Business Premises Total Station
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FOR 274: Forest Measurements and Inventory an Introduction to Surveying
FOR 274: Forest Measurements and Inventory Lecture 5: Principals of Surveying • An Introduction to Surveying • Horizontal Distances & Angles An Introduction to Surveying: Social and Land In Natural Resources we survey populations to gain representative information about something We also conduct land surveys to record the fine-scale topographic detail of an area We use both kinds of surveying in Natural Resources An Introduction to Surveying: Why do we Survey? To measure in the field the distance, bearing, and location of features on the Earth’s surface Geodetic Surveying • Very large distances • Have to account for curvature of the Earth! Plane Surveying • What we do • Thankfully regular trig works just fine 1 An Introduction to Surveying: Why do we Survey? Foresters as a rule do not conduct many new surveys BUT it is very common to: • Retrace old lines • Locate boundaries • Run cruise lines and transects • Analyze post treatments impacts on stream morphology, soils fuels,etc In addition to land survey equipment, Modern tools include the use of GIS and GPS Æ FOR 375 for more details An Introduction to Surveying: Types of Survey Construction Surveys: collect data essential for planning of new projects - constructing a new forest road - putting in a culvert Hydrological Surveys: collect data on stream channel morphology or impacts of treatments on erosion potential An Introduction to Surveying: Types of Survey Topographic Surveys: gather data on natural and man-made features on the Earth's surface to produce a 3D topographic map Typical -
Surveying and Drawing Instruments
SURVEYING AND DRAWING INSTRUMENTS MAY \?\ 10 1917 , -;>. 1, :rks, \ C. F. CASELLA & Co., Ltd II to 15, Rochester Row, London, S.W. Telegrams: "ESCUTCHEON. LONDON." Telephone : Westminster 5599. 1911. List No. 330. RECENT AWARDS Franco-British Exhibition, London, 1908 GRAND PRIZE AND DIPLOMA OF HONOUR. Japan-British Exhibition, London, 1910 DIPLOMA. Engineering Exhibition, Allahabad, 1910 GOLD MEDAL. SURVEYING AND DRAWING INSTRUMENTS - . V &*>%$> ^ .f C. F. CASELLA & Co., Ltd MAKERS OF SURVEYING, METEOROLOGICAL & OTHER SCIENTIFIC INSTRUMENTS TO The Admiralty, Ordnance, Office of Works and other Home Departments, and to the Indian, Canadian and all Foreign Governments. II to 15, Rochester Row, Victoria Street, London, S.W. 1911 Established 1810. LIST No. 330. This List cancels previous issues and is subject to alteration with out notice. The prices are for delivery in London, packing extra. New customers are requested to send remittance with order or to furnish the usual references. C. F. CAS ELL A & CO., LTD. Y-THEODOLITES (1) 3-inch Y-Theodolite, divided on silver, with verniers to i minute with rack achromatic reading ; adjustment, telescope, erect and inverting eye-pieces, tangent screw and clamp adjustments, compass, cross levels, three screws and locking plate or parallel plates, etc., etc., in mahogany case, with tripod stand, complete 19 10 Weight of instrument, case and stand, about 14 Ibs. (6-4 kilos). (2) 4-inch Do., with all improvements, as above, to i minute... 22 (3) 5-inch Do., ... 24 (4) 6-inch Do., 20 seconds 27 (6 inch, to 10 seconds, 403. extra.) Larger sizes and special patterns made to order. -
MICHIGAN STATE COLLEGE Paul W
A STUDY OF RECENT DEVELOPMENTS AND INVENTIONS IN ENGINEERING INSTRUMENTS Thai: for III. Dean. of I. S. MICHIGAN STATE COLLEGE Paul W. Hoynigor I948 This]: _ C./ SUPP! '3' Nagy NIH: LJWIHL WA KOF BOOK A STUDY OF RECENT DEVELOPMENTS AND INVENTIONS IN ENGINEERING’INSIRUMENTS A Thesis Submitted to The Faculty of MICHIGAN‘STATE COLLEGE OF AGRICULTURE AND.APPLIED SCIENCE by Paul W. Heyniger Candidate for the Degree of Batchelor of Science June 1948 \. HE-UI: PREFACE This Thesis is submitted to the faculty of Michigan State College as one of the requirements for a B. S. De- gree in Civil Engineering.' At this time,I Iish to express my appreciation to c. M. Cade, Professor of Civil Engineering at Michigan State Collegeafor his assistance throughout the course and to the manufacturers,vhose products are represented, for their help by freely giving of the data used in this paper. In preparing the laterial used in this thesis, it was the authors at: to point out new develop-ants on existing instruments and recent inventions or engineer- ing equipment used principally by the Civil Engineer. 20 6052 TAEEE OF CONTENTS Chapter One Page Introduction B. Drafting Equipment ----------------------- 13 Chapter Two Telescopic Inprovenents A. Glass Reticles .......................... -32 B. Coated Lenses .......................... --J.B Chapter three The Tilting Level- ............................ -33 Chapter rear The First One-Second.Anerican Optical 28 “00d011 ‘6- -------------------------- e- --------- Chapter rive Chapter Six The Latest Type Altineter ----- - ................ 5.5 TABLE OF CONTENTS , Chapter Seven Page The Most Recent Drafting Machine ........... -39.--- Chapter Eight Chapter Nine SmOnnB By Radar ....... - ------------------ In”.-- Chapter Ten Conclusion ------------ - ----- -. -
Plane Table Civil Engineering Department Integral
CIVIL ENGINEERING DEPARTMENT INTEGRAL UNIVERSITY LUCKNOW Basic Survey Field Work (ICE-352) The history of surveying started with plane surveying when the first line was measured. Today the land surveying basics are the same but the instruments and technology has changed. The surveying equipments used today are much more different than the simple surveying instruments in the past. The land surveying methods too have changed and the surveyor uses more advanced tools and techniques in Land survey. Civil Engineering survey is based on measuring, recording and drawing to scale the physical features on the surface of the earth. The surveyor uses instruments for measuring, a field book for recording and now a days surveying softwares for plotting and drawing to scale the site features in civil engineering survey. The surveying Leveling techniques are aided by instruments such as theodolite, Level, tripods, tapes, chains, telescopes etc and then the surveying engineer drafts a report on the proceedings. S.NO APPARATUS IMAGE DISCRIPTION . NAME In case of plane table survey, the measurements of survey lines of the traverse and their plotting to a suitable 1- PLANE TABLE scale are done simultaneously. Instruments required: Alidade, Drawing board, peg, Plumbing fork, Spirit level and Trough compass . The length of the survey lines are measured with the help of tape or chain. 2- CHAIN AND TAPE Compass surveying is a type of surveying in which the directions of surveying lines are determined with a 3- PRISMATIC magnetic compass. &SURVEYOR The compass is CAMPASS generally used to run a traverse line. The compass calculates bearings of lines with respect to magnetic north. -
6. Determination of Height and Distance: Theodolite
Geography (H), UG, 2nd Sem CC-04-TH: Thematic Cartography 6. Determination of Height and Distance: Theodolite What is Theodolite? A Theodolite is a measuring instrument used to measure the horizontal and vertical angles are determined with great precision. Theodolite is more precise than magnetic compass. Magnetic compass measures the angle up to as accuracy of 30’. Anyhow a vernier theodolite measures the angles up to and accuracy of 10’’, 20”. It is of either transit or non- transit type. In Transit theodolites the telescope can rotate in a complete circle in the vertical plane while Non-transit theodolites are those in which the telescope can rotate only in a semicircle in the vertical plane. Types of Theodolite A Transit Theodolite Non transit Theodolite B Vernier Theodolite Micrometer Theodolite A I. Transit Theodolite: a theodolite is called transit theodolite when its telescope can be transited i.e. revolved through a complete revolution about its horizontal axis in the vertical plane. II. Non transit Theodolite: the telescope cannot be transited. They are inferior in utility and have now become obsolete. Kaberi Murmu B I. Vernier Theodolite: For reading the graduated circle if verniers are used, the theodolite is called a vernier theodolit. II. Whereas, if a micrometer is provided to read the graduated circle the same is called as a Micrometer Theodolite. Vernier type theodolites are commonly used. Uses of Theodolite Theodolite uses for many purposes, but mainly it is used for measuring angles, scaling points of constructional works. For example, to determine highway points, huge buildings’ escalating edges theodolites are used. -
Instruments and Methods of Physical Measurement
INSTRUMENTS AND METHODS OF PHYSICAL MEASUREMENT By J. W. MOORE, . i» Professor of Mechanics and Experimental Philosophy, LAFAYETTE COLLEGE. Easton, Pa.: The Eschenbach Printing House. 1892. Copyright by J. W. Moore, 1892 PREFACE. 'y'HE following pages have been arranged for use in the physical laboratory. The aim has been to be as concise as is con- sistent with clearness. sources of information have been used, and in many cases, perhaps, the ipsissima verba of well- known authors. j. w. M. Lafayette College, August 23,' 18g2. TABLE OF CONTENTS. Measurement of A. Length— I. The Diagonal Scale 7 11. The Vernier, Straight 8 * 111. Mayer’s Vernier Microscope . 9 IV. The Vernier Calipers 9 V. The Beam Compass 10 VI. The Kathetometer 10 VII. The Reading Telescope 12 VIII. Stage Micrometer with Camera Lucida 12 IX. Jackson’s Eye-piece Micrometer 13 X. Quincke’s Kathetometer Microscope 13 XI. The Screw . 14 a. The Micrometer Calipers 14 b. The Spherometer 15 c. The Micrometer Microscope or Reading Microscope . 16 d. The Dividing Engine 17 To Divide a Line into Equal Parts by 1. The Beam Compass . 17 2. The Dividing Engine 17 To Divide a Line “Originally” into Equal Parts by 1. Spring Dividers or Beam Compass 18 2. Spring Dividers and Straight Edge 18 3. Another Method 18 B. Angees— 1. Arc Verniers 19 2. The Spirit Level 20 3. The Reading Microscope with Micrometer Attachment .... 22 4. The Filar Micrometer 5. The Optical Method— 1. The Optical Lever 23 2. Poggendorff’s Method 25 3. The Objective or English Method 28 6. -
Leica Geosystems World Leader in Spatial Measurement
Leica Geosystems World leader in spatial measurement Leica Geosystems – when it has to be right Revolutionising the world of measurement and survey for nearly 200 years, Leica Geosystems, part of Hexagon, creates complete solutions for professionals across the planet. Known for premium products and innovative solution development, professionals in a diverse mix of industries, such as aerospace and defence, safety and security, construction, and manufacturing, trust Leica Geosystems for all their geospatial needs. With precise and accurate instruments, sophisticated software, and trusted services, Leica Geosystems delivers value every day to those shaping the future of our world. Hexagon is a global leader in sensor, software and autonomous solutions. We are putting data to work to boost efficiency, productivity, and quality across industrial, manufacturing, infrastructure, safety, and mobility applications. Our technologies are shaping urban and production ecosystems to become increasingly connected and autonomous — ensuring a scalable, sustainable future. Hexagon (Nasdaq Stockholm: HEXA B) has approximately 20,000 employees in 50 countries and net sales of approximately 3.8bn EUR. Learn more at hexagon.com and follow us @HexagonAB Copyright Leica Geosystems AG, 9435 Heerbrugg, Switzerland. All rights reserved. Printed in Switzerland – 2020. Leica Geosystems AG is part of Hexagon AB. 749504en – 01.20 Leica Geosystems AG leica-geosystems.com Heinrich-Wild-Strasse 9435 Heerbrugg, Switzerland +41 71 727 31 31 Trust. More than a feeling. A fundamental difference. Every day, professionals across the world put their accurate measurements, performed efficiently, reliably trust in Leica Geosystems and our solutions that help and consistently. them complete their projects. Projects come in every shape and size – from building a bridge or an office These professionals rely on their measurements – and tower to manufacturing an aircraft or race car, from place their trust in our measurement and spatial making maps to taking measurements that help us technologies. -
Comments on Double-Theodolite Evaluations
322 BULLETIN AMERICAN METEOROLOGICAL SOCIETY Comments on Double-Theodolite Evaluations ROBERT O. WEEDFALL AND WALTER M. JAGODZINSKI U. S. Weather Bureau (Original manuscript received 7 May 1960; revised manuscript received 26 August 1960) 1. Introduction After reading an article [1], in the May 1959 issue of the Bulletin of the AMS wherein Mssrs. Hansen and Taft describe another method of computing double-theodolite runs, it was realized that a method developed at the AEC installation at Yucca Flat, Nevada is even more efficient than any previous method and could be of great value in speed and saving of man-hours to those wind- research installations that use the double-theodo- lite method. Further, it does not need special plotting boards but utilizes the standard Weather Bureau equipment with a few ingenious adaptations. FIG. 1. Winds-aloft plotting board, showing position of three distance scales. (360-deg intervals not indicated.) 2. Materials needed (1) Winds-aloft plotting board (fig. 1). A 3-ft-square board with distance scales running from the center to the bottom, with a movable circular piece of plastic attached to the center of the board, whose outer edge is marked off in 360-deg intervals. (2) Circular protractor (fig. 2). A 10-inch- square piece of clear plastic divided into 360-deg intervals. (3) Appropriately marked scale in the shape of an "L" (fig. 3). (4) Scotch tape, rubber band and short piece of string. (5) Winds-aloft graphing board (fig. 4). A rectangular board 2 X 2% ft marked with height FIG. 2. Clear plastic protractor, 10 inches square. -
Parts of Theodolite and Their Functions Pdf
Parts of theodolite and their functions pdf Continue The components and their the TheodoliteA compass functions measure direction by measuring the angle between the line and the direction of the reference, which is a magnetic meridian. The compass can measure angles up to 30 accuracy and judgment to 15. The principle of the compass is based on the property of the magnetic needle, which at free suspension takes the direction of north-south. Thus, compass measurements affect external magnetic influences, and therefore in some areas the compass is unsuitable. In this here we will discuss another method of measuring the direction of lines; theodolit is very often used to measure angles in the survey work. There are various theodolites, optical, electronic, etc. improvements (from one form to another) have been made to ensure simplicity of work, better accuracy and speed. Electronic theodolites display and store corners at the touch of a button. This data can also be transferred to the computer for further processing. We begin our discussion with the simplest theodolite-faithful theodolite. Theodolit is a simple and inexpensive tool, but very valuable in terms of measuring angles. The common vernier theodolite measures angles up to an accuracy of 20 in the compass, where the line of sight is simple, limiting its range, theodolites are provided by telescopes that provide a much greater range and better ac-curacy in sighting distant objects. It is, however, a delicate tool and should be treated with caution. Theodolit measures horizontal angles between lines and can also measure vertical angles. The horizontal angle measured can be turned on by angle, angle of deviation or outer angle in the traverse. -
Theodolite Surveying
THEODOLITE SURVEYING 1 So far we have been measuring horizontal angles by using a Compass with respect to meridian, which is less accurate and also it is not possible to measure vertical angles with a Compass. So when the objects are at a considerable distance or situated at a considerable elevation or depression ,it becomes necessary to measure horizontal and vertical angles more precisely. So these measurements are taken by an instrument known as a theodolite. THEODOLITE SURVEYING 2 THEODOLITE SURVEYING The system of surveying in which the angles are measured with the help of a theodolite, is called Theodolite surveying. THEODOLITE SURVEYING 3 THEODOLITE The Theodolite is a most accurate surveying instrument mainly used for : • Measuring horizontal and vertical angles. • Locating points on a line. • Prolonging survey lines. • Finding difference of level. • Setting out grades • Ranging curves • Tacheometric Survey THEODOLITE SURVEYING 4 TRANSIT VERNIER THEODOLITE THEODOLITETHEODOLITE SURVEYING SURVEYING 5 TRANSIT VERNIER THEODOLITE Fig. Details if Upper & Lower Plates. THEODOLITETHEODOLITE SURVEYING SURVEYING 6 TRANSIT VERNIER THEODOLITE THEODOLITETHEODOLITE SURVEYING SURVEYING 7 CLASSIFICATION OF THEODOLITES Theodolites may be classified as ; A. i) Transit Theodolite. ii) Non Transit Theodolite. B. i) Vernier Theodolites. ii) Micrometer Theodolites. THEODOLITE SURVEYING 8 CLASSIFICATION OF THEODOLITES A. Transit Theodolite: A theodolite is called a transit theodolite when its telescope can be transited i.e revolved through a complete revolution about its horizontal axis in the vertical plane, whereas in a- Non-Transit type, the telescope cannot be transited. They are inferior in utility and have now become obsolete. THEODOLITE SURVEYING 9 CLASSIFICATION OF THEODOLITES B. Vernier Theodolite: For reading the graduated circle if verniers are used ,the theodolite is called as a Vernier Theodolite. -
Brevets D'invention Uitvindingsoctrooien
Direction générale de Algemene Directie la Réglementation économique Economische Reglementering Office de la Propriété Intellectuelle Dienst voor de Intellectuele Eigendom (OPRI) (DIE) 50, Rue du Progrès – 1210 Bruxelles Vooruitgangstraat 50 – 1210 Brussel BELGIQUE BELGIE Tel. : 02/277 90 11 Tel.: 02/277 90 11 2014/07 RECUEIL DES VERZAMELING VAN DE Brevets d’invention Uitvindingsoctrooien Juillet 2014 Juli 2014 SAMMLUNG DER BULLETIN OF Erfindungspatente Patents Juli 2014 July 2014 Numéro d'entreprise : 0314.595.348 Ondernemingsnummer : 0314.595.348 2 Introduction Inleiding Le Recueil des brevets d'invention apparaît au moins De Verzameling der uitvindingsoctrooien verschijnt une fois par mois et uniquement sous forme minstens éénmaal per maand en alleen in électronique. Chaque édition du Recueil des brevets elektronische vorm. Elke uitgave van de Verzameling d'invention pour la période août 2012 – 15 juillet 2017 der uitvindingsoctrooien voor de periode augustus comprend 5 rubriques : NP2, EP2, EP3, EP5 et SPC. 2012 – 15 juli 2017 bestaat uit 5 rubrieken : NP2, EP2, EP3, EP5 en SPC. Ces rubriques contiennent des données bibliographiques relatives aux brevets belges, Deze rubrieken bevatten bibliografische gegevens brevets européens désignant la Belgique et over Belgische octrooien, Europese octrooien met certificats complémentaires de protection belges aanduiding van België en Belgische aanvullende pour des médicaments ou des produits beschermingscertificaten voor geneesmiddelen of phytopharmaceutiques. gewasbeschermingsmiddelen. Le Recueil présent ne contient pas les rubriques NP1, NP3, EP1, EP4, VB1, VB2, MED, VRV, VRB et De voorliggende Verzameling bevat geen rubrieken CO. Les données bibliographiques appartenant à ces NP1, NP3, EP1, EP4, VB1, VB2, MED, VRV, VRB en rubriques sont disponibles dans le registre belge des CO. -
Geomatik Schweiz Géomatique Suisse Geomatica Svizzera
Geomatik Schweiz Géomatique Suisse Geomatica Svizzera Geoinformation und LandmanagemenLandmanagementt 3–4/2021 Géoinformation et gestion dudu territoirterritoiree März / April 2021, 119. Jahrgang Mars / Avril 2021, 119ième année Geoinformazione e ggestioneestione deldel territoriterritorioo Marzo / Aprile 2021, 119. anno Die reale Welt präzis erfassen. real erleben. Und die digitale Welt Wir feiern 100 Jahre Innovation Heerbrugg. Histoire de la culture et de la technique schen Landestopographie als Oberingeni- 100 Jahre Innovation eur bei den Zeiss-Werken in Jena die geodätische Abteilung aufgebaut. Er ge- Heerbrugg niesst in der Vermessungswelt bereits den Ruf eines genialen Erfinders. Wegen der Vor 100 Jahren, am 26. April 1921, wird in Heerbrugg die «Heinrich Wild, Werkstätte unsicheren Zukunft nach dem Krieg und für Feinmechanik und Optik» gegründet. Über die Jahrzehnte entwickelt sich dieses der dauernden Geldentwertung will er mit Unternehmen zur weltbekannten Leica Geosystems AG und ist ein wesentlicher Bau- seiner zehnköpfigen Familie in die Schweiz stein des Technologiekonzerns Hexagon. Bereits der Gründer Heinrich Wild ist ein zurückkehren. Mit Konstruktionsplänen Meister der Innovation. Er revolutioniert das Vermessungswesen mit kleineren, hand- von geodätischen und photogrammetri- licheren und dennoch genaueren Instrumenten. Heerbrugg ist immer wieder Ur- schen Instrumenten im Kopf sucht er in sprung grosser Neuerungen, wie etwa 1968 der erste optoelektronische Distanzmes- der Schweiz Teilhaber zur Gründung einer ser, 1977 der erste elektronische Theodolit mit digitaler Datenerfassung, 1984 das optisch-feinmechanischen Versuchswerk- erste auf GPS-Signalen basierende Vermessungssystem, 1990 das erste Digitalnivel- stätte. Er erinnert sich an seinen Offi- lier, 1993 der erste handgehaltene Laserdistanzmesser, 2000 der erste digitale Luft- zierskollegen Dr. Robert Helbling in Flums, bildsensor und 2019 der kleinste, leichteste und benutzerfreundlichste Laserscanner.