Pythagoras and the Creation of Knowledge
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Skepticism and Pluralism Ways of Living a Life Of
SKEPTICISM AND PLURALISM WAYS OF LIVING A LIFE OF AWARENESS AS RECOMMENDED BY THE ZHUANGZI #±r A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN PHILOSOPHY AUGUST 2004 By John Trowbridge Dissertation Committee: Roger T. Ames, Chairperson Tamara Albertini Chung-ying Cheng James E. Tiles David R. McCraw © Copyright 2004 by John Trowbridge iii Dedicated to my wife, Jill iv ACKNOWLEDGEMENTS In completing this research, I would like to express my appreciation first and foremost to my wife, Jill, and our three children, James, Holly, and Henry for their support during this process. I would also like to express my gratitude to my entire dissertation committee for their insight and understanding ofthe topics at hand. Studying under Roger Ames has been a transformative experience. In particular, his commitment to taking the Chinese tradition on its own terms and avoiding the tendency among Western interpreters to overwrite traditional Chinese thought with the preoccupations ofWestern philosophy has enabled me to broaden my conception ofphilosophy itself. Roger's seminars on Confucianism and Daoism, and especially a seminar on writing a philosophical translation ofthe Zhongyong r:pJm (Achieving Equilibrium in the Everyday), have greatly influenced my own initial attempts to translate and interpret the seminal philosophical texts ofancient China. Tamara Albertini's expertise in ancient Greek philosophy was indispensable to this project, and a seminar I audited with her, comparing early Greek and ancient Chinese philosophy, was part ofthe inspiration for my choice ofresearch topic. I particularly valued the opportunity to study Daoism and the Yijing ~*~ with Chung-ying Cheng g\Gr:p~ and benefited greatly from his theory ofonto-cosmology as a means of understanding classical Chinese philosophy. -
PYTHAGORAS in LONDON Mathematics ESO 2
PYTHAGORASPYTHAGORAS inin LONDONLONDON GuiaGuia dede treballtreball Laura, 2103. Jaume Plensa MaterialMaterial elaboratelaborat perper www.mat3.cat Maite Gorriz i Santi Vilches PYTHAGORAS in LONDON Mathematics ESO www.mat3.cat 2 AVATAR An Avatar is a personal icon in a virtual context. We will develop the capacity to program and control the avatar’s movements and we will learn how to use a powerful mathematics tool which is necessary to program an avatar. A. SPECIAL EQUATIONS A.1. Calculate without calculator and memorize the following results: a) 2², 3², 4², 5², 6², 7², 8², 9², 10², 11², 12², 13² i 14² b) √1 , √4 , √9 , √16 , √25 , √36 , √49 , √64 , √81 … A.2. Solve the following quadratic equations: a) x² = 64 b) x² – 6 = 30 c) 10 – x² = 9 d) x² = 2 e) 7² + x² = 2 f) 12 = 1,3 + x² g) 11² + x² = 13² B. A LITTLE BIT OF VOCABULARY AND BASIC CONCEPTS B.1.We need to learn specific vocabulary. Write the definitions of the following words and draw an illustrative picture. a) Equilateral triangle b) Isosceles triangle c) Escalene triangle d) Obtuse triangle e) Rectangle triangle or right triangle f) Acutangle triangle g) Hypotenuse h) Cathetus PYTHAGORAS in LONDON Mathematics ESO www.mat3.cat 3 B.2. Remember that we measure the angles from the horizontal side to the other one in the counterclockwise. Remember also that one turn is 360º (degrees). A Write the measure of each angle: B.3. Try to do the same figure in the Geogebra and add the exercise in the Moodle. (surname_B3_angles_2X.ggb) B.4. -
MONEY and the EARLY GREEK MIND: Homer, Philosophy, Tragedy
This page intentionally left blank MONEY AND THE EARLY GREEK MIND How were the Greeks of the sixth century bc able to invent philosophy and tragedy? In this book Richard Seaford argues that a large part of the answer can be found in another momentous development, the invention and rapid spread of coinage, which produced the first ever thoroughly monetised society. By transforming social relations, monetisation contributed to the ideas of the universe as an impersonal system (presocratic philosophy) and of the individual alienated from his own kin and from the gods (in tragedy). Seaford argues that an important precondition for this monetisation was the Greek practice of animal sacrifice, as represented in Homeric epic, which describes a premonetary world on the point of producing money. This book combines social history, economic anthropology, numismatics and the close reading of literary, inscriptional, and philosophical texts. Questioning the origins and shaping force of Greek philosophy, this is a major book with wide appeal. richard seaford is Professor of Greek Literature at the University of Exeter. He is the author of commentaries on Euripides’ Cyclops (1984) and Bacchae (1996) and of Reciprocity and Ritual: Homer and Tragedy in the Developing City-State (1994). MONEY AND THE EARLY GREEK MIND Homer, Philosophy, Tragedy RICHARD SEAFORD cambridge university press Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo Cambridge University Press The Edinburgh Building, Cambridge cb2 2ru, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521832281 © Richard Seaford 2004 This publication is in copyright. -
Lecture 4. Pythagoras' Theorem and the Pythagoreans
Lecture 4. Pythagoras' Theorem and the Pythagoreans Figure 4.1 Pythagoras was born on the Island of Samos Pythagoras Pythagoras (born between 580 and 572 B.C., died about 497 B.C.) was born on the island of Samos, just off the coast of Asia Minor1. He was the earliest important philosopher who made important contributions in mathematics, astronomy, and the theory of music. Pythagoras is credited with introduction the words \philosophy," meaning love of wis- dom, and \mathematics" - the learned disciplines.2 Pythagoras is famous for establishing the theorem under his name: Pythagoras' theorem, which is well known to every educated per- son. Pythagoras' theorem was known to the Babylonians 1000 years earlier but Pythagoras may have been the first to prove it. Pythagoras did spend some time with Thales in Miletus. Probably by the suggestion of Thales, Pythagoras traveled to other places, including Egypt and Babylon, where he may have learned some mathematics. He eventually settled in Groton, a Greek settlement in southern Italy. In fact, he spent most of his life in the Greek colonies in Sicily and 1Asia Minor is a region of Western Asia, comprising most of the modern Republic of Turkey. 2Is God a mathematician ? Mario Livio, Simon & Schuster Paperbacks, New York-London-Toronto- Sydney, 2010, p. 15. 23 southern Italy. In Groton, he founded a religious, scientific, and philosophical organization. It was a formal school, in some sense a brotherhood, and in some sense a monastery. In that organization, membership was limited and very secretive; members learned from leaders and received education in religion. -
Solutions of EGMO 2020
Solutions of EGMO 2020 Problem 1. The positive integers a0, a1, a2,..., a3030 satisfy 2an+2 = an+1 + 4an for n = 0, 1, 2,..., 3028. 2020 Prove that at least one of the numbers a0, a1, a2,..., a3030 is divisible by 2 . Problem 2. Find all lists (x1, x2, . , x2020) of non-negative real numbers such that the fol- lowing three conditions are all satisfied: (i) x1 ≤ x2 ≤ ... ≤ x2020; (ii) x2020 ≤ x1 + 1; (iii) there is a permutation (y1, y2, . , y2020) of (x1, x2, . , x2020) such that 2020 2020 X 2 X 3 (xi + 1)(yi + 1) = 8 xi . i=1 i=1 A permutation of a list is a list of the same length, with the same entries, but the entries are allowed to be in any order. For example, (2, 1, 2) is a permutation of (1, 2, 2), and they are both permutations of (2, 2, 1). Note that any list is a permutation of itself. Problem 3. Let ABCDEF be a convex hexagon such that \A = \C = \E and \B = \D = \F and the (interior) angle bisectors of \A, \C, and \E are concurrent. Prove that the (interior) angle bisectors of \B, \D, and \F must also be concurrent. Note that \A = \F AB. The other interior angles of the hexagon are similarly described. Problem 4. A permutation of the integers 1, 2,..., m is called fresh if there exists no positive integer k < m such that the first k numbers in the permutation are 1, 2,..., k in some order. Let fm be the number of fresh permutations of the integers 1, 2,..., m. -
Metallic Means : Beyond the Golden Ratio, New Mathematics And
Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921 https://rajpub.com/index.php/jam DOI: https://doi.org/10.24297/jam.v20i.9056 Metallic Means : Beyond the Golden Ratio, New Mathematics and Geometry of all Metallic Ratios based upon Right Triangles, The Formation of the “Triads” of Metallic Means, And their Classical Correspondence with Pythagorean Triples and p≡1(mod 4) Primes, Also the Correlation between Metallic Numbers and the Digits 3 6 9, Triangles – Triads – Triples - & 3 6 9 Dr. Chetansing Rajput M.B.B.S. Nair Hospital (Mumbai University) India, Asst. Commissioner (Govt. of Maharashtra) Lecture Link: https://youtu.be/vBfVDaFnA2k Email: [email protected] Website: https://goldenratiorajput.com/ Abstract This paper brings together the newly discovered generalised geometry of all Metallic Means and the recently published mathematical formulae those provide the precise correlations between different Metallic Ratios. The paper also puts forward the concept of the “Triads of Metallic Means”. This work also introduces the close correspondence between Metallic Ratios and the Pythagorean Triples as well as Pythagorean Primes. Moreover, this work illustrates the intriguing relationship between Metallic Numbers and the Digits 3 6 9. Keywords: Fibonacci sequence, Pi, Phi, Pythagoras Theorem, Divine Proportion, Silver Ratio, Golden Mean, Right Triangle, Metallic Numbers, Pell Numbers, Lucas Numbers, Golden Proportion, Metallic Ratio, Metallic Triples, 3 6 9, Pythagorean Triples, Pythagorean Primes, Golden Ratio, Metallic Mean Introduction The prime objective of this work is to synergize the following couple of newly discovered aspects of Metallic Means: 1) The Generalised Geometric Construction of all Metallic Ratios: cited by Wikipedia in its page on “Metallic Mean”[1]. -
Pythagorean Theorem
4.4. Pythagorean Theorem A right triangle is a triangle containing a right angle (90°). A triangle cannot have more than one right angle, since the sum of the two right angles plus the third angle would exceed the 180° total possessed by a triangle. The side opposite the right angle is called the hypotenuse (side c in the figure below). The sides adjacent to the right angle are called legs (or catheti, singular: cathetus). hypotenuse A c b right angle = 90° C a B Math notation for right triangle The Pythagorean Theorem states that the square of a hypotenuse is equal to the sum of the squares of the other two sides. It is one of the fundamental relations in Euclidean geometry. c2 = a2 + b2 2 Ac = c B A = a2 c a a A b C 2 Ab = b Pythagorean triangle with the squares of its sides and labels Pythagorean triples are integer values of a, b, c satisfying this equation. Math 8 * 4.4. Pythagorean Theorem 1 © ontaonta.com Fall 2021 Finding the Sides of a Right Triangle Example 1: Find the hypotenuse. A c 2:8 m C 9:6 m B 2 2 2 c = a + b ðsubstitute for a and b c2 = .9:6 m/2 + .2:8 m/2 c2 = 92:16 m2 + 7:84 m2 2 2 c = 100 m ðtake the square root of each side ù ù c2 = 100 m2 ù ù ù c2 = 100 m2 c = 10 m Example 2: Find the missing side b. 5 3 b 2 2 2 2 c = a + b ðsubtract a from each side ¨ ¨ c2 * a2 = ¨a2 + b2 ¨*¨a2 2 2 2 c * a = b ðswitch sides 2 2 2 b = c * a ðsubstitute for a and c b2 = 52 * 32 2 b = 25 * 9 = 16 ðtake the square root of each side ù ù b2 = 16 b = 4 Math 8 * 4.4. -
Metallic Ratios in Primitive Pythagorean Triples : Metallic Means Embedded in Pythagorean Triangles and Other Right Triangles
Journal of Advances in Mathematics Vol 20 (2021) ISSN: 2347-1921 https://rajpub.com/index.php/jam DOI: https://doi.org/10.24297/jam.v20i.9088 Metallic Ratios in Primitive Pythagorean Triples : Metallic Means embedded in Pythagorean Triangles and other Right Triangles Dr. Chetansing Rajput M.B.B.S. Nair Hospital (Mumbai University) India, Asst. Commissioner (Govt. of Maharashtra) Email: [email protected] Website: https://goldenratiorajput.com/ Lecture Link 1 : https://youtu.be/LFW1saNOp20 Lecture Link 2 : https://youtu.be/vBfVDaFnA2k Lecture Link 3 : https://youtu.be/raosniXwRhw Lecture Link 4 : https://youtu.be/74uF4sBqYjs Lecture Link 5 : https://youtu.be/Qh2B1tMl8Bk Abstract The Primitive Pythagorean Triples are found to be the purest expressions of various Metallic Ratios. Each Metallic Mean is epitomized by one particular Pythagorean Triangle. Also, the Right Angled Triangles are found to be more “Metallic” than the Pentagons, Octagons or any other (n2+4)gons. The Primitive Pythagorean Triples, not the regular polygons, are the prototypical forms of all Metallic Means. Keywords: Metallic Mean, Pythagoras Theorem, Right Triangle, Metallic Ratio Triads, Pythagorean Triples, Golden Ratio, Pascal’s Triangle, Pythagorean Triangles, Metallic Ratio A Primitive Pythagorean Triple for each Metallic Mean (훅n) : Author’s previous paper titled “Golden Ratio” cited by the Wikipedia page on “Metallic Mean” [1] & [2], among other works mentioned in the References, have already highlighted the underlying proposition that the Metallic Means -
Appendix 1: Greek and Islamicate Physicians
Appendix 1: Greek and Islamicate Physicians Few of the ancient and medieval physicians and philosophers referred to in this book are household names. As in the underlying works of Galen, the epitomes mention various ancient physicians and philoso- phers by name; Galen, indeed, is our most important source of informa- tion for the doctrines of Hellenistic physicians. The individuals mentioned in connection with the composition of the epitomes are even more obscure. The following are the ancient physicians mentioned in the text of the epitome of On the Sects, including a few names given only in cer- tain manuscripts or mentioned elsewhere in the text. I have also included those mentioned in historical sources in connection with the composition of the epitomes and a few Islamicate physicians (most of whom are actually Christians) who appear in the historical documenta- tion of the epitomes or in the manuscripts. In most cases, I have given references only to standard reference sources, notably Pauly-Wissowa and its recent updates (RE, BNP), The Complete Dictionary of Scientific Biography (CDSB), Dictionnaire des philosophes antiques (DPA), The Encyclopaedia of Islam (EI), and Geschichte des arabischen Schriftums (GAS). Readers needing access to primary sources can easily trace them through these references. Acron of Agrigentum (fifth centuryBCE ). Physician, contemporary and fellow-townsman of Empedocles. Later Empiricists traced the origin of their school to him. He was known to Islamicate physicians through quotations as an authority on dietetics and as the first in the succession of physicians between Parmenides and Plato the Physician. BNP 1:113; DPA 1:50–51; GAS 3:22; RE 1:1199. -
Women in Early Pythagoreanism
Women in Early Pythagoreanism Caterina Pellò Faculty of Classics University of Cambridge Clare Hall February 2018 This dissertation is submitted for the degree of Doctor of Philosophy Alla nonna Ninni, che mi ha insegnato a leggere e scrivere Abstract Women in Early Pythagoreanism Caterina Pellò The sixth-century-BCE Pythagorean communities included both male and female members. This thesis focuses on the Pythagorean women and aims to explore what reasons lie behind the prominence of women in Pythagoreanism and what roles women played in early Pythagorean societies and thought. In the first chapter, I analyse the social conditions of women in Southern Italy, where the first Pythagorean communities were founded. In the second chapter, I compare Pythagorean societies with ancient Greek political clubs and religious sects. Compared to mainland Greece, South Italian women enjoyed higher legal and socio-political status. Similarly, religious groups included female initiates, assigning them authoritative roles. Consequently, the fact that the Pythagoreans founded their communities in Croton and further afield, and that in some respects these communities resembled ancient sects helps to explain why they opened their doors to the female gender to begin with. The third chapter discusses Pythagoras’ teachings to and about women. Pythagorean doctrines did not exclusively affect the followers’ way of thinking and public activities, but also their private way of living. Thus, they also regulated key aspects of the female everyday life, such as marriage and motherhood. I argue that the Pythagorean women entered the communities as wives, mothers and daughters. Nonetheless, some of them were able to gain authority over their fellow Pythagoreans and engage in intellectual activities, thus overcoming the female traditional domestic roles. -
Ancient Greek Mathematics
Ancient Greek Mathematics The Greek Empire • Ancient Greek civilization generally accepted to date from around 800 BC. Primarily centered on the Aegean Sea (between modern-day Greece and Turkey) containing hundreds of islands and loosely affiliated city-states. • Many wars between city-states other empires (e.g. Persians). • By 500 BC covered much of modern Greece, the Aegean and southern Italy. As a trading/sea- faring culture, built/captured city-states (colonies/trading-outposts)all around the north and east coast of the Mediterranean from Spain round the Black Sea and Anatolia (modern Turkey) to Egypt. • Alexander the Great (356–323 BC) extended empire around the eastern Mediterranean inland capturing mainland Egypt and then east to western India and Babylon where he died. • Eventually becomes part of the Roman Empire c.146 BC though Romans left Greek largely essentially intact apart from crushing several rebellions. • Greek civilization flourished even as the Rome collapsed, continuing as part of the Byzantine Empire. Map of Greek Empire c.500 BC from timemaps.com Ancient Greece is important for far more than just mathematics and one course cannot begin to do justice to it. Much of modern western thought and culture including philosophy, art logic and science has roots in Ancient Greece. While undeniably important, western culture has often over- emphasized the role of the Greeks and downplayed the contribution of other cultures to our inherited knowledge. Mathematics and Philosophical Development • Inquiry into natural phenomena encouraged through the personification of nature (sky = man, earth = woman) which pervaded early religion. • By 600 BC ‘philosophers’ were attempting to describe such phenomena in terms of natural causes rather than being at the whim of the gods. -
GPA + Footnotes
Greek phiiill osophy up ttto Ariiistttotttll e N Kazanas, Omilos Meleton, Athens: May/September 2003. IIIntttroductttory... 1... It is generally thought that Greek “philosophy” began in Ionia, on the eastern shores of the Aegean Sea, with Thales of Miletus c 585 BC. (All dates hereafter will be before the Common Era except where stated as CE, and with references to modern studies, eg “(So-and-so 1985: 10)”, where the second number denotes the page). Philosophy means simply ‘love of wisdom’ and Thales was certainly not the first Greek to love ‘wisdom’. Several definitions can be given to ‘wisdom’ (as we shall see hereafter) but one of them must include the discovery, or the search for knowledge, of the ways in which the whole human organism functions at its best and of the conditions in the natural and man- made environment where men can live in comfort and happiness; and this implies an understanding of the highest causes, of the origin and purpose of human life and of its relation to the rest of the world. Now at Miletus, on many islands and the mainland, long before Thales, Greeks had made good use of their natural environment transforming parts of it so that they could live comfortably in their city-states: they were cultivating many plants for food, decoration and medicines and had domesticated animals for their milk, flesh and hide and also for transport; they used wheeled vehicles and ships for transport on land and on water (and for fishing); they exchanged goods and services among themselves and traded with other city-states and large empires like Lydia on Asia Minor (modern Turkey) or Egypt, where they had established a commercial centre at Naucratis on the Nile delta; they had sent numerous colonists to settle along the shores of the Black Sea, in Southern Italy and further west (Boardman 1980); they also had religion, ethical codes and laws, which regulated the relations among citizens and also relations with the invisible Powers they believed in and called “gods”.