Stem Cells in Marine Organisms Baruch Rinkevich · Valeria Matranga Editors

Total Page:16

File Type:pdf, Size:1020Kb

Stem Cells in Marine Organisms Baruch Rinkevich · Valeria Matranga Editors Stem Cells in Marine Organisms Baruch Rinkevich · Valeria Matranga Editors Stem Cells in Marine Organisms 123 Editors Prof. Dr. Baruch Rinkevich Dr. Valeria Matranga Israel Oceanographic & Istituto di Biomedicina e Limnological Research Immunologia 31 080 Haifa Molecolare “Alberto Monroy” Consiglio Nazionale delle Israel Ricerche [email protected] Via La Malfa, 153 90146 Palermo Italy [email protected] ISBN 978-90-481-2766-5 e-ISBN 978-90-481-2767-2 DOI 10.1007/978-90-481-2767-2 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009927004 © Springer Science+Business Media B.V. 2009 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover illustration: Front Cover: Botryllus schlosseri, a colonial tunicate, with extended blind termini of vasculature in the periphery. At least two disparate stem cell lineages (somatic and germ cell lines) circulate in the blood system, affecting life history parameters. Photo by Guy Paz. Back Cover: Paracentrotus lividus four-week-old larvae with fully grown rudiments. Sea urchin juveniles will develop from the echinus rudiment which followed the asymmetrical proliferation of left set-aside cells budding from the primitive intestine of the embryo. Photo by Rosa Bonaventura. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Stem cell biology is a fast developing scientific discipline. Based on solid basic aspects, this emerging cell biology field is associated with highly popular applied features. Growing attention is devoted in recent years toward studies on stem cells biology in model organisms (mainly mammalians) including stem cells differen- tiation and gene expression in selective vertebrates. These studies, in addition to their inherent interest in the general biological phenomenon of stem cells, are moti- vated by the rationale that stem cells might serve in fighting against human diseases, or in regenerating damaged organs in humans. While the literature on stem cell from vertebrates is rich and expanding in an exponential rate, investigations on marine organisms’ stem cells are very limited and scarce. This is in spite of the results, pointing that marine organisms’ stem cells are important in various biolog- ical disciplines that involve understanding of mechanisms promoting cell growth and differentiation, in developmental biology aspects such as regeneration and bud- ding processes in marine invertebrates, body maintenance of marine organisms (including those that may live for decades), aging and senescence. It is unfortunate that the research on marine organisms is lagging behind the studies on vertebrates and some invertebrate model organism (like Drosophila melanogater and Caenorhabditis elegans), in spite the discoveries that very potent stem cells exist, even in the most primitive multicellular marine organisms (like sponges and cnidarians). Recent studies further revealed similarities between the biological properties of stem cells in marine organisms and the vertebrates, and confirmed the existence of unique properties associated with stem cells from marine organisms that lead to phenomena such as somatic and germ cell parasitism, or whole body regeneration. These results also showed that marine invertebrates’ stem cells are characterized by an efficient motility within an organism and between organisms, that they have the ability to parasitize effectively host organisms, in the same species or in other species, with stemness and unlimited replication charac- terization. Marine invertebrate stem cells have the ability to blend with other cell lineages, blurring the line between distinct somatic and germ cell lineages, co-opting and managing somatic cells to collaborate in parasitic agenda and in many cases (like sponges and cnidarians) they lack of a distinct niche where they reside. The book is the outcome of discussions raised during and original presentations at the Exploratory Workshop on Stem Cells in Marine Organisms held in Palermo v vi Preface (Italy), in November 2006 (http://www.ibim.cnr.it/stemcell/index.htm), under the umbrella of the NoE Marine Genomics Europe and hosted by the CNR Institute of Biomedicine and Molecular Immunology “Alberto Monroy”. In addition, solicited contributions were brought together to gather recent knowledge in the identifica- tion and functional characterization of stem cells in marine organisms and genes expressed in growing and differentiating cells of these organisms. The book holds 14 chapters on marine stem cells, including theoretical chapters, overview essays and specific research outcomes. In addition to the aim in summarizing much of the knowledge on marine invertebrates’ stem cells biology, another important aim is to reach a larger scientific community in order to encourage the study on marine invertebrate stem cells, theoretically, practically and through innovative technology. This might lead to biotechnologically relevant discoveries or breakthrough in the mainstream research on stem cell biology. Last we would like to thank all the contributors to this book as we are confident that the high scientific value of their reviews on past and current findings will serve as a forum of ideas for the exploitation of marine invertebrate stem cells biology and will promote the development of studies in the new exciting field. In honor of the bicentenary of Charles Darwin’s birth (February 12th, 1809), we would like to close this preface by the recommendation to look at the sea as a source of knowledge and life experience. Darwin used to say “It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change”. Thus, very much can be learnt from marine invertebrates, have been surviving on Earth for so many geological periods, posing major challenges to scientists that try to reveal their most intimate secretes. Special warm thanks go Francesca Zito for her generous assistance and friendly collaboration in handling all the matters related to the editorial work. The Editors Haifa, Israel Baruch Rinkevich Palermo, Italy Valeria Matranga Contents 1 Stem Cells: Autonomy Interactors that Emerge as Causal Agents and Legitimate Units of Selection ............... 1 Baruch Rinkevich 2 Putative Stem Cell Origins in Solitary Tunicates ........... 21 Edwin L. Cooper 3 Cnidarian Interstitial Cells: The Dawn of Stem Cell Research ... 33 Uri Frank, Günter Plickert, and Werner A. Müller 4 Stem Cells in Aquatic Invertebrates: Common Premises and Emerging Unique Themes .................... 61 Yuval Rinkevich, Valeria Matranga and Baruch Rinkevich 5 Stem Cells in Asexual Reproduction of Marine Invertebrates ... 105 Helen Nilsson Sköld, Matthias Obst, Mattias Sköld, and Bertil Åkesson 6 Neuroimmune Chemical Messengers and Their Conservation During Evolution .............. 139 George B. Stefano, Michel Salzet, and Enzo Ottaviani 7 Regenerating Echinoderms: A Promise to Understand Stem Cells Potential .......................... 165 M. Daniela Candia-Carnevali, Michael C. Thorndyke, and Valeria Matranga 8 Secondary Mesenchyme Cells as Potential Stem Cells of the Sea Urchin Embryo ........................... 187 Francesca Zito and Valeria Matranga 9 Cell Dynamics in Early Embryogenesis and Pluripotent Embryonic Cell Lines: From Sea Urchin to Mammals ....... 215 Anne-Marie Genevière, Antoine Aze, Yasmine Even, Maria Imschenetzky, Clara Nervi, and Luigi Vitelli 10 Regeneration in Hemichordates and Echinoderms ......... 245 Amanda L. Rychel and Billie J. Swalla vii viii Contents 11 Stem Cells in Sexual and Asexual Reproduction of Botryllus schlosseri (Ascidiacea, Tunicata): An Overview ........... 267 Loriano Ballarin and Lucia Manni 12 Stem Cells, Chimerism and Tolerance: Lessons from Mammals and Ascidians ................ 281 Ayelet Voskoboynik, Baruch Rinkevich, and Irving L. Weissman 13 Effect of Bacterial Infection on Stem Cell Pattern in Porifera ... 309 Werner E.G. Müller, Márcio Reis Custódio, Matthias Wiens, Carla Zilberberg, Amélie Châtel, Isabel M. Müller, and Heinz C. Schröder 14 Defence Mechanisms and Stem Cells in Holothuria polii and Sipunculus nudus ......................... 337 Giuseppina D’Ancona Lunetta Index ..................................... 369 Contributors Antoine Aze Université Pierre et Marie Curie-Paris6, CNRS, UMR 7628, Banyuls-sur-mer, BP44, Avenue du Fontaulé, F-66651 France, [email protected] Bertil Åkesson Zoology, Göteborg University, SE 405 30 Göteborg, Sweden, [email protected] Loriano Ballarin Department of Biology, University of Padova, Via U.Bassi 58/B, 35121 Padova, Italy, [email protected] M. Daniela Candia-Carnevali Dipartimento di Biologia, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy, [email protected] Amélie Châtel Institut für Physiologische Chemie, Abteilung Angewandte Molekularbiologie, Universität, Duesbergweg 6, D-55099 Mainz, Germany, [email protected] Edwin L. Cooper Laboratory of Comparative Neuroimmunology, Department of Neurobiology, David Geffen School Of Medicine at UCLA, Los Angeles, CA 90095-1763, USA, [email protected] Márcio Reis Custódio Departamento
Recommended publications
  • From Ghost and Mud Shrimp
    Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 .
    [Show full text]
  • The Colleteric Glands in Sacculinidae (Crustacea, Cirripedia, Rhizocephala): an Ultrastructural Study of Ovisac Secretion
    Contributions to Zoology, 70 (4) 229-242 (2002) SPB Academic Publishing bv, The Hague The colleteric glands in Sacculinidae (Crustacea, Cirripedia, Rhizocephala): an ultrastructural study of ovisac secretion Sven Lange Department of Cell Biology and Anatomy, Zoological Institute, University of Copenhagen, Universitets- parken 15, DK-2100 Copenhagen Ø, Denmark. Present address: Institutefor Biodiversity and Ecosystem Dynamics (IBED), PO box 94766,1090 GT Amsterdam, The Netherlands Keywords:: Cirripedia, Rhizocephala, Sacculina carcini, Thoracica, colleteric gland, ovisac, Carcinus maenas Abstract Ovisacs and oviposition in S. carcini 235 Colleteric glands and ovisac secretion in H. dollfusi 238 Discussion 238 Ovisac secretion by the paired colleteric glands of Sacculina Functional morphology of colleteric glands in carcini and Heterosaccus dollfusi (Rhizocephala, Sacculinida) S. carcini and H. dollfusi 238 was documented and studied at the ultrastructural level. and masses Oviposition formation of branched egg Preparatory to oviposition, the epithelium of each colleteric in S. carcini- 239 The gland secretes one branched, elastic, transparent ovisac. Ovisacs in other Rhizocephala 239 ovisac wall consists of a reticulated inner zone, secreted first, Morphological comparison between Sacculinidae and a dense outer zone. After secretion, the ovisac detaches and Thoracica 240 from most of the secretory epithelium but remains anchored 241 proximally in the gland until oviposition ends. The exterior Acknowledgements Abbreviations 241 ovisac surface is predominantly smooth and impervious. References 241 Proximally, however, the surface is irregular and perforated. the the During oviposition eggs enter paired ovisacs, forcing the ovisacs throughthe ovipores into the maternal mantle cavity. Simultaneously the ovisac volume increases approximately Introduction 100 The like times. resulting paired egg masses, branched the and ventilated in the mantle ovisacs, are brooded cavity.
    [Show full text]
  • Remarkable Convergent Evolution in Specialized Parasitic Thecostraca (Crustacea)
    Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea) Pérez-Losada, Marcos; Høeg, Jens Thorvald; Crandall, Keith A Published in: BMC Biology DOI: 10.1186/1741-7007-7-15 Publication date: 2009 Document version Publisher's PDF, also known as Version of record Citation for published version (APA): Pérez-Losada, M., Høeg, J. T., & Crandall, K. A. (2009). Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea). BMC Biology, 7(15), 1-12. https://doi.org/10.1186/1741-7007-7-15 Download date: 25. Sep. 2021 BMC Biology BioMed Central Research article Open Access Remarkable convergent evolution in specialized parasitic Thecostraca (Crustacea) Marcos Pérez-Losada*1, JensTHøeg2 and Keith A Crandall3 Address: 1CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Portugal, 2Comparative Zoology, Department of Biology, University of Copenhagen, Copenhagen, Denmark and 3Department of Biology and Monte L Bean Life Science Museum, Brigham Young University, Provo, Utah, USA Email: Marcos Pérez-Losada* - [email protected]; Jens T Høeg - [email protected]; Keith A Crandall - [email protected] * Corresponding author Published: 17 April 2009 Received: 10 December 2008 Accepted: 17 April 2009 BMC Biology 2009, 7:15 doi:10.1186/1741-7007-7-15 This article is available from: http://www.biomedcentral.com/1741-7007/7/15 © 2009 Pérez-Losada et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Rhizocephala
    RHIZOCEPHALA BY GEOFFREY SMITH, B. A. OXFORD. WITH 24 TEXTFIGURES AND 8 PLATES. HERAUSGEGEBEN VON DER ZOOLOGISCHEN STATION ZU NEAPEL. BERLIN VERLAG VON R. FRIEDLANDER & SOHN 1906. Ladenpreis 40 Mark. Preface. The group of parasitic Cirripedes monographed in this book has engaged the attention of many celebrated naturalists since the time of Cavolini, and in com- paratively recent years has formed the subject of a keenly contested controversy: it may therefore seem a bold step for an unknown writer to enter the field with a monograph which to many will seem to affect the pretension without attaining the reality of completeness. But I cannot disguise from myself, and I have neither the wish nor the power to disguise from other people, the many respects in which my work not only falls short of completeness but has been entirely baffled by difficulties of observation and reasoning; and perhaps the best plea I can put forward for avoiding a too harsh criticism is that my very lack of completeness and finality is in part due to the many curious facts which my work has partially brought to light but which will require future independent investigations to fully clear up. Not to mention a number of observers who have laid the basis of our knowledge of the Rkizocephala, we owe most perhaps to the two contemporary French naturalists, Professors Delage and Giard, to the former for. his work on the anatomy and life-history of Sacculina carcini, and to the latter for his inter- esting observations on the effect of the parasites on their hosts.
    [Show full text]
  • Stem Cells in Marine Organisms Baruch Rinkevich · Valeria Matranga Editors
    Stem Cells in Marine Organisms Baruch Rinkevich · Valeria Matranga Editors Stem Cells in Marine Organisms 123 Editors Prof. Dr. Baruch Rinkevich Dr. Valeria Matranga Israel Oceanographic & Istituto di Biomedicina e Limnological Research Immunologia 31 080 Haifa Molecolare “Alberto Monroy” Consiglio Nazionale delle Israel Ricerche [email protected] Via La Malfa, 153 90146 Palermo Italy [email protected] ISBN 978-90-481-2766-5 e-ISBN 978-90-481-2767-2 DOI 10.1007/978-90-481-2767-2 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009927004 © Springer Science+Business Media B.V. 2009 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover illustration: Front Cover: Botryllus schlosseri, a colonial tunicate, with extended blind termini of vasculature in the periphery. At least two disparate stem cell lineages (somatic and germ cell lines) circulate in the blood system, affecting life history parameters. Photo by Guy Paz. Back Cover: Paracentrotus lividus four-week-old larvae with fully grown rudiments. Sea urchin juveniles will develop from the echinus rudiment which followed the asymmetrical proliferation of left set-aside cells budding from the primitive intestine of the embryo. Photo by Rosa Bonaventura. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Stem cell biology is a fast developing scientific discipline.
    [Show full text]
  • No Frontiers in the Sea for Marine Invaders and Their Parasites? (Research Project ZBS2004/09)
    No Frontiers in the Sea for Marine Invaders and their Parasites? (Research Project ZBS2004/09) Biosecurity New Zealand Technical Paper No: 2008/10 Prepared for BNZ Pre-clearance Directorate by Annette M. Brockerhoff and Colin L. McLay ISBN 978-0-478-32177-7 (Online) ISSN 1177-6412 (Online) May 2008 Disclaimer While every effort has been made to ensure the information in this publication is accurate, the Ministry of Agriculture and Forestry does not accept any responsibility or liability for error or fact omission, interpretation or opinion which may be present, nor for the consequences of any decisions based on this information. Any view or opinions expressed do not necessarily represent the official view of the Ministry of Agriculture and Forestry. The information in this report and any accompanying documentation is accurate to the best of the knowledge and belief of the authors acting on behalf of the Ministry of Agriculture and Forestry. While the authors have exercised all reasonable skill and care in preparation of information in this report, neither the authors nor the Ministry of Agriculture and Forestry accept any liability in contract, tort or otherwise for any loss, damage, injury, or expense, whether direct, indirect or consequential, arising out of the provision of information in this report. Requests for further copies should be directed to: MAF Communications Pastoral House 25 The Terrace PO Box 2526 WELLINGTON Tel: 04 894 4100 Fax: 04 894 4227 This publication is also available on the MAF website at www.maf.govt.nz/publications © Crown Copyright - Ministry of Agriculture and Forestry Contents Page Executive Summary 1 General background for project 3 Part 1.
    [Show full text]
  • Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources
    Southeastern Regional Taxonomic Center South Carolina Department of Natural Resources http://www.dnr.sc.gov/marine/sertc/ Southeastern Regional Taxonomic Center Invertebrate Literature Library (updated 9 May 2012, 4056 entries) (1958-1959). Proceedings of the salt marsh conference held at the Marine Institute of the University of Georgia, Apollo Island, Georgia March 25-28, 1958. Salt Marsh Conference, The Marine Institute, University of Georgia, Sapelo Island, Georgia, Marine Institute of the University of Georgia. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Caprellidea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1975). Phylum Arthropoda: Crustacea, Amphipoda: Gammaridea. Light's Manual: Intertidal Invertebrates of the Central California Coast. R. I. Smith and J. T. Carlton, University of California Press. (1981). Stomatopods. FAO species identification sheets for fishery purposes. Eastern Central Atlantic; fishing areas 34,47 (in part).Canada Funds-in Trust. Ottawa, Department of Fisheries and Oceans Canada, by arrangement with the Food and Agriculture Organization of the United Nations, vols. 1-7. W. Fischer, G. Bianchi and W. B. Scott. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume II. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico. Volume III. Final report to the Minerals Management Service. J. M. Uebelacker and P. G. Johnson. Mobile, AL, Barry A. Vittor & Associates, Inc. (1984). Taxonomic guide to the polychaetes of the northern Gulf of Mexico.
    [Show full text]
  • Parasites and Symbionts of the Crab Portunus Pelagicus from Moreton Bay, Eastern Australia
    Parasites and Symbionts of the Crab Portunus pelagicus from Moreton Bay, Eastern Australia Jeffrey D. Shields Journal of Crustacean Biology, Vol. 12, No. 1. (Feb., 1992), pp. 94-100. Stable URL: http://links.jstor.org/sici?sici=0278-0372%28199202%2912%3A1%3C94%3APASOTC%3E2.0.CO%3B2-3 Journal of Crustacean Biology is currently published by The Crustacean Society. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/crustsoc.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Dec 4 16:43:45 2007 JOURN,AL OF CRUSTACEAN BIOLOGY.
    [Show full text]
  • Arthropoda, Cirripedia: the Barnacles Andrew J
    Arthropoda, Cirripedia: The Barnacles Andrew J. Arnsberg The Cirripedia are the familiar stalked and acorn barnacles found on hard surfaces in the marine environment. Adults of these specialized crustaceans are sessile. They are usually found in dense aggregations among conspecifics and other fouling organisms. For the most part, sexually mature Cirripedia are hermaphroditic. Cross-fertilization is the dominant method of reproduction. Embryos are held in ovisacs within the mantle cavity (Strathmann, 1987).Breeding season varies with species as well as with local conditions (e.g., water temperature or food availability). The completion of embryonic development culminates in the hatching of hundreds to tens of thousands of nauplii. There are approximately 29 species of intertidal and shallow subtidal barnacles found in the Pacific Northwest, of which 12 have descriptions of the larval stages (Table 1). Most of the species without larval descriptions (11 species) are parasitic barnacles, order Rhizocephala; a brief general review of this group is provided at the end of the chapter. Development and Morphology The pelagic phase of the barnacle life cycle consists of two larval forms. The first form, the nauplius, undergoes a series of molts producing four to six planktotrophic or lecithotrophic naupliar stages (Strathmann, 1987). Each naupliar stage is successively larger in size and its appendages more setose than the previous. The final nauplius stage molts into the non-feeding cyprid a-frontal filament LI - \ horn Fig. I .Ventral view of a stageV nauplius larva. posterior shield spine ! (From Miller and - furcal ramus Roughgarden, 1994, Fig. -dorsal thoracic spine 1) 155 156 Identification Guide to Larval Marine Invertebrates of the Pacific Northwest I Table 1.
    [Show full text]
  • Phylum Arthropoda Latreille, 1829 Subphylum Crustacea Brünnich, 1772 Class Maxillopoda Dahl, 1956 Subclass Thecostraca Gruvel, 1905
    Checklist of the Barnacles of British Columbia (Updated November 2016) by Aaron Baldwin E-mail [email protected] The following list is compiled from several sources but is based upon Ira Cornwall's excellent guide, The Barnacles of British Columbia (1969). The species composition of Cornwall's acorn and gooseneck barnacles remains the same; I updated the taxonomy to reflect a more current understanding of this group. I also added the rhizocephalan barnacles to the list. The latter group remains poorly understood and awaits further study. Rhizocephalans are internal parasites of decapod crustaceans that produce external sacs which bear their larvae. It is likely that genetic research will reveal cryptic species and increase the diversity of this fascinating group. The taxonomy follows Martin and Davis (2001) and the Integrated Taxonomic Information System (www.itis.gov). ITIS appears to be consistent with the most recent taxonomic papers so I included some nomenclature changes without independent verification in those cases where I did not have access to the primary literature. I want to thank Melissa Frey of the Royal BC Museum for submitting some additional records not on an earlier version of this list. Phylum Arthropoda Latreille, 1829 Subphylum Crustacea Brünnich, 1772 Class Maxillopoda Dahl, 1956 Subclass Thecostraca Gruvel, 1905 Infraclass Cirripedia Burmeister, 1834 Superorder Thoracica Darwin, 1854 Order Pedunculata Lamarck, 1818 Suborder Scalpellomorpha Newman, 1987 Family Pollicipedidae Leach, 1817 Genus Pollicipes Leach,
    [Show full text]
  • A Bibliography of the Rhizocephala (Crustacea: Cirripedia)
    Gulf and Caribbean Research Volume 6 Issue 2 January 1978 A Bibliography of the Rhizocephala (Crustacea: Cirripedia) Adrian R. Lawler Gulf Coast Research Laboratory Steven L. Shepard Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Lawler, A. R. and S. L. Shepard. 1978. A Bibliography of the Rhizocephala (Crustacea: Cirripedia). Gulf Research Reports 6 (2): 153-167. Retrieved from https://aquila.usm.edu/gcr/vol6/iss2/6 DOI: https://doi.org/10.18785/grr.0602.06 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports, Vol. 6,No. 2, 153-167,1978 A BIBLIOGRAPHY OF THE RHIZOCEPHALA (CRUSTACEA: CIRRIPEDIA) ADRIAN R. LAWLER AND STEVEN L. SHEPARD Parasitology Section, Gulf Coast Research Laboratory, Ocean Springs, Mississippi 39564 ABSTRACT A bibliography of parasitic barnacles of the suborder Rhizocephala, including 490 titles, is presented. Scientific works from 1787 to present are listed. INTRODUCTION After the externa drops off, the interna generally slowly The Rhizocephala represent one of the suborders of the degenerates. The host may recover and resume a normal crustacean order Cirripedia. All are parasites of other crusta- life; however, it is likely that it will remain stunted and can ceans, principally decapods (crabs, shrimp, and their allies). never carry on normal reproductive processes. The host’s A rhizocephalan larva penetrates a susceptible host, and gonads can recover from the effects of castration if it is freed ramifies throughout the host in a root-like system called an from the parasite.
    [Show full text]
  • Brachyura: the True Crahs John S
    Chapter 25 Brachyura: The True Crahs John S. Garth and Donald P. Abbott The Brachyura represent the highest development attained by ar­ ticulated animals in the sea. Their hormonally controlled molting cycle, autotomy reflex, and ability to regenerate lost limbs excite the physiologist; their highly organized nervous systems, complex organs of sight and sound production, and incipient social organi­ zation beguile the animal behaviorist as well. Their commensal and mutualistic relationships with other invertebrates intrigue the ma­ rine ecologist, and their role as hosts to invading arthropods en­ gages the parasitologist's attention. Crabs first appear in the fossil record early in the Jurassic period of the Mesozoic, nearly 200 million years ago. As a group they show a continuation of the trend toward shortening the body and reducing the abdomen expressed in various anomuran groups (Chapter 24). The crab cephalothorax, formed by fusion of head and thorax and covered by the carapace, is short and broad, and forms virtually the whole body. The crab abdomen (corresponding to what gourmets call the "tail" of a lobster) is reduced to a thin, flat plate, tucked forward out of sight below the cephalothorax, hence the name "Brachyura," or "short-tailed" crabs. The original metamerism, or serial segmentation, of the cepha­ lothorax is largely obscured except as represented by the appen­ dages. The five pairs of head appendages include the first and sec­ ond antennae and the innermost three pairs of mouthparts (the mandibles and the first and second maxillae). The eight pairs of thoracic appendages include the outermost three pairs of mouth- John S.
    [Show full text]