The Potential of Combined Sparse Photometric Data in Asteroid Shape Modeling J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Anisotropic Distribution of Spin Vectors in Asteroid Families
Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes. -
Asteroid Regolith Weathering: a Large-Scale Observational Investigation
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved. -
U.S. Naval Observatory Washington, DC 20392-5420 This Report Covers the Period July 2001 Through June Dynamical Astronomy in Order to Meet Future Needs
1 U.S. Naval Observatory Washington, DC 20392-5420 This report covers the period July 2001 through June dynamical astronomy in order to meet future needs. J. 2002. Bangert continued to serve as Department head. I. PERSONNEL A. Civilian Personnel A. Almanacs and Other Publications Marie R. Lukac retired from the Astronomical Appli- cations Department. The Nautical Almanac Office ͑NAO͒, a division of the Scott G. Crane, Lisa Nelson Moreau, Steven E. Peil, and Astronomical Applications Department ͑AA͒, is responsible Alan L. Smith joined the Time Service ͑TS͒ Department. for the printed publications of the Department. S. Howard is Phyllis Cook and Phu Mai departed. Chief of the NAO. The NAO collaborates with Her Majes- Brian Luzum and head James R. Ray left the Earth Ori- ty’s Nautical Almanac Office ͑HMNAO͒ of the United King- entation ͑EO͒ Department. dom to produce The Astronomical Almanac, The Astronomi- Ralph A. Gaume became head of the Astrometry Depart- cal Almanac Online, The Nautical Almanac, The Air ment ͑AD͒ in June 2002. Added to the staff were Trudy Almanac, and Astronomical Phenomena. The two almanac Tillman, Stephanie Potter, and Charles Crawford. In the In- offices meet twice yearly to discuss and agree upon policy, strument Shop, Tie Siemers, formerly a contractor, was hired science, and technical changes to the almanacs, especially to fulltime. Ellis R. Holdenried retired. Also departing were The Astronomical Almanac. Charles Crawford and Brian Pohl. Each almanac edition contains data for 1 year. These pub- William Ketzeback and John Horne left the Flagstaff Sta- lications are now on a well-established production schedule. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 38, NUMBER 2, A.D. 2011 APRIL-JUNE 71. LIGHTCURVES OF 10452 ZUEV, (14657) 1998 YU27, AND (15700) 1987 QD Gary A. Vander Haagen Stonegate Observatory, 825 Stonegate Road Ann Arbor, MI 48103 [email protected] (Received: 28 October) Lightcurve observations and analysis revealed the following periods and amplitudes for three asteroids: 10452 Zuev, 9.724 ± 0.002 h, 0.38 ± 0.03 mag; (14657) 1998 YU27, 15.43 ± 0.03 h, 0.21 ± 0.05 mag; and (15700) 1987 QD, 9.71 ± 0.02 h, 0.16 ± 0.05 mag. Photometric data of three asteroids were collected using a 0.43- meter PlaneWave f/6.8 corrected Dall-Kirkham astrograph, a SBIG ST-10XME camera, and V-filter at Stonegate Observatory. The camera was binned 2x2 with a resulting image scale of 0.95 arc- seconds per pixel. Image exposures were 120 seconds at –15C. Candidates for analysis were selected using the MPO2011 Asteroid Viewing Guide and all photometric data were obtained and analyzed using MPO Canopus (Bdw Publishing, 2010). Published asteroid lightcurve data were reviewed in the Asteroid Lightcurve Database (LCDB; Warner et al., 2009). The magnitudes in the plots (Y-axis) are not sky (catalog) values but differentials from the average sky magnitude of the set of comparisons. The value in the Y-axis label, “alpha”, is the solar phase angle at the time of the first set of observations. All data were corrected to this phase angle using G = 0.15, unless otherwise stated. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles. -
A Study of Asteroid Pole-Latitude Distribution Based on an Extended
Astronomy & Astrophysics manuscript no. aa˙2009 c ESO 2018 August 22, 2018 A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method 1 1 1 2 3 4 5 6 7 J. Hanuˇs ∗, J. Durechˇ , M. Broˇz , B. D. Warner , F. Pilcher , R. Stephens , J. Oey , L. Bernasconi , S. Casulli , R. Behrend8, D. Polishook9, T. Henych10, M. Lehk´y11, F. Yoshida12, and T. Ito12 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 4 Goat Mountain Astronomical Research Station, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA 5 Kingsgrove, NSW, Australia 6 Observatoire des Engarouines, 84570 Mallemort-du-Comtat, France 7 Via M. Rosa, 1, 00012 Colleverde di Guidonia, Rome, Italy 8 Geneva Observatory, CH-1290 Sauverny, Switzerland 9 Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel 10 Astronomical Institute, Academy of Sciences of the Czech Republic, Friova 1, CZ-25165 Ondejov, Czech Republic 11 Severni 765, CZ-50003 Hradec Kralove, Czech republic 12 National Astronomical Observatory, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan Received 17-02-2011 / Accepted 13-04-2011 ABSTRACT Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination. -
Journal Für Astronomie ISSN 1615-0880
Journal für Astronomie www.vds-astro.de ISSN 1615-0880 Nr. 72 1/2020 Zeitschrift der Vereinigung der Sternfreunde e.V. Beobachten mit kleiner Öffnung AMATEURTELESKOPE Ein „g‘scheiter“ Refraktor 60/700 DEEP SKY Beobachtung von Planetarischen Nebeln KOMETEN 40 Jahre Kometenbeobachtung Canon EOS 200D & 2000D modifiziert für die Astrofotografie ! Ob mit Kameraobjektiv oder am Teleskop: Modizierte Canon EOS DSLR Kameras bieten Ihnen einen einfachen Einstieg in die Astrofotograe! Die Vorteile im Überblick: • etwa fünffach höhere Empfindlichkeit bei H-alpha und SII • Infrarot Blockung der Kamera bleibt vollständig erhalten • kein Einbau eines teuren Ersatzfilters • mit Astronomik OWB-Clip-Filter uneingeschränkt bei Tag nutzbar • auch ohne Computer am Teleskop einsatzfähig • 14 Bit Datentiefe im RAW-Format, 24 Megapixel • bei der 200Da: Erhalt des EOS Integrated Cleaning System • bei der 200Da: Dreh- und schwenkbarer Bildschirm • kompatibel mit vielen gängigen Astronomieprogrammen • voller Erhalt der Herstellergarantie Weitere Modelle auf Anfrage Wir bauen auch Ihre bereits vorhandene Kamera um! Canon EOS 200Da € 70900 * Canon EOS 2000Da € 55900 * * Tagespreis vom 19. November 2019 mit 200mm 1:4 Reflektor ©Bruno Mattern, Aufnahme Astronomik Deep-Sky RGB Farbfiltersatz Neuentwicklung! + optimierte Bildschärfe + höchster Kontrast + maximale Transmission = optimale Ergebnisse © Michael Sidonio Annals of the Deep Sky - A Survey of Galactic and Extragalactic Objects astro-shop Diese englischsprachige Buchreihe ist als mehrbändiges Werk angelegt, das Das seit zwei Jahrzehnten erfolgreiche Konzept die heutige Sicht auf alle Sternbilder des Himmels und die in Ihnen beobacht- hat inzwischen viele Nachahmer gefunden. baren Objekte darstellt. Deshalb achten Sie unbedingt darauf, dass Sie Die Gliederung erfolgt alphabetisch nach Sternbildern. Vergleichbar sind die auf der richtigen astro-shop Seite landen: Bücher mit "Burnham's Celestial Handbook" oder "Taschenatlas der Sternbilder“, eben aktualisiert auf den Wissens- und Technikstand von heute. -
Absolute Magnitudes of Asteroids and a Revision of Asteroid Albedo Estimates from WISE Thermal Observations ⇑ Petr Pravec A, , Alan W
Icarus 221 (2012) 365–387 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Absolute magnitudes of asteroids and a revision of asteroid albedo estimates from WISE thermal observations ⇑ Petr Pravec a, , Alan W. Harris b, Peter Kušnirák a, Adrián Galád a,c, Kamil Hornoch a a Astronomical Institute, Academy of Sciences of the Czech Republic, Fricˇova 1, CZ-25165 Ondrˇejov, Czech Republic b 4603 Orange Knoll Avenue, La Cañada, CA 91011, USA c Modra Observatory, Department of Astronomy, Physics of the Earth, and Meteorology, FMFI UK, Bratislava SK-84248, Slovakia article info abstract Article history: We obtained estimates of the Johnson V absolute magnitudes (H) and slope parameters (G) for 583 main- Received 27 February 2012 belt and near-Earth asteroids observed at Ondrˇejov and Table Mountain Observatory from 1978 to 2011. Revised 27 July 2012 Uncertainties of the absolute magnitudes in our sample are <0.21 mag, with a median value of 0.10 mag. Accepted 28 July 2012 We compared the H data with absolute magnitude values given in the MPCORB, Pisa AstDyS and JPL Hori- Available online 13 August 2012 zons orbit catalogs. We found that while the catalog absolute magnitudes for large asteroids are relatively good on average, showing only little biases smaller than 0.1 mag, there is a systematic offset of the cat- Keywords: alog values for smaller asteroids that becomes prominent in a range of H greater than 10 and is partic- Asteroids ularly big above H 12. The mean (H H) value is negative, i.e., the catalog H values are Photometry catalog À Infrared observations systematically too bright. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 41, NUMBER 4, A.D. 2014 OCTOBER-DECEMBER 203. LIGHTCURVE ANALYSIS FOR 4167 RIEMANN Amy Zhao, Ashok Aggarwal, and Caroline Odden Phillips Academy Observatory (I12) 180 Main Street Andover, MA 01810 USA [email protected] (Received: 10 June) Photometric observations of 4167 Riemann were made over six nights in 2014 April. A synodic period of P = 4.060 ± 0.001 hours was derived from the data. 4167 Riemann is a main-belt asteroid discovered in 1978 by L. V. Period analysis was carried out by the authors using MPO Canopus Zhuraveya. Observations of the asteroid were conducted at the and its Fourier analysis feature developed by Harris (Harris et al., Phillips Academy Observatory, which is equipped with a 0.4-m f/8 1989). The resulting lightcurve consists of 288 data points. The reflecting telescope by DFM Engineering. Images were taken with period spectrum strongly favors the bimodal solution. The an SBIG 1301-E CCD camera that has a 1280x1024 array of 16- resulting lightcurve has synodic period P = 4.060 ± 0.001 hours micron pixels. The resulting image scale was 1.0 arcsecond per and amplitude 0.17 mag. Dips in the period spectrum were also pixel. Exposures were 300 seconds and taken primarily at –35°C. noted at 8.1200 hours (2P) and at 6.0984 hours (3/2P). A search of All images were guided, unbinned, and unfiltered. Images were the Asteroid Lightcurve Database (Warner et al., 2009) and other dark and flat-field corrected with Maxim DL. -
Determination of Orbital Elements and Ephemerides Using the Geocentric Laplace’S Method
Research Paper J. Astron. Space Sci. 37(3), 171-185 (2020) https://doi.org/10.5140/JASS.2020.37.3.171 Determination of Orbital Elements and Ephemerides using the Geocentric Laplace’s Method Daniela Espitia†, Edwin A. Quintero, Ivan D. Arellano-Ramírez Grupo de Investigación en Astroingeniería Alfa Orión, Observatorio Astronómico, Universidad Tecnológica de Pereira, Complejo Educativo La Julita, 660003 Pereira, Colombia This paper presents a methodology for Initial Orbit Determination (IOD) based on a modification of the Laplace’s geocentric method. The orbital elements for Near-Earth asteroids (1864) Daedalus, 2003 GW, 2019 JA8, a Hungaria-type asteroid (4690) Strasbourg, and the asteroids of the Main Belt (1738) Oosterhoff, (2717) Tellervo, (1568) Aisleen and (2235) Vittore were calculated. Input data observations from the Minor Planet Center MPC database and Astronomical Observatory of the Technological University of Pereira (OAUTP; MPC code W63) were used. These observations cover observation arcs of less than 22 days. The orbital errors, in terms of shape and orientation for the estimated orbits of the asteroids, were calculated. The shape error was less than 53 × 10–3 AU, except for the asteroid 2019 JA8. On the other hand, errors in orientation were less than 0.1 rad, except for (4690) Strasbourg. Additionally, we estimated ephemerides for all bodies for up to two months. When compared with actual ephemerides, the errors found allowed us to conclude that these bodies can be recovered in a field of vision of 95’ × 72’ (OAUTP field). This shows that Laplace’s method, though simple, may still be useful in the IOD study, especially for observatories that initiate programs of minor bodies observation. -
Investigating Taxonomic Diversity Within Asteroid Families Through ATLAS Dual-Band Photometry
Draft version February 20, 2020 Typeset using LATEX twocolumn style in AASTeX62 Investigating Taxonomic Diversity within Asteroid Families through ATLAS Dual-Band Photometry N. Erasmus,1 S. Navarro-Meza,2, 3 A. McNeill,3 D. E. Trilling,3, 1 A. A. Sickafoose,1, 4, 5 L. Denneau,6 H. Flewelling,6 A. Heinze,6 and J. L. Tonry6 1South African Astronomical Observatory, Cape Town, 7925, South Africa. 2Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Ensenada B.C. 22860, Mexico. 3Department of Physics and Astronomy, Northern Arizona University, Flagstaff, AZ 86001, USA. 4Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA. 5Planetary Science Institute, Tucson, AZ 85719-2395, USA 6Institute for Astronomy, University of Hawaii, Honolulu, HI 9682, USA. ABSTRACT We present here the c-o colors for identified Flora, Vesta, Nysa-Polana, Themis, and Koronis family members within the historic data set (2015-2018) of the Asteroid Terrestrial-impact Last Alert System (ATLAS). The Themis and Koronis families are known to be relatively pure C- and S-type Bus- DeMeo taxonomic families, respectively, and the extracted color data from the ATLAS broadband c- and o-filters of these two families is used to demonstrate that the ATLAS c-o color is a sufficient parameter to distinguish between the C- and S-type taxonomies. The Vesta and Nysa-Polana families are known to display a mixture of taxonomies possibly due to Vesta's differentiated parent body origin and Nysa-Polana actually consisting of two nested families with differing taxonomies. Our data show that the Flora family also displays a large degree of taxonomic mixing and the data reveal a substantial H-magnitude dependence on color. -
Cumulative Index to Volumes 1-45
The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................