Planning, Optimization and Operation of Access and Ethernet Optical Networks for the Provisioning of High-Speed Symmetrical Services

Total Page:16

File Type:pdf, Size:1020Kb

Planning, Optimization and Operation of Access and Ethernet Optical Networks for the Provisioning of High-Speed Symmetrical Services PLANIFICACION,´ OPTIMIZACION´ Y OPERACION´ DE REDES OPTICAS´ DE ACCESO Y ETHERNET PARA LA PROVISION´ DE SERVICIOS SIMETRICOS´ DE ALTA VELOCIDAD PLANNING, OPTIMIZATION AND OPERATION OF ACCESS AND ETHERNET OPTICAL NETWORKS FOR THE PROVISIONING OF HIGH-SPEED SYMMETRICAL SERVICES Autor: Rafael Sanchez´ Fuentes Director: Prof. Dr. David Larrabeiti Lopez´ Codirector: Prof. Dr. Jose´ Alberto Hernandez´ Gutierrez´ Tribunal nombrado por el Mgfco. y Excmo. Sr. Rector de la Universidad Carlos III de Madrid, el d´ıa de de . Firma del tribunal calificador: Firma: Presidente: Vocal: Secretario: Calificacion:´ Leganes,´ de de . ii A mis padres. A Yolanda. A Sara y Sof´ıa. iv You never lose a dream, it just incubates as a hobby. Larry Page’s University of Michigan Commencement Address, 2009. Agradecimientos Quisiera agradecer en estas l´ıneas a todos los que me han animado y apoyado durante la realizacion´ esta tesis, tanto companeros˜ de trabajo como de Universidad, y muy espe- cialmente a mis dos profesores de doctorado, Jose´ Alberto Hernandez´ y David Larrabeiti, que han aportado su gran experiencia, consejo y vision´ y que sin su orientacion´ habr´ıa sido imposible la finalizacion´ de esta tesis. vi Abstract Today more than ever before, service providers are under enormous pressure to reduce operational costs while increasing business effectiveness. This often means optimizing cur- rent infrastructure investments and implementing novel networking technologies. Customer demand is quickly evolving away from traditional one-way content consump- tion to a much more participative social network model that demands high capacity bidirec- tional information flows. Ethernet-based networking technology has become ubiquitous in both the enterprise and home broadband arenas. The combination of simplicity and rigorous specification has per- mitted a degree of integration and commoditization that other networking technologies could not achieve. On the other hand, optical fiber has become the technology of choice in the medium and long term in the access and metro networks, thanks to its speed, reach and future-proof. While it seems clear that fiber is the right technology to support emerging ser- vices in the access network, there are a large variety of technologies available in the industry. This thesis reviews the main technologies available today for access and metro networks, and proposes contributions about network planning and optimization. Firstly, main innovations added to Ethernet are analyzed, namely improvements related to scalability, OAM functionality and forwarding capabilities, in order to permit Ethernet to assume a much larger role in metro networks. After that, some of the Ethernet enhancements previously discussed are applied to access networks. Specifically, physical and link-layer information are combined in order to effectively set management procedures for passive optical networks (PON). We propose an Integrated Troubleshooting Box (ITB) and show its applicability in a number of realistic troubleshooting scenarios, including failure situations involving either the feeder fibre or one of its branches. Secondly, this thesis explores fiber access protocols available in the industry to support high-speed symmetrical services. It compares four Next-Generation PON protocols from a performance and economical perspective in a real scenario, and analyzes under which con- ditions 1 Gb/s symmetrical services can operate by selecting the right parameters of quality of service, oversubscription and split ratio. Finally, a novel access network planning method is proposed to provide 1Gb/s symmetrical services in a mixed environment of business and residential services. In this case, a converged cost-optimized access network is implemented, using Integer Linear Programming, which guarantees respective service level specifications in a real scenario. vii viii Resumen Hoy mas´ que nunca, los operadores estan´ bajo una fuerte presion´ para reducir gastos op- eracionales a la vez que deben incrementar sus ingresos. Esto implica optimizar la inversion´ en infraestructuras y emplear tecnolog´ıas de red con proyeccion´ de futuro. La demanda de clientes esta´ evolucionando, y ya no se demanda tanta descarga fija de contenido sino un entorno mas´ participativo y social que frecuentemente implica una capacidad bidireccional, cada vez mas´ de alta capacidad. Ethernet se ha convertido en una tecnolog´ıa cada vez mas´ presente en redes de acceso y metro. La combinacion´ de simplicidad y especificaciones estables ha permitido un grado de integracion´ y presencia que no han alcanzado otras tecnolog´ıas de red. Por otro lado, la fibra optica´ se ha convertido en el medio de transmision´ preferente en el corto y largo plazo, gracias a su velocidad, alcance y escalabilidad en el futuro. Aunque parece claro que unir fibra optica´ y Ethernet es una correcta combinacion,´ existen una gran variedad de opciones y protocolos existentes. La presente tesis revisa las principales tecnolog´ıas disponibles hoy en redes de acceso y metro, y propone contribuciones sobre planificacion,´ operacion´ de red y despliegue. En primer lugar, se analizan recientes innovaciones anadidas˜ a Ethernet, principalmente sobre escalabilidad, funcionalidad OAM y nuevas opciones de plano de control, que per- miten a Ethernet asumir una mayor importancia en redes metro de operador. Posteriormente, se aplican algunas de las recientes innovaciones de Ethernet a las redes de acceso por fibra. En concreto, se combinan funciones de capa f´ısica y enlace para desarrollar mecanismos de monitorizacion´ eficientes en las redes de acceso opticas´ pasivas (PON). Se propone un dis- positivo denominado Integrated Troubleshooting Box (ITB) y sus aplicaciones en entornos de monitorizacion,´ incluyendo fallos en la fibra principal del arbol´ PON o´ alguna de las ramas. En segundo lugar, esta tesis explora los protocolos de acceso por fibra disponibles en la industria para soportar servicios simetricos´ de alta velocidad. Se comparan cuatro protocolos PON de ultima´ generacion´ desde una perspectiva economica´ y de prestaciones en escenarios reales, y se analizan bajo que´ condiciones se ofrecen servicios simetricos´ de 1 Gb/s seleccio- nando los parametros´ adecuados de calidad de servicio, sobresuscripcion´ y grado de split de la PON. Finalmente, se propone un metodo´ de planificacion´ de la red de acceso para ofrecer servicios simetricos´ de 1 Gb/s en un entorno mixto de servicios residenciales y de empresa. En este caso, se propone una red de acceso optica´ optimizada en coste, usando programacion´ lineal de enteros (ILP), que garantiza distintos niveles de calidad de servicio en un escenario de despliegue real. ix x Contents 1 Introduction and Objectives 1 1.1 Introduction . 1 1.2 Historical evolution of the technologies studied in this thesis . 2 1.2.1 Ethernet and Carrier Ethernet . 2 1.2.2 Fiber and Optical Access . 5 1.3 Motivation, objectives and thesis structure . 7 2 State of the Art 11 2.1 Carrier Ethernet technologies . 11 2.1.1 Challenges to Ethernet . 12 2.1.2 IEEE 802.1Q Virtual LAN (VLAN) . 12 2.1.3 IEEE 802.1ad Provider Bridges (Q-in-Q) . 13 2.1.4 IEEE 802.1ah Provider Backbone Bridges (PBB) . 15 2.1.5 Adding Traffic Engineering to Ethernet . 17 2.1.6 Adding Shortest Path Bridging to Ethernet . 19 2.1.7 Adding OAM to Ethernet . 20 2.2 Next-Generation PON technologies . 22 2.2.1 Ethernet Point-to-point (EP2P) . 23 2.2.2 Time Division Multiplexed PON (TDM-PON) . 23 2.2.3 Wavelength Division Multiplexed PON (WDM-PON) . 24 2.2.4 Time and Wavelength Division Multiplexed PON (TWDM-PON) . 26 2.2.5 Orthogonal Frequency Division Multiplexing (OFDM) . 27 2.2.6 Optical Code-Division Multiplexing (OCDM) . 28 2.3 Contributions of this thesis and progress beyond the State of the Art . 29 3 A Comparative Analysis of Carrier-Grade Ethernet Architectures for Metro Networks 31 3.1 Ethernet services . 32 3.2 Ethernet with PBB . 33 3.3 Virtual Private LAN Services (VPLS) . 34 3.4 OpenFlow-based SDN for Metro Ethernet . 35 3.5 Four flavours for carrying Metro Ethernet services . 37 3.5.1 H-VPLS-based solution . 37 3.5.2 Shortest Path Bridging MAC-based solution . 39 3.5.3 The hybrid solution: combining H-VPLS and PBB . 40 xi xii CONTENTS 3.5.4 OpenFlow-based SDN solution . 42 3.6 Comparison . 43 3.7 Summary and conclusions . 45 4 Proposal for Efficient Troubleshooting of PON networks using Carrier-grade Ethernet and WDM-PON 47 4.1 Thoubleshooting WDM-PON networks at optical layer . 48 4.1.1 OTDR background . 48 4.1.2 Lab field trials . 49 4.2 Carrier-grade Ethernet OAM . 52 4.2.1 Fault management . 52 4.2.2 Performance monitoring . 53 4.3 The Integrated Troubleshooting Box . 53 4.3.1 Use case no. 1: A failure in the feeder fiber . 55 4.3.2 Use case no. 2: Single failure in a fiber branch . 55 4.3.3 Use case no. 3: Single failure after the ONT . 56 4.4 Summary and conclusions . 56 5 Capacity Planning of NG-PON with Different Service Levels 59 5.1 Quick overview of TDM-PON technologies . 60 5.2 Capacity planning with oversubscription . 60 5.2.1 All users with the same profile . 60 5.2.2 Numerical example and design criteria . 62 5.3 Analysis with two profiles: basic and premium users . 64 5.4 Summary and conclusions . 66 6 Cost Assessment of NG-PON Technologies to Provision 1 Gb/s Symmetrical Ser- vices 67 6.1 Architectures to provide 1 Gbit/s symmetrical services to residential users . 68 6.2 Capacity planning . 69 6.2.1 GPON, XG-PON and TWDM-PON with oversubscription . 69 6.2.2 Numerical example and analytical results . 70 6.3 Economic study for an urban area . 72 6.4 Summary and conclusions . 74 7 Network Planning of NG-PON to Provide 1 Gb/s Symmetrical Services 75 7.1 Architectures to provide 1 Gbit/s symmetrical services to residential and business users .
Recommended publications
  • Automotive Ethernet Kirsten Matheus , Thomas Königseder Frontmatter More Information
    Cambridge University Press 978-1-108-84195-5 — Automotive Ethernet Kirsten Matheus , Thomas Königseder Frontmatter More Information Automotive Ethernet Third Edition Learn about the latest developments in Automotive Ethernet technology and imple- mentation with this fully revised third edition. Including 20% new material and greater technical depth, coverage is expanded to include Detailed explanations of the new PHY technologies 10BASE-T1S (including multi- drop) and 2.5, 5, and 10GBASE-T1 Discussion of EMC interference models Descriptions of the new TSN standards for automotive use More on security concepts An overview of power saving possibilities with Automotive Ethernet Explanation of functional safety in the context of Automotive Ethernet An overview of test strategies The main lessons learned Industry pioneers share the technical and non-technical decisions that have led to the success of Automotive Ethernet, covering everything from electromagnetic require- ments and physical layer technologies, QoS, and the use of VLANs, IP, and service discovery, to network architecture and testing. The guide for engineers, technical managers, and researchers designing components for in-car electronics, and those interested in the strategy of introducing a new technology. Kirsten Matheus is a communications engineer who is responsible for the in-vehicle networking strategy at BMW and who has established Ethernet-based communication as a standard technology within the automotive industry. She has previously worked for Volkswagen, NXP, and Ericsson. In 2019 she was awarded the IEEE-SA Standards Medallion “For vision, leadership, and contributions to developing auto- motive Ethernet networking.” Thomas Königseder is CTO at Technica Engineering, supporting the smooth introduc- tion of Ethernet-based systems for automotive customers.
    [Show full text]
  • 802.3 Opening Plenary March 2003
    Unconfirmed Minutes IEEE 802.3 CSMA/CD PLENARY DFW Airport, TX March 10 –14, 2003 MONDAY, MARCH 10, 2003 ADMINISTRATIVE MATTERS (802.3 Secretary’s Note: The minutes for the March 2003 802.3 Plenary are almost 300 pages long and include copies of all presentations and liaison materials. This document, therefore, will be terse and will not repeat material covered in the presentations. Please use the bookmarks to navigate to a particular attachment. Mr. Robert Grow, Chair of 802.3 CSMA/CD Working Group called the meeting to order at 1:08PM. Mr. Grow introduced Mr. David Law, Vice Chair of 802.3, and Mr. Steve Carlson, Secretary of 802.3, and Task Force Chair of 802.3af. Mr. Howard Frazier, Chair of the 802.3ah Task Force was also introduced, along with Brad Booth, Chair of the 10GBASE-T Study Group, and Dan Dove, Chair of the 10GBASE-CX4 Study Group. Mr. Grow then had the attendees stand and introduce themselves to the group. Mr. Grow asked if there were any additions or corrections to the agenda. None were indicated. MOTION Approve the agenda <802.3 Opening Agenda>. Moved: Brad Booth Seconded: Tom Dineen Agenda was passed by acclimation (voice vote). Mr. Grow presented his Opening Report <802.3 Opening Report>. MOTION Approve the 802.3 minutes from Kauai. M: Tom Dineen S: Lampson PASSED by acclamation Attendance Books Mr. Carlson explained the operation of the Attendance books for new voters and established voters. Voters we cautioned that they would be subjected to public humiliation if they failed to follow the instructions.
    [Show full text]
  • Optimizing 10-Gigabit Ethernet for Networks of Workstations, Clusters, and Grids: a Case Study ∗
    SLAC-PUB-10198 Optimizing 10-Gigabit Ethernet for Networks of Workstations, Clusters, and Grids: A Case Study ∗ Wu-chun Feng,† Justin (Gus) Hurwitz,† Harvey Newman,†† Sylvain Ravot,†† R. Les Cottrell,‡‡ Olivier Martin,‡ Fabrizio Coccetti,‡‡ Cheng Jin,†† Xiaoliang (David) Wei,†† and Steven Low†† †Los Alamos National Laboratory (LANL) ††California Institute of Technology (CalTech) Computer & Computational Sciences Division Pasadena, CA 91125 Research and Development in Advanced Network Technology Charles C. Lauritsen Laboratory of High Energy Physics Los Alamos, NM 87545 {newman,ravot}@caltech.edu {feng,ghurwitz}@lanl.gov Computer Science & Electrical Engineering Dept. {chengjin,weixl,slow}@caltech.edu ‡European Organization for Nuclear Research (CERN) ‡‡Stanford Linear Accelerator Center (SLAC) Information Technology Division SLAC Computing Services Geneva, Switzerland Menlo Park, CA 94025 {Olivier.Martin}@cern.ch {cottrell,cfabrizo}@SLAC.stanford.edu Abstract 1. Introduction This paper presents a case study of the 10-Gigabit Ether- Thirty years ago in a May 1973 memo, Robert Metcalfe net (10GbE) adapter from IntelR . Specifically, with appropri- described the technology that would evolve into today’s ubiq- ate optimizations to the configurations of the 10GbE adapter uitous Ethernet protocol. By 1974, Metcalfe and his col- and TCP,we demonstrate that the 10GbE adapter can perform league, David Boggs, built their first Ethernet; and by 1975, well in local-area, storage-area, system-area, and wide-area they demonstrated what was at the time
    [Show full text]
  • Ethernet: an Engineering Paradigm
    Ethernet: An Engineering Paradigm Mark Huang Eden Miller Peter Sun Charles Oji 6.933J/STS.420J Structure, Practice, and Innovation in EE/CS Fall 1998 1.0 Acknowledgements 1 2.0 A Model for Engineering 1 2.1 The Engineering Paradigm 3 2.1.1 Concept 5 2.1.2 Standard 6 2.1.3 Implementation 6 3.0 Phase I: Conceptualization and Early Implementation 7 3.1 Historical Framework: Definition of the Old Paradigm 7 3.1.1 Time-sharing 8 3.1.2 WANs: ARPAnet and ALOHAnet 8 3.2 Anomalies: Definition of the Crisis 10 3.2.1 From Mainframes to Minicomputers: A Parallel Paradigm Shift 10 3.2.2 From WAN to LAN 11 3.2.3 Xerox: From Xerography to Office Automation 11 3.2.4 Metcalfe and Boggs: Professional Crisis 12 3.3 Ethernet: The New Paradigm 13 3.3.1 Invention Background 14 3.3.2 Basic Technical Description 15 3.3.3 How Ethernet Addresses the Crisis 15 4.0 Phase II: Standardization 17 4.1 Crisis II: Building Vendor Support (1978-1983) 17 4.1.1 Forming the DIX Consortium 18 4.1.2 Within DEC 19 4.1.3 Within Intel 22 4.1.4 The Marketplace 23 4.2 Crisis III: Establishing Widespread Compatibility (1979-1984) 25 4.3 The Committee 26 5.0 Implementation and the Crisis of Domination 28 5.1 The Game of Growth 28 5.2 The Grindley Effect in Action 28 5.3 The Rise of 3Com, a Networking Giant 29 6.0 Conclusion 30 A.0 References A-1 i of ii ii of ii December 11, 1998 Ethernet: An Engineering Paradigm Mark Huang Eden Miller Charles Oji Peter Sun 6.933J/STS.420J Structure, Practice, and Innovation in EE/CS Fall 1998 1.0 Acknowledgements The authors would like to thank the following individuals for contributing to this project.
    [Show full text]
  • Ethernet Basics Ethernet Basics
    2016-09-24 Ethernet Basics based on Chapter 4 of CompTIA Network+ Exam Guide, 4th ed., Mike Meyers Ethernet Basics • History • Ethernet Frames • CSMA/CD • Obsolete versions • 10Mbps versions • Segments • Spanning Tree Protocol 1 2016-09-24 Ethernet – Early History • 1970: ALOHAnet, first wireless packet-switched network - Norman Abramson, Univ. of Hawaii - Basis for Ethernet’s CSMA/CD protocol - 1972: first external network connected to ARPANET • 1973: Ethernet prototype developed at Xerox PARC - (Palo Alto Research Center) - 2.94 Mbps initially • 1976: "Ethernet: Distributed Packet Switching for Local Computer Networks" published in Communications of the ACM. - Bob Metcalfe and David Boggs - sometimes considered “the beginning of Ethernet” Ethernet goes Mainstream • 1979: DEC, Intel, Xerox collaborate on a commercial Ethernet specification - Ethernet II, a.k.a. “DIX” Ethernet - (Digital Equipment Corporation) • 1983: IEEE 802.3 specification formally approved - Differs from Ethernet II in the interpretation of the third header field • 1987: alternatives to coaxial cables - IEEE 802.3d: FOIRL, Fiber Optic Inter-Repeater Link - IEEE 802.3e: 1 Mbps over Twisted Pair wires (whoopee!) • 1990: Twisted-Pair wiring takes over - IEEE 802.3i: 10 Mbps over Twisted-Pair – 10Base-TX, 10Base-T4 2 2016-09-24 the Future is Now (next chapter) (and Now is so Yesteryear…) 1995 – Now: speed and cabling improvements • 1995: 100Mbps varieties • 1999: 1Gbps on twisted-pair • 2003-2006: 10Gbps on optical fiber and UTP • 2010: 40Gbps, 100Gbps (802.3ba) - optical fiber or twinaxial cable - point-to-point physical topology; for backbones • 2016, September: 2.5GBase-T, 5GBase-T ? - who knows? What Is Ethernet? • Protocols, standards for Local Area Networks » Ethernet II, IEEE 802.3 • Specifies Physical-layer components - Cabling, signaling properties, etc.
    [Show full text]
  • History Panel 8.5X11 Lo-Res
    400GbE 400 300 (Gb/s) 200 100GbE 40GbE 100 10GbE Ethernet Speeds 0 The Early Years of Ethernet Standards Early Years of Ethernet Optics 1973 - Bob Metcalfe writes 1985 – First Ethernet 4 port FDDI Switch Blade 2 port GbE Switch Blade first memo about Ethernet standard released as at XEROX PARC IEEE 802.3 CSMA/ CD 1975 – Patent filed for Ethernet (10Mb/s) Hand drawn diagram of 1995 – Fast Ethernet by Bob Ethernet by Bob Metcalfe, Ethernet Pre-1990 – Metcalfe – circa 1976 David Boggs, Chuck (100Mbps) FDDI Module Fast Ethernet (100Mb/s) Thacker and Butler standard released Lampson as IEEE 802.3u Gigabit Ethernet (1Gb/s) Early NIC with COAX 1980 – “DIX” and RJ-45 support 1998 – Gigabit “Digital /Intel/Xerox” Ethernet (GbE) standard submitted standard released 1x9 non-pluggable 1998 – Gigabit Interface with 48-bit Ethernet as IEEE 802.3z Module Converter (GBIC) address standard released Sugar Cube Optics 1970 1980 1990 2000 1990 1995 2000 10GbE Returns to SFP+ 40GbE in QSFP+ and Eventually SFP+ SFP+ released in 2009 with serial 10Gbps Breakout cable to electrical interface and SFF – The QSFP+ is the dominant support 4X10GbE dominates 10GbE non-pluggable 40GbE module type cousin of SFP+ XFP released in 2006 with serial CEI-56G-VSR being 10GbE and 2001 – The SFP standard 10Gbps electrical standardized in OIF and finalizes and quickly interface could lead to 40GbE Serial dominates GbE optic interface to SFP+ 40GbE XENPAK, X2 and All 10GbE modules XPAK are 2nd gen interoperate at the 10GbE modules optical interface Will IEEE CFP used for 40GBASE-FR
    [Show full text]
  • Chapter 2 Link Layer Verilog Hardware Implementation, and One Wireless Broadcast Link, I.E
    Modern Computer Networks: An open source approach Chapter 2 Modern Computer Networks: An open source approach Chapter 2 package, one wired broadcast link, i.e. Ethernet in Section 2.4 along with its Chapter 2 Link Layer Verilog hardware implementation, and one wireless broadcast link, i.e. wireless LAN (WLAN) in Section 2.5 plus a brief on Bluetooth and WiMAX. PPP is Problem Statement popularly used in the last-mile dial-up services or routers carrying various network protocols over point-to-point links. Ethernet has occupied more than 95 percent of To effectively and efficiently transmit data over physical links from one node wired LANs. It is also poised to be ubiquitous in MANs and WANs. In contrast to to one or more nodes, there is much more to do than simply modulating or desktop PCs, which usually use wired links, many devices such as laptop PCs encoding bit stream into signal. Transmission impairments, such as crosstalk and cellular phones are mobile and prefer wireless links such as WLAN, Bluetooth, between two adjacent pairs, can unexpectedly change transmission signal and and WiMAX. thus result in errors. The transmitter might transmit faster than the receiver can Table 2.1 Link protocols. handle. The transmitter has to somehow indicate the destination(s), if on a PAN/LAN MAN/WAN broadcast link, i.e. LAN, and usually needs to name itself to let the receiver know Token Bus (802.4) DQDB (802.6) Token Ring (802.5) HDLC where the source is. If multiple stations share a LAN, an arbitration mechanism is HIPPI X.25 required to determine who can transmit next.
    [Show full text]
  • Understanding Ethernet
    Chapter 1 Understanding Ethernet In This Chapter ▶ Exploring carrier sensing and collision detection methods ▶ Understanding directional traffic and simultaneous transmissions ▶ Examining Ethernet speed limits and wire-rated standards ▶ Exploring Gigabit Ethernet ▶ Distinguishing between local and backbone Ethernet ▶ Recognizing Ethernet interfaces ▶ Understanding Ethernet’s simplicity n today’s connected business world, ubiquitous access to Idigitized information and data is critical. Networking has not only reshaped the information landscape, but it has also vastly increased speeds at which information moves and is consumed. In fact, networking is the key to accessing the com- plex services and applications within which information plays a starring role. Although access to the Internet is essential, all networking begins at the local level. For modern networks, Ethernet is the standard infrastructure upon which local net- works rest. Ethernet comprises a family of frame-based protocols and tech- nologies designed to connect local area networks (LANs) — computersCOPYRIGHTED and devices situated in MATERIAL close proximity and able to communicate with one another. Ethernet draws its name from the fanciful Latin terminology luminiferous aether, which trans- lates to a light-bearing medium once thought to fill space and propagate magnetic waves. As such, Ethernet is a metaphorical reference for the physical transmission medium in the work- place (and at home) that propagates digitized information in electronic form. The term “Ethernet” was originally coined by 4 Carrier Ethernet For Dummies Bob Metcalfe while jointly developing basic Ethernet network computing with David Boggs at Xerox Palo Alto Research Center (PARC). Sensing a Carrier and Handling Collisions Two people on opposite ends of a phone conversation can sense carrier presence (either a dial-tone or a connected call) and handle collisions (overlapping conversations).
    [Show full text]
  • 1 GSW… Ethernet the Ethernet Family1 of Protocols Are the Most Popular Local Area Network Protocols in the World2
    Getting Started with Communications Engineering GSW… Ethernet 1 GSW… Ethernet The Ethernet family1 of protocols are the most popular local area network protocols in the world2. This chapter gives a brief introduction to Ethernet, its many variants, and the structure of the frames that Ethernet sends over the network. 1.1 A Brief History of Ethernet Ethernet was developed by Robert Metcalfe and David Boggs at Xerox's Palo Alto Research Centre and made public in 1976. The word itself was first coined in 1973, to refer to a project previously known as the ‘Alto ALOHA net’, based on the earlier ALOHA-based wireless network developed at the University of Hawaii. The original version ran at 2.94 MBit/s, with 8-bit destination and source address fields, but this version was never standardised, and is not in use today. The first Ethernet standard was developed jointly by Xerox, Digital and Intel (and hence became known as the DIX standard 3) and published in September 1980. In February of 1980, the Institute of Electrical and Electronics Engineers (IEEE) formed a committee they called ‘Project 802’ to establish standards for local area networks. They (eventually) produced a standard called 802.3 for a CSMA/CD based local area network. Unfortunately, DIX Ethernet and the original 802.3 CSMA/CD LAN are not quite the same. The two standards can co-exist on the same network since they share the same access scheme, the same bit rate and modulation scheme, and the same format of destination and source addresses; but they have slightly different frame formats4.
    [Show full text]
  • Carrier Ethernet Ciena’S Essential Series: Be in the Know
    Essentials Carrier Ethernet Ciena’s Essential Series: Be in the know. by John Hawkins with Earl Follis Carrier Ethernet Networks Published by Ciena 7035 Ridge Rd. Hanover, MD 21076 Copyright © 2016 by Ciena Corporation. All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, without the prior written permission of Ciena Corporation. For information regarding permission, write to: Ciena Experts Books 7035 Ridge Rd Hanover, MD 21076. Trademarks: Ciena, all Ciena logos, and other associated marks and logos are trademarks and/or registered trademarks of Ciena Corporation both within and outside the United States of America, and may not be used without written permission. LIMITATION OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT MAY MAKE.
    [Show full text]
  • 2.2 Ethernet (Ieee 802.3)
    ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY 2.2 ETHERNET (IEEE 802.3) The Ethernet LAN was developed in the 1970s by Robert Metcalfe and David Boggs. It has four generations: Standard Ethernet (10 Mbps), Fast Ethernet (100 Mbps), Gigabit Ethernet (1 Gbps), and 10 Gigabit Ethernet (10 Gbps). Characteristics: Connectionless and unreliable service Ethernet provides a connectionless service, which means each frame sent is independent of the previous or next frame. Ethernet has no connection establishment or connection termination phases. Frame Format The Ethernet frame contains seven fields as in figure 2.2.1. Fig2.2.1: The Ethernet frame. [Source : “Data Communications and Networking” by Behrouz A. Forouzan,Page-364] Preamble: This field contains 7 bytes (56 bits) of alternating 0s and 1s that alert the receiving system to the coming frame and enable it to synchronize its clock.The pattern provides only an alert and a timing pulse.The 56-bit pattern allows the stations to miss some bits at the beginning of the frame. The preamble is actually added at the physical layer . Start frame delimiter (SFD): This field (1 byte: 10101011) signals the beginning of the frame. The SFD warns the station or stations that this is the last chance for synchronization. The last 2 bits are (11)2 and alert the receiver that the next field is the destination address. This field is actually a flag that defines the beginning of the frame. EC8551 COMMUNICATION NETWORKS ROHINI COLLEGE OF ENGINEERING & TECHNOLOGY Destination address (DA): This field is six bytes (48 bits) and contains the link layer address of the destination station or stations to receive the packet.
    [Show full text]
  • Intel and Ethernet Driving Ethernet Innovation for Nearly 30 Years
    Intel and Ethernet Driving Ethernet innovation for nearly 30 years The Technology vision for Ethernet Ethernet is an industry standard for a packet-based computer networking technology for local area networks (LANs) that has become the foundation for most wired communications technology. Over the last 30 years, it's become the network of choice for wiring homes and enterprises around the world. Today more than 85 percent of all installed network connections and more than 95 percent of all local area networks (LANs) are Ethernet-based¹. Nearly all traffic on the Internet starts or ends on an Ethernet connection. The term "ether" in "Ethernet" is said to have come from "luminiferous" the medium that 19th century physicists thought responsible for the propagation of light. The relentless rapid growth in Internet Protocol (IP) traffic and its popularity for carrying sophisticated voice, data and media applications (particularly video) continue to drive the demand for greater network bandwidth. At present, Gigabit Ethernet (GbE), and increasingly 10 Gigabit Ethernet (10GbE), provide the core of data center computing and storage resources. Today Intel provides a broad portfolio of Ethernet solutions ranging from cost-effective 10/100 Mbps and Gigabit connections for PCs to high performance 10 GbE adapters for servers. The relentless progress of Moore's Law will increasingly move systems toward greater bandwidth as processor performance drives the need for ever more capacity, both for those devices using the processors and the network links aggregating the bandwidth from multiple devices. What's down the road? Even greater Ethernet speeds, cost reductions and power efficiencies through future Intel innovations in process technology and architecture.
    [Show full text]