the hands of private enterprises where, fueled by more substantial funding and motivated by the forces of the market- place, the development of new products has reached an explosive pace. This has also meant that even as the rapidly increasing pace of progress taxes the ability to keep up with new developments, there is an ever-increasing need to understand the legal and ethical issues that inevitably accompany any new technology. However, in contrast to other new technologies, the products of genetic engineering deal directly with fundamental biological processes and are, by their very nature, certain to have an immediate and profound impact on all areas of human health. The purpose of this dictionary is to provide readers with access to the basic vocabulary of modern biotechnology and genetic engineering so that those with even an elementary knowledge of basic biology and biochemistry will be able to follow the fl ood of fast-breaking developments in biotechnology and genetic engineering that constantly appears in the media. At the time of the fi rst printing of The Facts On File Dictionary of Biotech- nology and Genetic Engineering, molecular cloning of genes had only recently matured. Even then, rapidly accumulating data from large-scale sequence analyses and the development of new techniques for amplifi cation of DNA at the microscale level were already yielding information that allowed for the 干细胞之家www.stemcell8.cn ←点击进入 Preface determination of gene function, including the molecular nature of defects underlying numerous genetic diseases. A revised edition of the dictionary added terminology of the developing biomedical fi elds of molecular medicine, DNA technology, gene therapy, and genomics. In recent years, new areas of research have elucidated signaling pathways that are now known to regulate essential biochemical pathways, including cell growth, metabolism, and dif- ferentiation. Many modern pharmaceuticals are agents that target critical signaling pathways involved in disease processes. Among these are drugs for the treatment of high blood pressure, allergies, sexual dysfunction, anti- infl ammatory and anti-viral agents, various cancer chemotherapies, and many others. In a parallel track, the completion of the Human Genome Project in 2003, together with the computer technologies for data mining and relational analyses, created the new area of computational biology known as bioinfor- matics. The application of bioinformatic methods to burgeoning nucleotide and protein databases has yielded new insights into many genetic diseases and has helped elucidate the relationships between genes and the biochemical pathways that the gene products regulate. Bioinformatics is currently provid- ing new approaches to drug design based on predictive computer models to tailor drugs to act on specifi c molecular targets. The dictionary was updated to account for these as well as other new developments in this rapidly chang- ing fi eld. The new “third edition” of the dictionary focuses on the new terminology in the evolving areas of genomics, bioinformatics, cell signaling, and molecular medicine. In addition, there are a number of biochemical terms pertaining to recent advances in medicines for the treatment of viral diseases, mental ill- ness, cholesterol metabolism, plant engineering, and stem cell research. Since this book addresses an audience from diverse backgrounds and covers a broad fi eld, we attempted to include both basic as well as more technical ter- minology in a number of areas including plant and animal biology in order to meet the needs of as many readers as possible. There has also been an attempt to make the dictionary self-contained in the sense that, in cases where techni- cal terms appear in defi nitions, these terms will be defi ned elsewhere in the book. It is anticipated that the dictionary will be of benefi t to a wide-ranging audience, including high school and college students, lawyers, physicians, sci- entists, or others with a particular need to keep abreast of the rapidly develop- ing areas of biotechnology and genetic engineering. x 干细胞之家www.stemcell8.cn ←点击进入 ACKNOWLEDGMENTS The authors gratefully acknowledge the support of the RCMI research facilities, where they carry out their research at the City College of New York. The authors also thank Mr. Frank K. Darmstadt, executive editor, and the production department for their support and insight in the creation of this new edition of the dictionary. 干细胞之家www.stemcell8.cn ←点击进入 干细胞之家www.stemcell8.cn ←点击进入 A ABC transporter The largest class of as universal donors. In addition, the ABO transmembrane proteins. ABC trans- system can be used in paternity suits to porter is an acronym for ATP (adenosine rule out the possibility that a particular triphosphate) binding cassette, a region male is the father of the child in question. of the protein that is conserved in the transporter in a wide variety of differ- abscisic acid A plant hormone, lipid ent organisms and is responsible for the in nature, synthesized in wilting leaves. binding of ATP. In bacteria these pro- It counteracts the effects of most other teins use energy from ATP to transport a plant hormones by inhibiting cell growth wide variety of small molecules including and division, seed germination, and bud- sugars, vitamins, amino acids and ions ding. It induces dormancy. across the cell membrane. In eukaryotes, ABC transporters generally move mol- absorbance Often referred to as opti- ecules either outside the cell or into an cal density.
Recommended publications
  • Human Prion-Like Proteins and Their Relevance in Disease
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Universitat Autònoma de Barcelona Departament de Bioquímica i Biologia Molecular Institut de Biotecnologia i Biomedicina HUMAN PRION-LIKE PROTEINS AND THEIR RELEVANCE IN DISEASE Doctoral thesis presented by Cristina Batlle Carreras for the degree of PhD in Biochemistry, Molecular Biology and Biomedicine from the Universitat Autònoma de Barcelona. The work described herein has been performed in the Department of Biochemistry and Molecular Biology and in the Institute of Biotechnology and Biomedicine, supervised by Prof. Salvador Ventura i Zamora. Cristina Batlle Carreras Prof. Salvador Ventura i Zamora Bellaterra, 2020 Protein Folding and Conformational Diseases Lab. This work was financed with the fellowship “Formación de Profesorado Universitario” by “Ministerio de Ciencia, Innovación y Universidades”. This work is licensed under a Creative Commons Attributions-NonCommercial-ShareAlike 4.0 (CC BY-NC- SA 4.0) International License. The extent of this license does not apply to the copyrighted publications and images reproduced with permission. (CC BY-NC-SA 4.0) Batlle, Cristina: Human prion-like proteins and their relevance in disease. Doctoral Thesis, Universitat Autònoma de Barcelona (2020) English summary ENGLISH SUMMARY Prion-like proteins have attracted significant attention in the last years.
    [Show full text]
  • Attachment 1
    Appendix 1 Chemico-Biological Interactions 301 (2019) 2–5 Contents lists available at ScienceDirect Chemico-Biological Interactions journal homepage: www.elsevier.com/locate/chembioint An examination of the linear no-threshold hypothesis of cancer risk T assessment: Introduction to a series of reviews documenting the lack of biological plausibility of LNT R. Goldena,*, J. Busb, E. Calabresec a ToxLogic, Gaithersburg, MD, USA b Exponent, Midland, MI, USA c University of Massachusetts, Amherst, MA, USA The linear no-threshold (LNT) single-hit dose response model for evolution and the prominence of co-author Gilbert Lewis, who would be mutagenicity and carcinogenicity has dominated the field of regulatory nominated for the Nobel Prize some 42 times, this idea generated much risk assessment of carcinogenic agents since 1956 for radiation [8] and heat but little light. This hypothesis was soon found to be unable to 1977 for chemicals [11]. The fundamental biological assumptions upon account for spontaneous mutation rates, underestimating such events which the LNT model relied at its early adoption at best reflected a by a factor of greater than 1000-fold [19]. primitive understanding of key biological processes controlling muta- Despite this rather inauspicious start for the LNT model, Muller tion and development of cancer. However, breakthrough advancements would rescue it from obscurity, giving it vast public health and medical contributed by modern molecular biology over the last several decades implications, even proclaiming it a scientific principle by calling it the have provided experimental tools and evidence challenging the LNT Proportionality Rule [20]. While initially conceived as a driving force model for use in risk assessment of radiation or chemicals.
    [Show full text]
  • Phytochrome Effects in the Nyctinastic Leaf Movements of Albizzia Julibrissin and Some Other Legumes1 2 William S
    Plant Physiol. (1967) 42, 1413-1418 Phytochrome Effects in the Nyctinastic Leaf Movements of Albizzia julibrissin and Some Other Legumes1 2 William S. Hillman and Willard L. Koukkari Biology Department, Brookhaven National Laboratory, Upton, New York 11973 Received June 5, 1967. Summnary. Participation of phytochrome 'is evident in the nyctinastic responise of leaves of Albizzia julibrissin (silk-tree), Albizzia lophantha, Leucaena glauca, Poinciana gilliesi and Calliandra inequilatera; closure of excised pairs of pinnules upon darkening is rapid following red illumination and slow following far-red. Under good conditions the difiference is obvious within 10 minutes. These observations conifirm a report by Fondeville, Borthwick, and Hendricks on the sensitive plant, Mimosa pudica, but indicate that the efifect bears no necessary relationship to the anomalous sensitivity of Mimosa. In A. julibrissin, phytochrome control is mnarked in experiments conducted early in the daily 12-hour light period and appears absent, or nearly so, toward the end of the light period, perhaps due to interaction with an endogenous circadian rhythm. Effects of leaf maturity and of the position of a pinnule-pair within a leaf are also evident. Tih-ese results are not easily reconciled with hypotheses of phytochrome action through gene activation and nucleic acid synthesis, but are consistent with hypothess ibased onl permeability changes and membrane properties. The mgnitude and reproducibility of the response in A. jutlibrissin suggest its use as a lajboratory exercise; this and related systems should prove valuable for eventuai identification of the mechanism of phytochrome action. Fondeville, Borthwick, and Hendricks (2) re- pinnately twice-compound leaves generally similar in ported on a role of phytochrome in the nyctinastic character to those of Mimosa pudica, (but not obviously response of the sensitive plant, Mimnosa pudica: closure sensitive to the touch.
    [Show full text]
  • Biotechnology: Answers to Common Questions
    FSR0030 Biotechnology: Answers to Common Questions Kevin Keener, Assistant Professor of Food Science Thomas Hoban, Professor of Sociology and Food Science N.C. Cooperative Extension Service N.C. State University We are entering the “Century of Biology.” Recent developments in the biological sciences are giving us a better understanding of the natural world. At the same type we are developing new tools that are collectively referred to as “biotechnology.” These help us address problems related to human health, food production, and the environment. Any new technology – particularly one as far-reaching as biotechnology – will generate interest, as well as concerns. Because the science behind biotechnology is complex, misconceptions arise over its impacts and implications. In this publication we will answer questions many people have about biotechnology. These questions are organized along the lines of a news story: what, when, who, where, why, and how. We also provide a list of additional information sources available on the Internet. Our primary focus will be on the uses of biotechnology in agriculture and food production since these appear to be more controversial than other applications (at least up until this time). What is Biotechnology? In its broadest sense, biotechnology refers to the use of living systems to develop products. New scientific discoveries are allowing us to better understand fundamental life processes at the cellular and molecular level. Now we can improve selected attributes of microbes, plants, or animals for human use by making precise genetic changes that were not possible with traditional methods. All living organisms contain genes that carry the hereditary traits between generations.
    [Show full text]
  • Dna Repair Mechanisms
    DNA REPAIR MECHANISMS: A. P. NAGRALE DNA REPAIR •One of the main objectives of biological system is to maintain base sequences of DNA from one generation to the other. •DNA is relatively fragile, easily damaged molecule. •The DNA of a cell is subjected to damage from a variety of environmental factors like radiations (X-rays, UV-rays), chemicals mutagens, physical factors etc. •The survival of the cell depends on its ability to repair this damage. •DNA damage is of two types – Monoadduct and Diadduct. Monoadduct damage involves alterations in a single nitrogen base for example deamination reactions of chemical mutagen like HNO2. Diadduct damage are alterations involving more than one nitrogen base, for example Pyrimidine - Pyrimidine dimer produced by UV- radiations. •There are three principal types of repair mechanisms. •Light Repair (Enzymatic Photoreacivation) •Ultraviolet light causes the damage in DNA of bacteria and phages. UV-radiations (254 nm wavelength) cause the formation of covalent bond between adjacent pyrimidines to form dimer on the same strand of DNA (intrastrand bonding). •The UV- light forms abnormal structure Thymine dimmer (T=T) in DNA. As a result, DNA replication cannot proceed and gene expression is also prevented. •Damage to DNA caused by UV- light can be repaired after exposing the cells to visible light called photoreactivation or light repair. •This photoreactivation requires a specific enzyme that binds to the defective site on the DNA. •In this mechanism an enzyme DNA photolyase cleaves T=T dimmer and reverse to monomeric stage. •This enzyme is activated only when exposed to visible light. This enzyme absorbs the light energy, binds of cyclobutane ring to defective site of DNA and absorbed energy promotes the cleavage of covalent bond between two thymine molecules.
    [Show full text]
  • Cyclic Di-AMP Signaling in Listeria Monocytogenes by Aaron Thomas
    Cyclic di-AMP signaling in Listeria monocytogenes By Aaron Thomas Whiteley A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Infectious Diseases and Immunity in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Daniel A. Portnoy, Chair Professor Sarah A. Stanley Professor Russell E. Vance Professor Kathleen R. Ryan Summer 2016 Abstract Cyclic di-AMP signaling in Listeria monocytogenes by Aaron Thomas Whiteley Doctor of Philosophy in Infectious Diseases and Immunity University of California, Berkeley Professor Daniel A. Portnoy, Chair The Gram positive facultative intracellular pathogen Listeria monocytogenes is both ubiquitous in the environment and is a facultative intracellular pathogen. A high degree of adaptability to different growth niches is one reason for the success of this organism. In this dissertation, two facets of L. monocytogenes, growth and gene expression have been investigated. The first portion examines the function and necessity of the nucleotide second messenger c-di-AMP, and the second portion of this dissertation examines the signal transduction network required for virulence gene regulation. Through previous genetic screens and biochemical analysis it was found that the nucleotide second messenger cyclic di-adenosine monophosphate (c-di-AMP) is secreted by the bacterium during intracellular and extracellular growth. Depletion of c-di- AMP levels in L. monocytogenes and related bacteria results in sensitivity to cell wall acting antibiotics such as cefuroxime, decreased growth rate, and decreased virulence. We devised a variety of bacterial genetic screens to identify the function of this molecule in bacterial physiology. The sole di-adenylate cyclase (encoded by dacA) responsible for catalyzing synthesis of c-di-AMP in L.
    [Show full text]
  • BIO-210 Introduction to Biotechnology
    Bergen Community College Division of Mathematics, Science, and Technology Department of Biology and Horticulture Introduction to Biotechnology (BIO-210) General Course Syllabus Spring 2016 Course Title: BIO-210 Introduction to Biotechnology Course Description: This course is designed to give students both a theoretical background and a working knowledge of the instrumentation and techniques employed in a biotechnology laboratory. Emphasis will be placed on the introduction of foreign DNA into bacterial cells, as well as the analysis of nucleic acids (DNA and RNA) and proteins. Prerequisites: BIO-101 General Biology I General Education Course: No Course Credits 4.0 Hours per week: 6.0: 3 hours lecture and 3 hours lab Course Coordinator: John Smalley Required Textbook: Introduction To Biotechnology, 3rd edition, Thieman, W.J. and M.A. Palladino. Pearson/Benjamin Cummings. Required Lab Manual: None Student Learning Objectives The student will be able to: 1. Students will demonstrate proper scientific laboratory record keeping. Students will be evaluated by periodic notebook collections. 2 Students will be able to explain the scientificbasis for each technique used. Students will be required to answer exam questions designed to allow them to demonstrate their acquisition and retention of this knowledge. 3. Students will learn how to introduce foreign DNA into bacterial cells for the purpose of molecular cloning. Students will be evaluated by observation in the laboratory and analysis of experimental results. Assessment will also be based upon performance on exam questions. 4. Students will be able to retrieve cloned DNA and analyze it using restriction endonuclease digestion and agarose gel electrophoresis. Students will be evaluated by observation in the laboratory and analysis of experimental results.
    [Show full text]
  • Moore Noller
    2002 Ada Doisy Lectures Ada Doisy Lecturers 2003 in BIOCHEMISTRY Sponsored by the Department of Biochemistry • University of Illinois at Urbana-Champaign Dr. Peter B. 1970-71 Charles Huggins* and Elwood V. Jensen A76 1972-73 Paul Berg* and Walter Gilbert* Moore 1973-74 Saul Roseman and Bruce Ames Department of Molecular carbonyl Biophysics & Biochemistry Phe 1974-75 Arthur Kornberg* and Osamu Hayaishi Yale University C75 1976-77 Luis F. Leloir* New Haven, Connecticutt 1977-78 Albert L. Lehninger and Efraim Racker 2' OH attacking 1978-79 Donald D. Brown and Herbert Boyer amino N3 Tyr 1979-80 Charles Yanofsky A76 4:00 p.m. A2486 1980-81 Leroy E. Hood Thursday, May 1, 2003 (2491) 1983-84 Joseph L. Goldstein* and Michael S. Brown* Medical Sciences Auditorium 1984-85 Joan Steitz and Phillip Sharp* Structure and Function in 1985-86 Stephen J. Benkovic and Jeremy R. Knowles the Large Ribosomal Subunit 1986-87 Tom Maniatis and Mark Ptashne 1988-89 J. Michael Bishop* and Harold E. Varmus* 1989-90 Kurt Wüthrich Dr. Harry F. 1990-91 Edmond H. Fischer* and Edwin G. Krebs* 1993-94 Bert W. O’Malley Noller 1994-95 Earl W. Davie and John W. Suttie Director, Center for Molecular Biology of RNA 1995-96 Richard J. Roberts* University of California, Santa Cruz 1996-97 Ronald M. Evans Santa Cruz, California 1998-99 Elizabeth H. Blackburn 1999-2000 Carl R. Woese and Norman R. Pace 2000-01 Willem P. C. Stemmer and Ronald W. Davis 2001-02 Janos K. Lanyi and Sir John E. Walker* 12:00 noon 2002-03 Peter B.
    [Show full text]
  • MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo
    Cracking the Genetic Code MCDB 5220 Methods and Logics April 21 2015 Marcelo Bassalo The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) Frederick Griffith The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) Oswald Avery Alfred Hershey Martha Chase The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) Linus Carl Pauling The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) James Watson and Francis Crick The DNA Saga… so far Important contributions for cracking the genetic code: • The “transforming principle” (1928) • The nature of the transforming principle: DNA (1944 - 1952) • X-ray diffraction and the structure of proteins (1951) • The structure of DNA (1953) How is DNA (4 nucleotides) the genetic material while proteins (20 amino acids) are the building blocks? ? DNA Protein ? The Coding Craze ? DNA Protein What was already known? • DNA resides inside the nucleus - DNA is not the carrier • Protein synthesis occur in the cytoplasm through ribosomes {• Only RNA is associated with ribosomes (no DNA) - rRNA is not the carrier { • Ribosomal RNA (rRNA) was a homogeneous population The “messenger RNA” hypothesis François Jacob Jacques Monod The Coding Craze ? DNA RNA Protein RNA Tie Club Table from Wikipedia The Coding Craze Who won the race Marshall Nirenberg J.
    [Show full text]
  • Regulation of Stringent Factor by Branched-Chain Amino Acids
    Regulation of stringent factor by branched-chain amino acids Mingxu Fanga and Carl E. Bauera,1 aMolecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405 Edited by Caroline S. Harwood, University of Washington, Seattle, WA, and approved May 9, 2018 (received for review February 21, 2018) When faced with amino acid starvation, prokaryotic cells induce a Under normal growth conditions, the synthetase activity of Rel is stringent response that modulates their physiology. The stringent thought to be self-inhibited; however, during times of amino acid response is manifested by production of signaling molecules starvation, Rel interacts with stalled ribosomes, which activates guanosine 5′-diphosphate,3′-diphosphate (ppGpp) and guanosine synthetase activity to produce (p)ppGpp. The regulation of hy- 5′-triphosphate,3′-diphosphate (pppGpp) that are also called drolase activity is less understood but may involve one or more alarmones. In many species, alarmone levels are regulated by a downstream domains called the TGS and ACT domains. The TGS multidomain bifunctional alarmone synthetase/hydrolase called domain of SpoT has been shown to interact with an acyl carrier Rel. In this enzyme, there is an ACT domain at the carboxyl region protein, so it is presumed to sense the status of fatty acid metab- that has an unknown function; however, similar ACT domains are olism in E. coli (4). The function of the ACT domain is not as clear; present in other enzymes that have roles in controlling amino acid however, recent cryo-EM structures of E. coli RelA show that this metabolism. In many cases, these other ACT domains have been domain is involved in binding deacyl-tRNA as well as the ribosome shown to allosterically regulate enzyme activity through the bind- (5–7).
    [Show full text]
  • Structure and Function of Nucleases in DNA Repair: Shape, Grip and Blade of the DNA Scissors
    Oncogene (2002) 21, 9022 – 9032 ª 2002 Nature Publishing Group All rights reserved 0950 – 9232/02 $25.00 www.nature.com/onc Structure and function of nucleases in DNA repair: shape, grip and blade of the DNA scissors Tatsuya Nishino1 and Kosuke Morikawa*,1 1Department of Structural Biology, Biomolecular Engineering Research Institute (BERI), 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan DNA nucleases catalyze the cleavage of phosphodiester mismatched nucleotides. They also recognize the bonds. These enzymes play crucial roles in various DNA replication or recombination intermediates to facilitate repair processes, which involve DNA replication, base the following reaction steps through the cleavage of excision repair, nucleotide excision repair, mismatch DNA strands (Table 1). repair, and double strand break repair. In recent years, Nucleases can be regarded as molecular scissors, new nucleases involved in various DNA repair processes which cleave phosphodiester bonds between the sugars have been reported, including the Mus81 : Mms4 (Eme1) and the phosphate moieties of DNA. They contain complex, which functions during the meiotic phase and conserved minimal motifs, which usually consist of the Artemis : DNA-PK complex, which processes a V(D)J acidic and basic residues forming the active site. recombination intermediate. Defects of these nucleases These active site residues coordinate catalytically cause genetic instability or severe immunodeficiency. essential divalent cations, such as magnesium, Thus, structural biology on various nuclease actions is calcium, manganese or zinc, as a cofactor. However, essential for the elucidation of the molecular mechanism the requirements for actual cleavage, such as the types of complex DNA repair machinery. Three-dimensional and the numbers of metals, are very complicated, but structural information of nucleases is also rapidly are not common among the nucleases.
    [Show full text]
  • The Alarmone (P)Ppgpp Is Part of the Heat Shock Response of Bacillus
    bioRxiv preprint doi: https://doi.org/10.1101/688689; this version posted July 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 The alarmone (p)ppGpp is part of the heat shock response of Bacillus 2 subtilis 3 4 Heinrich Schäfer1,2, Bertrand Beckert3, Wieland Steinchen4, Aaron Nuss5, Michael 5 Beckstette5, Ingo Hantke1, Petra Sudzinová6, Libor Krásný6, Volkhard Kaever7, Petra 6 Dersch5,8, Gert Bange4*, Daniel Wilson3* & Kürşad Turgay1,2* 7 8 Author affiliations: 9 1 Institute of Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, D-30419, 10 Hannover, Germany. 11 2 Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117 Berlin, Germany 12 3 Institute for Biochemistry and Molecular Biology, Martin-Luther-King Platz 6, University of 13 Hamburg, 20146 Hamburg, Germany. 14 4 Philipps-University Marburg, Center for Synthetic Microbiology (SYNMIKRO) and 15 Department of Chemistry, Hans-Meerwein-Strasse, 35043 Marburg, Germany. 16 5 Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, 17 Braunschweig, Germany 18 6 Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague, 19 Czech Republic. 20 7 Hannover Medical School, Research Core Unit Metabolomics, Carl-Neuberg-Strasse 1, 21 30625, Hannover, Germany. 22 8 Institute of Infectiology, Von-Esmarch-Straße 56, University of Münster, Münster, Germany 23 24 Short title: The interplay of heat shock and stringent response 25 1 bioRxiv preprint doi: https://doi.org/10.1101/688689; this version posted July 1, 2019.
    [Show full text]