View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library CMLS, Cell. Mol. Life Sci. 61 (2004) 336–354 1420-682X/04/030336-19 DOI 10.1007/s00018-003-3223-4 CMLS Cellular and Molecular Life Sciences © Birkhäuser Verlag, Basel, 2004 Review DNA repair nucleases T. M. Martia and O. Fleck b, * Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern (Switzerland), Fax: +41 31 631 4684, e-mail:
[email protected] a Present address: UCSF Comprehensive Cancer Center, University of California, 2340 Sutter Street, Box 0808, San Francisco, California 94143 (USA) b Present address: Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Øster Farimagsgade 2A, 1353 Copenhagen K (Denmark), Fax: +45 35 32 2113, e-mail:
[email protected] Received 12 June 2003; received after revision 29 July 2003; accepted 16 September 2003 Abstract. Stability of DNA largely depends on accuracy of DNA. Flap endonucleases cleave DNA flap structures of repair mechanisms, which remove structural anomalies at or near the junction between single-stranded and dou- induced by exogenous and endogenous agents or intro- ble-stranded regions. DNA nucleases play a crucial role in duced by DNA metabolism, such as replication. Most re- mismatch repair, nucleotide excision repair, base excision pair mechanisms include nucleolytic processing of DNA, repair and double-strand break repair. In addition, nucle- where nucleases cleave a phosphodiester bond between a olytic repair functions are required during replication to deoxyribose and a phosphate residue, thereby producing remove misincorporated nucleotides, Okazaki fragments 5′-terminal phosphate and 3′-terminal hydroxyl groups.