Smithsonian Miscellaneous Collections
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Aquatic Invertebrates and Waterbirds of Wetlands and Rivers of the Southern Carnarvon Basin, Western Australia
DOI: 10.18195/issn.0313-122x.61.2000.217-265 Records of the Western Australian Museum Supplement No. 61: 217-265 (2000). Aquatic invertebrates and waterbirds of wetlands and rivers of the southern Carnarvon Basin, Western Australia 3 3 S.A. Halsel, R.J. ShieF, A.W. Storey, D.H.D. Edward , I. Lansburyt, D.J. Cale and M.S. HarveyS 1 Department of Conservation and Land Management, Wildlife Research Centre, PO Box 51, Wanneroo, Western Australia 6946, Australia 2CRC for Freshwater Ecology, Murray-Darling Freshwater Research Centre, PO Box 921, Albury, New South Wales 2640, Australia 3 Department of Zoology, The University of Western Australia, Nedlands, Western Australia 6907, Australia 4 Hope Entomological Collections, Oxford University Museum, Parks Road, Oxford OXl 3PW, United Kingdom 5 Department of Terrestrial Invertebrates, Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia Abstract - Fifty-six sites, representing 53 wetlands, were surveyed in the southern Carnarvon Basin in 1994 and 1995 with the aim of documenting the waterbird and aquatic invertebrate fauna of the region. Most sites were surveyed in both winter and summer, although some contained water only one occasion. Altogether 57 waterbird species were recorded, with 29 292 waterbirds of 25 species on Lake MacLeod in October 1994. River pools were shown to be relatively important for waterbirds, while many freshwater claypans were little used. At least 492 species of aquatic invertebrate were collected. The invertebrate fauna was characterized by the low frequency with which taxa occurred: a third of the species were collected at a single site on only one occasion. -
68 Guide to Crustacea
68 Guide to Crustacea. The arrow indicates the course of the respiratory current, which, however, may sometimes be temporarily reversed, especially in burrowing species. The typical members of the family Portunidae (Swimming FIG. 46. Pseudocarcinus gigas, from Tasmania. The carapace of this specimen is just over a foot in width. [Above Wall-cases Nos. 5 and 6.] Crabs) may be recognised by the flattened, paddle-shaped, last pair of legs. Two British species of the genus Portunus are exhibited : the colours of P. depurator have been carefully copied from a living individual, and the specimen is mounted on a sample Decapoda—Brachyura. 69 of the shell-gravel on which it was actually caught. The large Neptunus pelagicus is the commonest edible Crab in many parts of the East. The Common Shore Crab, Carcinus maenas, is also referred to this family, although the paddle-shape of the last legs is not so marked as in the more typical Portunidae. Podophthalmus vigil (Fig. 47) is remarkable for the great length of the eye-stalks, which is quite unusual among the Cyclometopa, and gives this Crab a curious likeness to the genus Macrophthalmus among the Ocypodidae (see Table-case No. 16). The resemblance, however, is quite superficial, for in this case FIG. 47. Podophthalmus vigil (reduced). [Table-case No. 15.] it is the first of the two segments of the eye-stalk which is elongated, while in Macrophthalmus it is the second. The genus Platyonychus, of which a group of specimens is mounted in Wall-case No. 5, also belongs to this family. -
Download Full Article in PDF Format
DIRECTEUR DE LA PUBLICATION / PUBLICATION DIRECTOR : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTRICE EN CHEF / EDITOR-IN-CHIEF : Laure Desutter-Grandcolas ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Anne Mabille ([email protected]) MISE EN PAGE / PAGE LAYOUT : Anne Mabille COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : James Carpenter (AMNH, New York, États-Unis) Maria Marta Cigliano (Museo de La Plata, La Plata, Argentine) Henrik Enghoff (NHMD, Copenhague, Danemark) Rafael Marquez (CSIC, Madrid, Espagne) Peter Ng (University of Singapore) Jean-Yves Rasplus (INRA, Montferrier-sur-Lez, France) Jean-François Silvain (IRD, Gif-sur-Yvette, France) Wanda M. Weiner (Polish Academy of Sciences, Cracovie, Pologne) John Wenzel (The Ohio State University, Columbus, États-Unis) COUVERTURE / COVER : Akrophryxus milvus n. gen., n. sp., holotype female, MNHN-IU-2014-20314, attached to Ethusa machaera Castro, 2005, macropod images. Zoosystema est indexé dans / Zoosystema is indexed in: – Science Citation Index Expanded (SciSearch®) – ISI Alerting Services® – Current Contents® / Agriculture, Biology, and Environmental Sciences® – Scopus® Zoosystema est distribué en version électronique par / Zoosystema is distributed electronically by: – BioOne® (http://www.bioone.org) Les articles ainsi que les nouveautés nomenclaturales publiés dans Zoosystema sont référencés par / Articles and nomenclatural novelties published in Zoosystema are referenced by: – ZooBank® (http://zoobank.org) Zoosystema est une revue en flux continu publiée par les Publications scientifiques du Muséum, Paris / Zoosystema is a fast track journal published by the Museum Science Press, Paris Les Publications scientifiques du Muséum publient aussi / The Museum Science Press also publish: Adansonia, Geodiversitas, Anthropozoologica, European Journal of Taxonomy, Naturae, Cryptogamie sous-sections Algologie, Bryologie, Mycologie. Diffusion – Publications scientifiques Muséum national d’Histoire naturelle CP 41 – 57 rue Cuvier F-75231 Paris cedex 05 (France) Tél. -
(Diptera: Bombyliidae), a Parasite of the Alkali Bee
Utah State University DigitalCommons@USU All PIRU Publications Pollinating Insects Research Unit 1960 The Biology of Heterostylum rubustum (Diptera: Bombyliidae), a Parasite of the Alkali Bee George E. Bohart Utah State University W. P. Stephen R. K. Eppley Follow this and additional works at: https://digitalcommons.usu.edu/piru_pubs Part of the Entomology Commons Recommended Citation Bohart, G. E., W. P. Stephen, and R. K. Eppley. 1960. The Biology of Heterostylum rubustum (Diptera: Bombyliidae), a Parasite of the Alkali Bee. Ann. Ent. Soc. Amer. 53(3): 425-435. This Article is brought to you for free and open access by the Pollinating Insects Research Unit at DigitalCommons@USU. It has been accepted for inclusion in All PIRU Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. ( Reprinted from fu'<NALS OF THE ENTOMOLOGICAL SOCIETY OF rumRJCA Vol. 53, No. 3, May, 1960 THE BIOLOGY OF HETEROSTYLUM ROBUSTUM (DIPTERA: BOMBYLIIDAE), A PARASITE OF THE ALKALI BEE1 G . E. BOHART,' W. P. STEPHEN, Ai\ID R. K. EPPLEY3 ABSTRACT H eterostylum robustu m. (Osten Sacken) is the principal very brief second ins ta r, and a soft, helpless third ins tar , parasite of the a lkali bee (Nomia mela11deri Ckll.) in the to a tough, more active fourth instar. Some lat vae Northwestern States. It also parasitizes other species apparently mature on a single host, but others pa rt ially of Nomia and at least one species of both Nomadopsis and drain the fluids from a second as well. In the late Halictus. It eject-s eggs into and near the nest mounds summer or fall the mature larva makes an overwin tet ing of its host, but does not readily discr iminate between nest cell in the upper few inches of soil. -
Zootaxa,Crustacean Classification
Zootaxa 1668: 313–325 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Crustacean classification: on-going controversies and unresolved problems* GEOFF A. BOXSHALL Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom E-mail: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . 313 Introduction . 313 Treatment of parasitic Crustacea . 315 Affinities of the Remipedia . 316 Validity of the Entomostraca . 318 Exopodites and epipodites . 319 Using of larval characters in estimating phylogenetic relationships . 320 Fossils and the crustacean stem lineage . 321 Acknowledgements . 322 References . 322 Abstract The journey from Linnaeus’s original treatment to modern crustacean systematics is briefly characterised. Progress in our understanding of phylogenetic relationships within the Crustacea is linked to continuing discoveries of new taxa, to advances in theory and to improvements in methodology. Six themes are discussed that serve to illustrate some of the major on-going controversies and unresolved problems in the field as well as to illustrate changes that have taken place since the time of Linnaeus. These themes are: 1. the treatment of parasitic Crustacea, 2. the affinities of the Remipedia, 3. the validity of the Entomostraca, 4. exopodites and epipodites, 5. using larval characters in estimating phylogenetic rela- tionships, and 6. fossils and the crustacean stem-lineage. It is concluded that the development of the stem lineage concept for the Crustacea has been dominated by consideration of taxa known only from larval or immature stages. -
What Do Insects Do for a Living?
4/19/15 What do insects do for a living? Insect Ecology Ground-dwelling: Where are they found and what are they doing? Common habits • Detritivores and saprophages • Rhizophagous insects • Predators and ground-nesting insects • Decaying wood • Coprophages • Necrophages • Fungivores 1 4/19/15 Predators & Ground-nesters Decaying Wood • Usually associated with fungi – What else is there? • Numerous taxa – Wood wasps, bark beetles, ambrosia beetles, scavenger beetles, silken fungus beetles, dance flies, termites, cockroaches. Associations with fungi • Most have specialized Sirex wood wasp structures for carrying fungal spores: mycangia. • Why are most attracted to forest fires?: pyrophilous. 2 4/19/15 Coprophages • What are these? • What are they feeding on? • Why is this such a good lifestyle? • First colonization usually dung flies. • ~45 independent origins of viviparity. Why? Coprophages • These can get to nuisance levels. • Dung dispersers therefore provide an important ecosystem service. • Almost always Scarabaeidae 3 4/19/15 Necrophages • Often a very similar lifestyle to coprophages. • Often very closely related. • Most other origins of viviparity here. Necrophages • Often distinct succession. • Very useful for forensic entomology. • Most initial colonizers are Diptera. • Later are Coleoptera (e.g. Silphidae). • Dried are more Coleoptera (e.g. Dermestidae) • Final stages are tineid larvae (keratin) Fungivores • The true decomposers are fungi. • There is a whole guild of insects that specialize on these. 4 4/19/15 Aquatic Insects • Insecta (even Hexapoda) are plesiomorphically terrestrial. • But there have been numerous colonizations of the freshwater aquatic environment. • Far fewer colonizations of marine aquatic environment. Hemimetabolous Aquatic Insects • Some lineages have almost* exclusively aquatic naiads. – Ephemeroptera – Odonata* – Plecoptera (the only aquatic Polyneoptera) • All of these have terrestrial adults. -
Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv, -
From Ghost and Mud Shrimp
Zootaxa 4365 (3): 251–301 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4365.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C5AC71E8-2F60-448E-B50D-22B61AC11E6A Parasites (Isopoda: Epicaridea and Nematoda) from ghost and mud shrimp (Decapoda: Axiidea and Gebiidea) with descriptions of a new genus and a new species of bopyrid isopod and clarification of Pseudione Kossmann, 1881 CHRISTOPHER B. BOYKO1,4, JASON D. WILLIAMS2 & JEFFREY D. SHIELDS3 1Division of Invertebrate Zoology, American Museum of Natural History, Central Park West @ 79th St., New York, New York 10024, U.S.A. E-mail: [email protected] 2Department of Biology, Hofstra University, Hempstead, New York 11549, U.S.A. E-mail: [email protected] 3Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, U.S.A. E-mail: [email protected] 4Corresponding author Table of contents Abstract . 252 Introduction . 252 Methods and materials . 253 Taxonomy . 253 Isopoda Latreille, 1817 . 253 Bopyroidea Rafinesque, 1815 . 253 Ionidae H. Milne Edwards, 1840. 253 Ione Latreille, 1818 . 253 Ione cornuta Bate, 1864 . 254 Ione thompsoni Richardson, 1904. 255 Ione thoracica (Montagu, 1808) . 256 Bopyridae Rafinesque, 1815 . 260 Pseudioninae Codreanu, 1967 . 260 Acrobelione Bourdon, 1981. 260 Acrobelione halimedae n. sp. 260 Key to females of species of Acrobelione Bourdon, 1981 . 262 Gyge Cornalia & Panceri, 1861. 262 Gyge branchialis Cornalia & Panceri, 1861 . 262 Gyge ovalis (Shiino, 1939) . 264 Ionella Bonnier, 1900 . -
Diversity and Life-Cycle Analysis of Pacific Ocean Zooplankton by Video Microscopy and DNA Barcoding: Crustacea
Journal of Aquaculture & Marine Biology Research Article Open Access Diversity and life-cycle analysis of Pacific Ocean zooplankton by video microscopy and DNA barcoding: Crustacea Abstract Volume 10 Issue 3 - 2021 Determining the DNA sequencing of a small element in the mitochondrial DNA (DNA Peter Bryant,1 Timothy Arehart2 barcoding) makes it possible to easily identify individuals of different larval stages of 1Department of Developmental and Cell Biology, University of marine crustaceans without the need for laboratory rearing. It can also be used to construct California, USA taxonomic trees, although it is not yet clear to what extent this barcode-based taxonomy 2Crystal Cove Conservancy, Newport Coast, CA, USA reflects more traditional morphological or molecular taxonomy. Collections of zooplankton were made using conventional plankton nets in Newport Bay and the Pacific Ocean near Correspondence: Peter Bryant, Department of Newport Beach, California (Lat. 33.628342, Long. -117.927933) between May 2013 and Developmental and Cell Biology, University of California, USA, January 2020, and individual crustacean specimens were documented by video microscopy. Email Adult crustaceans were collected from solid substrates in the same areas. Specimens were preserved in ethanol and sent to the Canadian Centre for DNA Barcoding at the Received: June 03, 2021 | Published: July 26, 2021 University of Guelph, Ontario, Canada for sequencing of the COI DNA barcode. From 1042 specimens, 544 COI sequences were obtained falling into 199 Barcode Identification Numbers (BINs), of which 76 correspond to recognized species. For 15 species of decapods (Loxorhynchus grandis, Pelia tumida, Pugettia dalli, Metacarcinus anthonyi, Metacarcinus gracilis, Pachygrapsus crassipes, Pleuroncodes planipes, Lophopanopeus sp., Pinnixa franciscana, Pinnixa tubicola, Pagurus longicarpus, Petrolisthes cabrilloi, Portunus xantusii, Hemigrapsus oregonensis, Heptacarpus brevirostris), DNA barcoding allowed the matching of different life-cycle stages (zoea, megalops, adult). -
Decapod Crustacea from the South-West Indian Ocean
ANNALS OF THE SOUTH AFRICAN MUSEUM ANNALE VAN DIE SUID-AFRIKAANSE MUSEUM CRUSTACEA LIBRARY Volume 52 Band SMlTHSm.,Jl/\N INSTITUTION r-T', J ~ -'-(~, t~ April 1969 April Rt,U ..~ lu ;J-119 Part 7 Dee! DECAPOD CRUSTACEA FROM THE SOUTH-WEST INDIAN OCEAN By B. F. KENSLEY are issued in parts at irregular intervals as material becomes available Obtainable from the South African Museum, P.O. Box 61, Cape Town word uitgegee in dele op ongeree1de tye na beskikbaarheid van stof OUT 01' PRINT/UIT DRUK I, 2(1, 3, 5, 7--s), 3(1-2, 5, t.-p.i.}, 5(2, 5, 7-9), 6(1, t.-p.i.}, 7(1, 3), 8, 9(1-2}, 10(1-3), 11(1-2, 7, t.-p.i.}, 21, 24(2), 27, 31(1-3}, 38, 44(4)· Price of this part/Prys van hierdie deel R2.IO Trustees of the South African Museum © Trustees van die Suid-Afrikaanse Museum 1969 Printed in South Africa by In Suid-Afrika gedruk deur The Rustica Press, Pty., Ltd. Die Rustica-pers ,Edms., Bpk. Court Road, Wynberg, Cape Courtweg. Wynberg, Kaap DECAPOD CRUSTACEA FROM THE SOUTH-WEST INDIAN OCEAN By B. F. KENSLEY South African Museum, Cape Town Introduction Station list • Species list . Systematic discussion Distribution . Summary Acknowledgements References • The material dealt with in this paper comes from several sources. The greatest proportion was collected on the seventh cruise of the R/V Anton Bruun, in 1964, as part of the International Indian Ocean Expedition. The station numbers of the Anton Bruun are designated by the letters BRU, while catalogue numbers of the Zoology Department, University of Cape Town, are designated either as NAD (off the Natal coast) PED (offMoc:;ambique coast), MDD (off the south-western coast of Malagasy Republic), or WBS (Walter's Shoal). -
A Checklist of Turtle and Whale Barnacles
Journal of the Marine Biological Association of the United Kingdom, 2013, 93(1), 143–182. # Marine Biological Association of the United Kingdom, 2012 doi:10.1017/S0025315412000847 A checklist of turtle and whale barnacles (Cirripedia: Thoracica: Coronuloidea) ryota hayashi1,2 1International Coastal Research Center, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8564 Japan, 2Marine Biology and Ecology Research Program, Extremobiosphere Research Center, Japan Agency for Marine–Earth Science and Technology A checklist of published records of coronuloid barnacles (Cirripedia: Thoracica: Coronuloidea) attached to marine vertebrates is presented, with 44 species (including 15 fossil species) belonging to 14 genera (including 3 fossil genera) and 3 families recorded. Also included is information on their geographical distribution and the hosts with which they occur. Keywords: checklist, turtle barnacles, whale barnacles, Chelonibiidae, Emersoniidae, Coronulidae, Platylepadidae, host and distribution Submitted 10 May 2012; accepted 16 May 2012; first published online 10 August 2012 INTRODUCTION Superorder THORACICA Darwin, 1854 Order SESSILIA Lamarck, 1818 In this paper, a checklist of barnacles of the superfamily Suborder BALANOMORPHA Pilsbry, 1916 Coronuloidea occurring on marine animals is presented. Superfamily CORONULOIDEA Newman & Ross, 1976 The systematic arrangement used herein follows Newman Family CHELONIBIIDAE Pilsbry, 1916 (1996) rather than Ross & Frick (2011) for reasons taken up in Hayashi (2012) in some detail. The present author Genus Chelonibia Leach, 1817 deems the subfamilies of the Cheonibiidae (Chelonibiinae, Chelonibia caretta (Spengler, 1790) Emersoniinae and Protochelonibiinae) proposed by Harzhauser et al. (2011), as well as those included of Ross & Lepas caretta Spengler, 1790: 185, plate 6, figure 5. -
Seasonal Movements and Distribution of Dungeness Crabs Cancer Magister in a Glacial Southeastern Alaska Estuary
MARINE ECOLOGY PROGRESS SERIES Vol. 214: 167–176, 2001 Published April 26 Mar Ecol Prog Ser Seasonal movements and distribution of Dungeness crabs Cancer magister in a glacial southeastern Alaska estuary Robert P. Stone*, Charles E. O’Clair Auke Bay Laboratory, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 11305 Glacier Highway, Juneau, Alaska 99801, USA ABSTRACT: The movements of 10 female and 8 male adult Dungeness crabs, Cancer magister (Dana, 1852), were monitored biweekly to monthly with ultrasonic biotelemetry for periods ranging from 73 to 555 d. Female and male crabs had different seasonal patterns of habitat use, depth distri- bution, and activity. The general pattern for female crabs was: (1) a relatively inactive period between November and mid-April at depths below 20 m; ovigerous crabs were typically buried dur- ing this period in a dense aggregation; (2) abrupt movement into shallow water (<8 m) in late April and residence there until early June; this movement was coincident with the spring phytoplankton bloom and initiation of larval hatching; (3) increased activity beginning in July with movement back to deeper water, presumably to forage. Females that molted prior to oviposition did so in June and July. Male crabs occupied deep water (>40 m) from November to April, then concentrated in shallow water (<25 m), segregated from females, until late July. Males were most active in late summer and moved into deeper water (>30 m) near the mouth of the cove in fall. The range of depths were –0.5 to –61.3 m for females and +0.1 to –89.0 m for males.