Thermophysical Modeling of Asteroid Surfaces Using Ellipsoid Shape Models
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
174 Minor Planet Bulletin 47 (2020) DETERMINING the ROTATIONAL
174 DETERMINING THE ROTATIONAL PERIODS AND LIGHTCURVES OF MAIN BELT ASTEROIDS Shandi Groezinger Kent Montgomery Texas A&M University-Commerce P.O. Box 3011 Commerce, TX 75429-3011 [email protected] (Received: 2020 Feb 21 Revised: 2020 March 20) Lightcurves and rotational periods are presented for six main-belt asteroids. The rotational periods determined are 970 Primula (2.777 ± 0.001 h), 1103 Sequoia (3.1125 ± 0.0004 h), 1160 Illyria (4.103 ± 0.002 h), 1188 Gothlandia (3.52 ± 0.05 h), 1831 Nicholson (3.215 ± 0.004 h) and (11230) 1999 JV57 (7.090 ± 0.003 h). The purpose of this research was to create lightcurves and determine the rotational periods of six asteroids: 970 Primula, 1103 Sequoia, 1160 Illyria, 1188 Gothlandia, 1831 Nicholson and (11230) 1999 JV57. Asteroids were selected for this study from a website that catalogues all known asteroids (CALL). For an asteroid to be chosen in this study, it has to meet the requirements of brightness, declination, and opposition date. For optimum signal to noise ratio (SNR), asteroids of apparent magnitude of 16 or lower were chosen. Asteroids with positive declinations were chosen due to using telescopes located in the northern hemisphere. The data for all the asteroids was typically taken within two weeks from their opposition dates. This would ensure a maximum number of images each night. Asteroid 970 Primula was discovered by Reinmuth, K. at Heidelberg in 1921. This asteroid has an orbital eccentricity of 0.2715 and a semi-major axis of 2.5599 AU (JPL). Asteroid 1103 Sequoia was discovered in 1928 by Baade, W. -
The Composition of M-Type Asteroids II: Synthesis of Spectroscopic and Radar Observations ⇑ J.R
Icarus 238 (2014) 37–50 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The composition of M-type asteroids II: Synthesis of spectroscopic and radar observations ⇑ J.R. Neeley a,b,1, , B.E. Clark a,1, M.E. Ockert-Bell a,1, M.K. Shepard c,2, J. Conklin d, E.A. Cloutis e, S. Fornasier f, S.J. Bus g a Department of Physics, Ithaca College, Ithaca, NY 14850, United States b Department of Physics, Iowa State University, Ames, IA 50011, United States c Department of Geography and Geosciences, Bloomsburg University, Bloomsburg, PA 17815, United States d Department of Mathematics, Ithaca College, Ithaca, NY 14850, United States e Department of Geography, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada f LESIA, Observatoire de Paris, 5 Place Jules Janssen, F-92195 Meudon Principal Cedex, France g Institute for Astronomy, 2680 Woodlawn Dr., Honolulu, HI 96822, United States article info abstract Article history: This work updates and expands on results of our long-term radar-driven observational campaign of Received 7 February 2012 main-belt asteroids (MBAs) focused on Bus–DeMeo Xc- and Xk-type objects (Tholen X and M class Revised 7 May 2014 asteroids) using the Arecibo radar and NASA Infrared Telescope Facilities (Ockert-Bell, M.E., Clark, B.E., Accepted 9 May 2014 Shepard, M.K., Rivkin, A.S., Binzel, R.P., Thomas, C.A., DeMeo, F.E., Bus, S.J., Shah, S. [2008]. Icarus 195, Available online 16 May 2014 206–219; Ockert-Bell, M.E., Clark, B.E., Shepard, M.K., Issacs, R.A., Cloutis, E.A., Fornasier, S., Bus, S.J. -
Annual Report, Fiscal Year 1965
1965 TECHNICAL HIGHLIGHTS OF THE NATIONAL BUREAU OF STANDARDS Annual Report for: INSTITUTE FOR BASIC STANDARDS INSTITUTE FOR MATERIALS RESEARCH INSTITUTE FOR APPLIED TECHNOLOGY CENTRAL RADIO PROPAGATION LABORATORY n UNITED STATES DEPARTMENT OF COMMERCE John T. Connor, Secretary J. Herbert Hollomon, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS A. V. Astin, Director 1965 Technical Highlights of the National Bureau of Standards Annual Report, Fiscal Year 1965 May 1966 Miscellaneous Publication 279 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D. C, 20402 — Price 65 cents Library of Congress Catalog Card Number: 6-23979 CONTENTS THE DIRECTOR'S STATEMENT _ 1 NBS—An Evolving Institution 1 Management Progress 3 NBS As a Scientific Laboratory 5 INSTITUTE FOR BASIC STANDARDS 11 Physical Quantities, Constants, and Calibration Services 12 International Base L nits 13 Length. Mass. Frequency and Time. Temperature. Luminous Intensity. Electric Current. Mechanical Quantities 19 Force. Pressure. Vacuum. Electrical Quantities—DC 24 Resistance Ratios. Voltage. Current Ratio Standards. New Compensated Current Comparator. Absolute Electrical Meas- urements. AC-DC Transfer Standards. Voltage Ratio Detector for Millivolt Signals. Electrical Quantities—Radio 25 Low-Frequency Calibration. High-Frequency Electrical Stand- ards. High-Frequency Impedance Standards. High-Frequency Calibrations. Microwave Standards. Microwave Calibrations. Photometric and Radiometric Quantities 30 Ionizing Radiations 32 Engineering Measurement and Standards 36 Phyical Properties 39 National Standard Reference Data System 40 Nuclear Data. Atomic and Molecular Data. Solid State Data. Thermodynamics and Transport Data. Chemical Kinetics. Col- loid and Surface Properties. Information Services. Measurement 48 Nuclear Properties. Atomic and Molecular Properties. Solid State Properties. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
Observations from Orbiting Platforms 219
Dotto et al.: Observations from Orbiting Platforms 219 Observations from Orbiting Platforms E. Dotto Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino M. A. Barucci Observatoire de Paris T. G. Müller Max-Planck-Institut für Extraterrestrische Physik and ISO Data Centre A. D. Storrs Towson University P. Tanga Istituto Nazionale di Astrofisica Osservatorio Astronomico di Torino and Observatoire de Nice Orbiting platforms provide the opportunity to observe asteroids without limitation by Earth’s atmosphere. Several Earth-orbiting observatories have been successfully operated in the last decade, obtaining unique results on asteroid physical properties. These include the high-resolu- tion mapping of the surface of 4 Vesta and the first spectra of asteroids in the far-infrared wave- length range. In the near future other space platforms and orbiting observatories are planned. Some of them are particularly promising for asteroid science and should considerably improve our knowledge of the dynamical and physical properties of asteroids. 1. INTRODUCTION 1800 asteroids. The results have been widely presented and discussed in the IRAS Minor Planet Survey (Tedesco et al., In the last few decades the use of space platforms has 1992) and the Supplemental IRAS Minor Planet Survey opened up new frontiers in the study of physical properties (Tedesco et al., 2002). This survey has been very important of asteroids by overcoming the limits imposed by Earth’s in the new assessment of the asteroid population: The aster- atmosphere and taking advantage of the use of new tech- oid taxonomy by Barucci et al. (1987), its recent extension nologies. (Fulchignoni et al., 2000), and an extended study of the size Earth-orbiting satellites have the advantage of observing distribution of main-belt asteroids (Cellino et al., 1991) are out of the terrestrial atmosphere; this allows them to be in just a few examples of the impact factor of this survey. -
Planning the VLT Interferometer
No. 60 - -.June 1990 --, Planning the VLTVLT Interferometer J. M. BECKERS, ESO 1. The VlVLTT Interferometer: VLTVLT Reports 44 and 49), the interferointerfero- approved YLTVLT implementation. P. LemaLena One of the Operating Modes metric mode of the VLVLTT was indudedincluded in described the concept and planning torfor ofoftheVLT the VLT the VLTVLT proposal, and accepted inin theIhe the inlerferometricinterferometric mode of the VLTVLT at 1.1.11 Itsfts Context Adaptive Optics at the ESO 3.6-m Telescope The Very Large Telescope has three differenldifferent modes of being used. As four separate 8-metre telescopes it provides theIhe capabililycapability of carrying out in parallel tourfour different observing programmes, each with a sensitivitysensilivity which matches that of the other most powerful groundground- based telescopes available. In the secsec- ond mode the light of the four tele-lele scopes is combined in a single imageimage making ilit inin sensitivity the most powerful telescope on earth, almost 16t6 metres in diameter if the light losses in the beam eombinationcombination canean be kept low. In the third mode Ihethe light of the four tele-tele scopes is combined coherenlly,coherently, allowallow- This faise-colourfalse-colour photo illustrates the dramatiedramatic improvement in image sharpness whiehwhich is ing interferomelrlcinterferometric observations with the obtained with adaptive optiesoptics at the ESO 3.6·m3.6-m telescope. seeSee also the artielearticle on page 9. unparalleled sensitivity resulting fromtrom I1It shows the 5.5 magnitudemagnilude star HR 6658 in the galacticga/aeUe eluslercluster Messier 7 (NGC 6475), as the 8-metre apertures. In this mode theIhe observed in the infrared L·bandL-band (wavelength 3.5pm),3.Sllm), without ("ullcorrecled",("uncorrected", left) alldand with angular resolulionresolution is determined by the "corrected","corrected, right) the "VL"VLTT adaptive optics prototype" switched on. -
An Anisotropic Distribution of Spin Vectors in Asteroid Families
Astronomy & Astrophysics manuscript no. families c ESO 2018 August 25, 2018 An anisotropic distribution of spin vectors in asteroid families J. Hanuš1∗, M. Brož1, J. Durechˇ 1, B. D. Warner2, J. Brinsfield3, R. Durkee4, D. Higgins5,R.A.Koff6, J. Oey7, F. Pilcher8, R. Stephens9, L. P. Strabla10, Q. Ulisse10, and R. Girelli10 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovickáchˇ 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 Via Capote Observatory, Thousand Oaks, CA 91320, USA 4 Shed of Science Observatory, 5213 Washburn Ave. S, Minneapolis, MN 55410, USA 5 Hunters Hill Observatory, 7 Mawalan Street, Ngunnawal ACT 2913, Australia 6 980 Antelope Drive West, Bennett, CO 80102, USA 7 Kingsgrove, NSW, Australia 8 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 9 Center for Solar System Studies, 9302 Pittsburgh Ave, Suite 105, Rancho Cucamonga, CA 91730, USA 10 Observatory of Bassano Bresciano, via San Michele 4, Bassano Bresciano (BS), Italy Received x-x-2013 / Accepted x-x-2013 ABSTRACT Context. Current amount of ∼500 asteroid models derived from the disk-integrated photometry by the lightcurve inversion method allows us to study not only the spin-vector properties of the whole population of MBAs, but also of several individual collisional families. Aims. We create a data set of 152 asteroids that were identified by the HCM method as members of ten collisional families, among them are 31 newly derived unique models and 24 new models with well-constrained pole-ecliptic latitudes of the spin axes. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
Asteroid Regolith Weathering: a Large-Scale Observational Investigation
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved. -
And X-Class Asteroids. II. Summary and Synthesis
Icarus 208 (2010) 221–237 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus A radar survey of M- and X-class asteroids II. Summary and synthesis Michael K. Shepard a,*, Beth Ellen Clark b, Maureen Ockert-Bell b, Michael C. Nolan c, Ellen S. Howell c, Christopher Magri d, Jon D. Giorgini e, Lance A.M. Benner e, Steven J. Ostro e, Alan W. Harris f, Brian D. Warner g, Robert D. Stephens h, Michael Mueller i a Bloomsburg University, 400 E. Second St., Bloomsburg, PA 17815, USA b Ithaca College, 267 Center for Natural Sciences, Ithaca, NY 14853, USA c NAIC/Arecibo Observatory, HC 3 Box 53995, Arecibo, PR 00612, USA d University of Maine at Farmington, 173 High Street, Preble Hall, ME 04938, USA e Jet Propulsion Laboratory, Pasadena, CA 91109, USA f Space Science Institute, La Canada, CA 91011-3364, USA g Palmer Divide Observatory/Space Science Institute, Colorado Springs, CO 80908, USA h Santana Observatory, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA i Observatoire de la Côte d’Azur, B.P. 4229, 06304 NICE Cedex 4, France article info abstract Article history: Using the S-band radar at Arecibo Observatory, we observed six new M-class main-belt asteroids (MBAs), Received 21 September 2009 and re-observed one, bringing the total number of Tholen M-class asteroids observed with radar to 19. Revised 12 January 2010 The mean radar albedo for all our targets is r^ OC ¼ 0:28 Æ 0:13, significantly higher than the mean radar Accepted 14 January 2010 albedo of every other class (Magri, C., Nolan, M.C., Ostro, S.J., Giorgini, J.D. -
2011 HP: a Potentially Water-Rich Near-Earth Asteroid. Teague, S.1, Hicks, M.2
2011 HP: A Potentially Water-Rich Near-Earth Asteroid. Teague, S.1, Hicks, M.2 1-Victor Valley College 2-Jet Propulsion Laboratory, California Institute of Technology Abstract Broadband photometry was obtained to provide data on 2011 HP, a Near-Earth Object (NEO) discovered April 24, 2011. Our data was collected over a series of three nights using the 0.6 m telescope located at Table Mountain Observatory (TMO) in Wrightwood, California. The data was used to construct a solar phase curve for the object which, along with our measured broadband colors, allowed us to determine that the object most likely has a low albedo and a surface composition similar to the carbonaceous chondrite meteorites, which tend to be water-rich. 2011 HP appears to have a Xc type spectral classification, determined by comparison of our rotationally averaged colors (B-R=1.110+/-0.031 mag; V-R=0.393+/-0.030 mag; R-I=0.367+/-0.045 mag) against the 1341 asteroid spectra in the SMASS II database. We assumed a double-peaked lightcurve and were able to determine a period of 3.95+/-0.01 hr. Assuming a low albedo as suggested by the solar phase curve, we estimate the diameter of the object to be ~250 meters, and given that the minimum orbital intersection distance (MOID) equals 0.0274 AU, we recommend that this particular meteorite be re-classified as a Potentially Hazardous Asteroid by the Minor Planet Center. Introduction Asteroid impact craters dot the surface of our Earth as a visual reminder of the ever-present possibility of collisions of space debris with our home planet. -
An Ancient and a Primordial Collisional Family As the Main Sources of X-Type Asteroids of the Inner Main Belt
Astronomy & Astrophysics manuscript no. agapi2019.01.22_R1 c ESO 2019 February 6, 2019 An ancient and a primordial collisional family as the main sources of X-type asteroids of the inner Main Belt ∗ Marco Delbo’1, Chrysa Avdellidou1; 2, and Alessandro Morbidelli1 1 Université Côte d’Azur, CNRS–Lagrange, Observatoire de la Côte d’Azur, CS 34229 – F 06304 NICE Cedex 4, France e-mail: [email protected] e-mail: [email protected] 2 Science Support Office, Directorate of Science, European Space Agency, Keplerlaan 1, NL-2201 AZ Noordwijk ZH, The Netherlands. Received February 6, 2019; accepted February 6, 2019 ABSTRACT Aims. The near-Earth asteroid population suggests the existence of an inner Main Belt source of asteroids that belongs to the spec- troscopic X-complex and has moderate albedos. The identification of such a source has been lacking so far. We argue that the most probable source is one or more collisional asteroid families that escaped discovery up to now. Methods. We apply a novel method to search for asteroid families in the inner Main Belt population of asteroids belonging to the X- complex with moderate albedo. Instead of searching for asteroid clusters in orbital elements space, which could be severely dispersed when older than some billions of years, our method looks for correlations between the orbital semimajor axis and the inverse size of asteroids. This correlation is the signature of members of collisional families, which drifted from a common centre under the effect of the Yarkovsky thermal effect. Results. We identify two previously unknown families in the inner Main Belt among the moderate-albedo X-complex asteroids.