Ethernet the Definitive Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ciena 5305 Service Aggregation Switch Datasheet
5305 SERVICE AGGREGATION SWITCH Features and Benefits The 5305 Ethernet/MPLS service aggregation > Features advanced Ethernet and MPLS to support demanding business, mobile switch is purpose-built for Carrier Ethernet backhaul, transport, and residential applications including L2VPN service to deliver cost-effective capacity, scalability, delivery and aggregation, 3G/4G wireless backhaul, FTTx and IP DSLAM and resiliency. With this switch, service Aggregation and L2 backhaul of L3VPNs > Delivers optimal density and service providers can keep pace with the constantly flexibility with a compact modular chassis, supporting incremental increasing demand for bandwidth and next- expansion of service and bandwidth capacity with linear CAPEX outlay generation services that support business, > Supports tens of thousands of services mobile backhaul, transport, and residential on a single system with robust scalability of up to 30,000+ VLANs and applications in metro networks. two million MAC addresses per chassis > Delivers high reliability, five-9s The 5305 is a modular, chassis-based system optimized for metro-edge deployments availability, and 50 ms protection in a wide variety of network topologies, including fiber and microwave rings, point-to- switching resiliency using state-of- the-art hardware and software design point fiber, microwave mesh, and fiber or copper to the subscriber. The switch coupled with advanced control plane supports high-density Gigabit Ethernet (GbE) connectivity to the subscriber edge and and Ethernet OAM capabilities -
Securing the Everywhere Perimeter Iot, BYOD, and Cloud Have Fragmented the Traditional Network Perimeter
White Paper Securing the Everywhere Perimeter IoT, BYOD, and Cloud have fragmented the traditional network perimeter. This revolution necessitates a new approach that is comprehensive, pervasive, and automated. Businesses need an effective strategy to differentiate critical applications and confidential data, partition user and devices, establish policy boundaries, and reduce their exposure. Leveraging Extreme Networks technology, organizations can hide much of their network and protect those elements that remain visible. Borders are established that defend against unauthorized lateral movement, the attack profile is reduced, and highly effective breach isolation is delivered. This improves the effectiveness of anomaly scanning and the value of specialist security appliances. Redundant network configuration is rolled back, leaving an edge that is “clean” and protected from hacking. Businesses avoid many of the conventional hooks and tools that hackers seek to exploit. Additionally, flipping the convention of access-by-default, effective access control policy enforcement denies unauthorized connectivity. The Business Imperative As businesses undertake the digital transformation, the trends of cloud, mobility, and IoT converge. Organizations need to take a holistic approach to protecting critical systems and data, and important areas for attention are the ability to isolate traffic belonging to different applications, to reduce the network’s exposure and attack profile, and to dynamically control connectivity to network assets. In addition to all of the normal challenges and demands, businesses are also starting to experience IoT. This networking phenomenon sees unconventional embedded system devices appearing, seemingly from nowhere, requiring connectivity. WWW.EXTREMENETWORKS.COM 1 IoT is being positioned as the enabling technology for all manner of “Smart” initiatives. -
Mikrodenetleyicili Endüstriyel Seri Protokol Çözümleyici Sisteminin Programi
YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 YILDIZ TEKNİK ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ MİKRODENETLEYİCİLİ ENDÜSTRİYEL SERİ PROTOKOL ÇÖZÜMLEYİCİ SİSTEMİNİN PROGRAMI Elektronik ve Haberleşme Müh. Kemal GÜNSAY FBE Elektronik ve Haberleşme Anabilim Dalı Elektronik Programında Hazırlanan YÜKSEK LİSANS TEZİ Tez Danışmanı : Yrd. Doç. Dr. Tuncay UZUN (YTÜ) İSTANBUL, 2009 İÇİNDEKİLER Sayfa KISALTMA LİSTESİ ................................................................................................................ v ŞEKİL LİSTESİ ...................................................................................................................... viii ÇİZELGE LİSTESİ .................................................................................................................... x ÖNSÖZ ...................................................................................................................................... xi ÖZET ........................................................................................................................................ xii ABSTRACT ............................................................................................................................ xiii 1. GİRİŞ ...................................................................................................................... -
Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern
Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model. -
Data Center Ethernet 2
DataData CenterCenter EthernetEthernet Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-15/ Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 4-1 OverviewOverview 1. Residential vs. Data Center Ethernet 2. Review of Ethernet Addresses, devices, speeds, algorithms 3. Enhancements to Spanning Tree Protocol 4. Virtual LANs 5. Data Center Bridging Extensions Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 4-2 Quiz:Quiz: TrueTrue oror False?False? Which of the following statements are generally true? T F p p Ethernet is a local area network (Local < 2km) p p Token ring, Token Bus, and CSMA/CD are the three most common LAN access methods. p p Ethernet uses CSMA/CD. p p Ethernet bridges use spanning tree for packet forwarding. p p Ethernet frames are 1518 bytes. p p Ethernet does not provide any delay guarantees. p p Ethernet has no congestion control. p p Ethernet has strict priorities. Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 4-3 ResidentialResidential vs.vs. DataData CenterCenter EthernetEthernet Residential Data Center Distance: up to 200m r No limit Scale: Few MAC addresses r Millions of MAC Addresses 4096 VLANs r Millions of VLANs Q-in-Q Protection: Spanning tree r Rapid spanning tree, … (Gives 1s, need 50ms) Path determined by r Traffic engineered path spanning tree Simple service r Service Level Agreement. -
Rule-Based Forwarding (RBF): Improving the Internet's Flexibility
Rule-based Forwarding (RBF): improving the Internet’s flexibility and security Lucian Popa∗ Ion Stoica∗ Sylvia Ratnasamy† 1Introduction 4. rules allow flexible forwarding: rules can select ar- From active networks [33] to the more recent efforts on bitrary forwarding paths and/or invoke functionality GENI [5], a long-held goal of Internet research has been made available by on-path routers; both path and to arrive at a network architecture that is flexible.Theal- function selection can be conditioned on (dynamic) lure of greater flexibility is that it would allow us to more network and packet state. easily incorporate new ideas into the Internet’s infras- The first two properties enable security by ensuring tructure, whether these ideas aim to improve the existing the network will not forward a packet unless it has network (e.g., improving performance [36, 23, 30], relia- been explicitly cleared by its recipients while the third bility [12, 13], security [38, 14, 25], manageability [11], property ensures that rules cannot be (mis)used to attack etc.) or to extend it with altogether new services and the network itself. As we shall show, our final property business models (e.g., multicast, differentiated services, enables flexibility by allowing a user to give the network IPv6, virtualized networks). fine-grained instructions on how to forward his packets. An unfortunate stumbling block in these efforts has In the remainder of this paper, we present RBF, a been that flexibility is fundamentally at odds with forwarding architecture that meets the above properties. another long-held goal: that of devising a secure network architecture. -
Routing and Packet Forwarding
Routing and Packet Forwarding Tina Schmidt September 2008 Contents 1 Introduction 1 1.1 The Different Layers of the Internet . .2 2 IPv4 3 3 Routing and Packet Forwarding 5 3.1 The Shortest Path Problem . .6 3.2 Dijkstras Algorithm . .7 3.3 Practical Realizations of Routing Algorithms . .8 4 Autonomous Systems 10 4.1 Intra-AS-Routing . 10 4.2 Inter-AS-Routing . 11 5 Other Services of IP 11 A Dijkstra's Algorithm 13 1 Introduction The history of the internet and Peer-to-Peer networks starts in the 60s with the ARPANET (Advanced Research Project Agency Network). Back then, when computers were expen- sive and linked to several terminals, the aim of ARPANET was to establish a continuous network inbetween mainframe computers in the U.S. Starting with only three computers in 1969, mainly universities were involved in establishing the ARPANET. The ARPANET became a network inbetween networks of mainframe computes and therefore was called inter-net. Today it became the internet which links millions of computers. For a long time nobody knew what use such a Wide Area Netwok (WAN) could have for the pop- ulation. The internet was used for e-mails, newsgroups, exchange of scientific data and some special software, all in all services that were barely known in public. The spread of 1 Application Layer Peer-to-Peer-networks, e.g. Telnet = Telecommunication Network FTP = File Transfer Protocol HTTP = Hypertext Transfer Protocol SMTP = Simple Mail Transfer Protocol Transport Layer TCP = Transmission Control Protocol UDP = User Datagram Protocol Internet Layer IP = Internet Protocol ICMP = Internet Control Message Protocol IGMP = Internet Group Management Protocol Host-to-Network Layer device drivers or Link Layer (e.g. -
LAB MANUAL for Computer Network
LAB MANUAL for Computer Network CSE-310 F Computer Network Lab L T P - - 3 Class Work : 25 Marks Exam : 25 MARKS Total : 50 Marks This course provides students with hands on training regarding the design, troubleshooting, modeling and evaluation of computer networks. In this course, students are going to experiment in a real test-bed networking environment, and learn about network design and troubleshooting topics and tools such as: network addressing, Address Resolution Protocol (ARP), basic troubleshooting tools (e.g. ping, ICMP), IP routing (e,g, RIP), route discovery (e.g. traceroute), TCP and UDP, IP fragmentation and many others. Student will also be introduced to the network modeling and simulation, and they will have the opportunity to build some simple networking models using the tool and perform simulations that will help them evaluate their design approaches and expected network performance. S.No Experiment 1 Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. 2 Study of Network Devices in Detail. 3 Study of network IP. 4 Connect the computers in Local Area Network. 5 Study of basic network command and Network configuration commands. 6 Configure a Network topology using packet tracer software. 7 Configure a Network topology using packet tracer software. 8 Configure a Network using Distance Vector Routing protocol. 9 Configure Network using Link State Vector Routing protocol. Hardware and Software Requirement Hardware Requirement RJ-45 connector, Climping Tool, Twisted pair Cable Software Requirement Command Prompt And Packet Tracer. EXPERIMENT-1 Aim: Study of different types of Network cables and Practically implement the cross-wired cable and straight through cable using clamping tool. -
Twisted-Pair Cable (Cat
1 LAN Physical Layer Various symbols are used to represent media types. The function of media is to carry a flow of information through a LAN. Networking media are considered Layer 1, or physical layer, components of LANs. Each media has advantages and disadvantages. Some of the advantage or disadvantage comparisons concern: • Cable length • Cost • Ease of installation • Susceptibility to interference Coaxial cable, optical fiber, and even free space can carry network signals. However, the principal medium that will be studied is Category 5 unshielded twisted-pair cable (Cat 5 UTP) 2 Cable Specifications 10BASE-T The T stands for twisted pair. 10BASE5 The 5 represents the fact that a signal can travel for approximately 500 meters 10BASE5 is often referred to as Thicknet. 10BASE2 The 2 represents the fact that a signal can travel for approximately 200 meters 10BASE2 is often referred to as Thinnet. All 3 of these specifications refer to the speed of transmission at 10 Mbps and a type of transmission that is baseband. Thinnet and Thicknet are actually a type of networks, while 10BASE2 & 10BASE5 are the types of cabling used in these networks. 3 Unshielded Twisted Pair (UTP) Cable 4 Physical Media Unshielded Twisted Pair (UTP) Consists of 4 pairs (8 wires) of insulated copper wires typically about 1 mm thick. The wires are twisted together in a helical form. Twisting reduces the interference between pairs of wires. High bandwidth and High attenuation channel. Flexible and cheap cable. Category rating based on number of twists per inch and the material used CAT 3, CAT 4, CAT 5, Enhanced CAT 5 and now CAT 6. -
Fact Sheet: Single-Pair Ethernet Trade Article
Fact sheet Single Pair Ethernet Matthias Fritsche – product manager device connectivity & Jonas Diekmann – technical editor HARTING Technology group – October 2016– November 2016 Wireless technology and optical cable have already been often heralded as the future transmission technology. However, simple twisted pair cable based on plain old copper, often pronounced dead, is the most common transmission medium. Simple, robust, and perhaps with 100GBASE T1 soon to be also incredibly fast. From the beginnings of Ethernet in the 1970s, then via diverse multi-pair Ethernet developments with multiple parallel transmission paths, now apparently we are taking a step back. Back to single twisted-pair. With a new protocol and new PHYs transmission rates of up to 10 Gbit/s and PoDL capacities of up to 60 W are no longer a problem. Ultimately one pair is enough. When the team surrounding David Boggs and Robert Metcalf in the 1970s developed Ethernet at the Xerox Palo Alto Research Center (PARC), no one could foresee that this transmission method would develop so dynamically and dominate data transmission worldwide to this day. The original 10BASE5 Ethernet still used coax cable as the common medium. Today, next to wireless and optical cables, twisted-pair cable, often pronounced dead, is the most frequently used transmission medium. Starting in 1990 with 10BASE-T, the data transmission rate of the IEEE standards increased by a factor of 10 approximately every 5 years over 100BASE-TX and 1000BASE-T up to 10GBASE-T. This series could not be continued for the jump to 100GBASE-T, instead however four new IEEE standards were finalized in 2016. -
Automotive Ethernet Kirsten Matheus , Thomas Königseder Frontmatter More Information
Cambridge University Press 978-1-108-84195-5 — Automotive Ethernet Kirsten Matheus , Thomas Königseder Frontmatter More Information Automotive Ethernet Third Edition Learn about the latest developments in Automotive Ethernet technology and imple- mentation with this fully revised third edition. Including 20% new material and greater technical depth, coverage is expanded to include Detailed explanations of the new PHY technologies 10BASE-T1S (including multi- drop) and 2.5, 5, and 10GBASE-T1 Discussion of EMC interference models Descriptions of the new TSN standards for automotive use More on security concepts An overview of power saving possibilities with Automotive Ethernet Explanation of functional safety in the context of Automotive Ethernet An overview of test strategies The main lessons learned Industry pioneers share the technical and non-technical decisions that have led to the success of Automotive Ethernet, covering everything from electromagnetic require- ments and physical layer technologies, QoS, and the use of VLANs, IP, and service discovery, to network architecture and testing. The guide for engineers, technical managers, and researchers designing components for in-car electronics, and those interested in the strategy of introducing a new technology. Kirsten Matheus is a communications engineer who is responsible for the in-vehicle networking strategy at BMW and who has established Ethernet-based communication as a standard technology within the automotive industry. She has previously worked for Volkswagen, NXP, and Ericsson. In 2019 she was awarded the IEEE-SA Standards Medallion “For vision, leadership, and contributions to developing auto- motive Ethernet networking.” Thomas Königseder is CTO at Technica Engineering, supporting the smooth introduc- tion of Ethernet-based systems for automotive customers. -
Understanding CIDR Notation Used for IP Address Display on 2500 Series® Processors
Application Note 2500 Series® Programmable Automation Control System Understanding CIDR Notation Used for IP Address Display on 2500 Series® Processors Newer CTI products featuring Ethernet ports, such as the 2500 Series® processor, the 2500P-ECC1, and 2500P-ACP1, display the IP address of the product on the front panel multi-segment display. This information has proven very useful to most customers, facilitating the connection of browsers to obtain diagnostic data and providing visual confirmation of the operating IP address. Beginning with Version 8.02 of the 2500 Series® processor firmware, we’ve added the capability to display the subnet mask in CIDR notation. This gives users more complete information about the IP address setting to allow them to easily get connected. This application note shows how to interpret the CIDR notation displayed on the front of the processor. What is CIDR Notation? CIDR notation (Classless Inter-Domain Routing) is an alternate method of representing a subnet mask. It is simply a count of the number of network bits (bits that are set to 1) in the subnet mask. Subnet mask bits are explained in a following section. The CIDR number is typically preceded by a slash “/” and follows the IP address. For example, an IP address of 131.10.55.70 with a subnet mask of 255.0.0.0 (which has 8 network bits) would be represented as 131.10.55.70 /8. CIDR notation is more concise method for designating the subnet mask. Compared to Dotted Decimal notation, which represents the mask as four values, each representing the decimal value of an octet of the mask, the CIDR format represents the mask as a single value.