Tick-Borne Pathogens and Diseases REGISTER NOW

Total Page:16

File Type:pdf, Size:1020Kb

Tick-Borne Pathogens and Diseases REGISTER NOW OFFICIALOFFICIAL JOURNALJOURNAL OFOF THETHE AUSTRALIAN SOCIETY FOR MICROBIOLOGY INC.INC. VolumeVolume 3939 NumberNumber 44 NovemberNovember 20182018 Tick-borne pathogens and diseases REGISTER NOW Pacific Northwest The University of Murdoch University The University of National Laboratories (USA) Melbourne Queensland The University of The University of UNSW Sydney University of Western Australia Melbourne Canterbury (NZ) The Australian Society for Microbiology Inc. OFFICIAL JOURNAL OF THE AUSTRALIAN SOCIETY FOR MICROBIOLOGY INC. 9/397 Smith Street Fitzroy, Vic. 3065 Tel: 1300 656 423 Volume 39 Number 4 November 2018 Fax: 03 9329 1777 Email: [email protected] www.theasm.org.au Contents ABN 24 065 463 274 Vertical Transmission 180 For Microbiology Australia correspondence, see address below. Dena Lyras 180 Editorial team Guest Editorial 181 Prof. Ian Macreadie, Mrs Hayley Macreadie Tick-borne pathogens and diseases 181 and Mrs Rebekah Clark Stephen R Graves Editorial. Board In Focus 182 Dr Ipek Kurtböke (Chair) Dr Sam Manna Prof. Ross Barnard Dr John Merlino Laboratory diagnosis of human infections transmitted by ticks, Prof. Mary Barton Prof. Wieland Meyer fleas, mites and lice in Australia 182 Prof. Linda Blackall Mr Chris Owens John Stenos and Stephen R Graves Dr Chris Burke Prof. William Rawlinson Dr Narelle Fegan Dr Paul Selleck Could Australian ticks harbour emerging viral pathogens? 185 Dr Rebecca LeBard Dr Erin Shanahan Caitlin A O’Brien, Roy A Hall and Ala Lew-Tabor Dr Gary Lum Dr David Smith Tick-borne encephalitis and its global importance 191 Prof. Dena Lyras Ms Helen Smith Gerhard Dobler Ticks in Australia: endemics; exotics; which ticks bite humans? 194 Subscription rates Current subscription rates are available Stephen C Barker and Dayana Barker from the ASM Melbourne offi ce. Under the Microscope 200 Editorial correspondence Bacterial tick-associated infections in Australia: current studies Prof. Ian Macreadie and future directions 200 Tel: 0402 564 308 (Ian) Peter Irwin, Siobhon Egan, Telleasha Greay and Charlotte Oskam Email: [email protected] Tick-transmitted human infections in Asia 203 Published four times a year Matthew T Robinson, Khamsing Vongphayloth, Jeffrey C Hertz, in print and open access online by Paul Brey and Paul N Newton A concise overview on tick-borne human infections in Europe: a focus on Lyme borreliosis and tick-borne Rickettsia spp. 207 Rita Abou Abdallah, Didier Raoult and Pierre-Edouard Fournier Unipark, Building 1, Level 1 Non-infectious illness after tick bite 212 195 Wellington Road, Clayton, Vic. 3168 Miles H Beaman http://microbiology.publish.csiro.au Bovine theileriosis in Australia: a decade of disease 215 Publishing enquiries Cheryl Jenkins Jenny Foster Variables affecting laboratory diagnosis of acute rickettsial infection 220 Email: [email protected] Cecilia Kato Production enquiries Coxiella Helen Pavlatos Rethinking infections in Australia 223 Email: [email protected] Charlotte Oskam, Jadyn Owens, Annachiara Codello, Alexander Gofton and Telleasha Greay Advertising enquiries Tel: 03 9545 8400 ASM Affairs 226 Email: [email protected] © 2018 The Australian Society for Microbiology Inc. EduCon 2018 226 The ASM, through CSIRO Publishing, reserve all rights Karena Waller to the content, artwork and photographs in Microbiology Australia. Permission to reproduce text, photos and Book reviews 227 artwork must be sought from CSIRO Publishing. The Australian Copyright Act 1968 and subsequent Vale A/Professor Horst Werner Doelle (1/9/1932–6/9/2018) 228 amendments permit downloading and use of an article by an individual or educational institution for non- Vale Dr David Leslie 229 commercial personal use or study. Multiple reproduction of any Microbiology Australia article in a study block is governed by rights agreement managed by Copyright Agency Limited and fees may apply. Authors published in Microbiology Australia have the moral right under Australian law to be acknowledged as the creator. ISSN 1324-4272 eISSN 2201-9189 While reasonable effort has been made to ensure the accuracy of the content, the Australian Society for Microbiology, CSIRO, and CSIRO Publishing accept no responsibility for any loss or damage from the direct or indirect use of or reliance on the content. The opinions expressed in articles, letters, and advertisements in Microbiology Australia are not necessarily those of the Australian Society for Microbiology, the Editorial Board, Cover image: Female Amblyomma triguttatum (kangaroo tick) preparing to feed from a human. Photo CSIRO, and CSIRO Publishing. credit: Peter Irwin. MICROBIOLOGY AUSTRALIA • NOVEMBER 2018 179 Vertical Transmission I am always impressed by the generosity of our members and how much time and effort they expend in promoting Microbiology. On 4 July I visited Science Alive! at the Adelaide showgrounds. The Microbiology stand, which was sponsored by ASM, was fantastic and drew tremendous public interest – children had great fun with some very imaginative activities. I include a few photos below of the Microbiology stand. I am delighted to have attended, it was a terrific Dena Lyras event and I would like to personally thank all of our members who President of ASM give their time to organise and participate in events such as this one. I will begin this Vertical Transmission by highlighting the links Finally, I draw your attention to the AusMe (Australian Microbial between the ASM National Executive and our State branches, and Ecology) conference being held 11–13 February 2019 in Western the steps we are taking to strengthen interactions between these Australia. AusMe is an ASM initiative, and the first meeting in 2017 important ASM groups. I recently spent a few days visiting with our was a wonderful success. The meeting next year is sure to be even South Australian/Northern Territory branch representatives. We better than the first one, so please do attend if you have an interest discussed matters that are important to local members, and new in any aspect of microbial ecology. initiatives that the national executive is implementing. I am visiting our Queensland branch in November and our Western Australian Please visit our website: www.theasm.org.au to access information branch in December for similar discussions, and we continue to regarding upcoming meetings and awards. Do look at all of our new hold National-State tele-meetings four times a year. At this impor- awards, and encourage your colleagues to apply for them, or tant time of change in our discipline ASM wants to provide mem- nominate others; most are due in late March. We have increased bers with the strongest possible support, and we welcome new the number and range of our awards, and are committed to ideas about how ASM can serve you better. inclusion and promoting diversity; our awards embrace these ideals. While in Adelaide I also met with members of the local organising committee for our national meeting in Adelaide in 2019. The You may also like to follow, and contribute to ASM on Twitter, conference venue is magnificent and excellent for our meeting, @AUSSOCMIC, or on Facebook to make sure you keep up with the and the scientific program is equally excellent. The meeting will be latest news, trends and developments in Microbiology in Australia held from 30 June to 3 July 2019 – please add the dates to your diary. and around the world. 180 10.1071/MA18057 MICROBIOLOGY AUSTRALIA * NOVEMBER 2018 Guest Editorial Tick-borne pathogens and diseases An understanding of the ticks present in Australia, both the endemic and exotic species, is crucial basic knowledge in tackling the problems of tick-transmitted illness (Barker and Barker). There is also a plethora of non-infectious illness associated with tick bites (Beaman), which, in Australia, may well exceed the cases of infectious disease. This has been of recent concern by the parliament of the Commonwealth of Australia. Stephen R Graves Diagnosing tick-transmitted infections requires both the treating doctor to think of the possibility of tick-bite in their patient and a microbiology diagnostic laboratory with the expertise to confirm or refute the tentative diagnosis. Newer lab techniques for Welcome to this edition of Microbiology Australia in which we diagnosing rickettsial infections in the USA (Kato) and Australian examine the second most dangerous ectoparasite for humans, the tick-transmitted microbes (Stenos and Graves) are reported. tick (the most dangerous being without doubt the mosquito!), for As you browse through this edition of Microbiology Australia, the pathogens it carries and the diseases it can cause. I trust that you will come to appreciate that it is not only mosquitos Ticks of many different species, in all parts of the world, transmit that are the invertebrate curse of Mankind, but that the non-flying, many different infections to humans and various vertebrate animal biting tick is also a biological force with which to be reckoned! species, including those that are of great importance to Man (e.g. cattle, sheep, goats, dogs and cats). Some tick-transmitted diseases, Biography such as Lyme Disease, have been only recently recognised (late Stephen R Graves is a medical microbiologist. He obtained his 1970s), while others, such as Rocky Mountain Spotted Fever in the BSc (honours in Microbiology) from the University of WA, when Americas, have been known for over 100 years. Some have a very Neville Stanley was the Professor of Microbiology. He then com- Australian focus, such as Q Fever and Flinders Island Spotted Fever, pleted his PhD in the field of leptospirosis with Solly Faine at first recognised in Australia but now known to be virtually world- Monash University and later his medical degree at The University wide in their distribution. of Melbourne. After post-doctoral research on Treponema pallidum at the University of Minnesota with Russ Johnson, he Of the 11 articles included in this edition of Microbiology Australia, became a Lecturer/Senior Lecturer in Microbiology at Monash seven are about the Australian tick situation and four about over- University.
Recommended publications
  • Molecular Evidence of Novel Spotted Fever Group Rickettsia
    pathogens Article Molecular Evidence of Novel Spotted Fever Group Rickettsia Species in Amblyomma albolimbatum Ticks from the Shingleback Skink (Tiliqua rugosa) in Southern Western Australia Mythili Tadepalli 1, Gemma Vincent 1, Sze Fui Hii 1, Simon Watharow 2, Stephen Graves 1,3 and John Stenos 1,* 1 Australian Rickettsial Reference Laboratory, University Hospital Geelong, Geelong 3220, Australia; [email protected] (M.T.); [email protected] (G.V.); [email protected] (S.F.H.); [email protected] (S.G.) 2 Reptile Victoria Inc., Melbourne 3035, Australia; [email protected] 3 Department of Microbiology and Infectious Diseases, Nepean Hospital, NSW Health Pathology, Penrith 2747, Australia * Correspondence: [email protected] Abstract: Tick-borne infectious diseases caused by obligate intracellular bacteria of the genus Rick- ettsia are a growing global problem to human and animal health. Surveillance of these pathogens at the wildlife interface is critical to informing public health strategies to limit their impact. In Australia, reptile-associated ticks such as Bothriocroton hydrosauri are the reservoirs for Rickettsia honei, the causative agent of Flinders Island spotted fever. In an effort to gain further insight into the potential for reptile-associated ticks to act as reservoirs for rickettsial infection, Rickettsia-specific PCR screening was performed on 64 Ambylomma albolimbatum ticks taken from shingleback skinks (Tiliqua rugosa) lo- cated in southern Western Australia. PCR screening revealed 92% positivity for rickettsial DNA. PCR Citation: Tadepalli, M.; Vincent, G.; amplification and sequencing of phylogenetically informative rickettsial genes (ompA, ompB, gltA, Hii, S.F.; Watharow, S.; Graves, S.; Stenos, J.
    [Show full text]
  • Spiroplasma Infection Among Ixodid Ticks Exhibits Species Dependence and Suggests a Vertical Pattern of Transmission
    microorganisms Article Spiroplasma Infection among Ixodid Ticks Exhibits Species Dependence and Suggests a Vertical Pattern of Transmission Shohei Ogata 1, Wessam Mohamed Ahmed Mohamed 1 , Kodai Kusakisako 1,2, May June Thu 1,†, Yongjin Qiu 3 , Mohamed Abdallah Mohamed Moustafa 1,4 , Keita Matsuno 5,6 , Ken Katakura 1, Nariaki Nonaka 1 and Ryo Nakao 1,* 1 Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, N 18 W 9, Kita-ku, Sapporo 060-0818, Japan; [email protected] (S.O.); [email protected] (W.M.A.M.); [email protected] (K.K.); [email protected] (M.J.T.); [email protected] (M.A.M.M.); [email protected] (K.K.); [email protected] (N.N.) 2 Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan 3 Hokudai Center for Zoonosis Control in Zambia, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka 10101, Zambia; [email protected] 4 Department of Animal Medicine, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt 5 Unit of Risk Analysis and Management, Research Center for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan; [email protected] 6 International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, N 20 W 10, Kita-ku, Sapporo 001-0020, Japan Citation: Ogata, S.; Mohamed, * Correspondence: [email protected]; Tel.: +81-11-706-5196 W.M.A.; Kusakisako, K.; Thu, M.J.; † Present address: Food Control Section, Department of Food and Drug Administration, Ministry of Health and Sports, Zabu Thiri, Nay Pyi Taw 15011, Myanmar.
    [Show full text]
  • Heartland and Bourbon Virus Testing Guideance for Healthcare Providers
    Heartland and Bourbon Virus Testing Guidance for Healthcare Providers Heartland virus is an RNA virus believed to be transmitted by the Lone Star tick (Amblyomma americanum). Most patients reported tick exposure in the two weeks prior to illness onset. While no cases have been reported in Louisiana, this tick is found in Louisiana. First discovered as a cause of human illness in 2009 in Missouri, more than 40 cases have been reported from states in Midwestern and southern U.S. to date. Initial symptoms of Heartland virus disease are very similar to those of ehrlichiosis or anaplasmosis, which include fever, fatigue, anorexia, nausea and diarrhea. Cases have also had leukopenia, thrombocytopenia, and mild to moderate elevation of liver transaminases. Heartland virus disease should be considered in patients being treated for ehrlichiosis who do not respond to treatment with doxycycline. For several years, CDC has been working under IRB-approved protocols to identify additional cases and validate diagnostic test for several novel pathogens. Now the CDC Arboviral Diseases Branch offers routine diagnostic testing for Heartland and Bourbon viruses (RT-PCR, IgM and IgG MIA, PRNT). There is no commercial testing available. Treatment of Heartland virus disease is supportive only. Many patients diagnosed with the disease have required hospitalization. With supportive care, most people have fully recovered; however, a few older individuals with medical comorbidities have died. The best way to prevent Heartland virus infection is to avoid exposure
    [Show full text]
  • TICKS in RELATION to HUMAN DISEASES CAUSED by <I
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. Navy Research U.S. Department of Defense 1967 TICKS IN RELATION TO HUMAN DISEASES CAUSED BY RICKETTSIA SPECIES Harry Hoogstraal Follow this and additional works at: https://digitalcommons.unl.edu/usnavyresearch This Article is brought to you for free and open access by the U.S. Department of Defense at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. Navy Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. TICKS IN RELATION TO HUMAN DISEASES CAUSED BY RICKETTSIA SPECIES1,2 By HARRY HOOGSTRAAL Department oj Medical Zoology, United States Naval Medical Research Unit Number Three, Cairo, Egypt, U.A.R. Rickettsiae (185) are obligate intracellular parasites that multiply by binary fission in the cells of both vertebrate and invertebrate hosts. They are pleomorphic coccobacillary bodies with complex cell walls containing muramic acid, and internal structures composed of ribonucleic and deoxyri­ bonucleic acids. Rickettsiae show independent metabolic activity with amino acids and intermediate carbohydrates as substrates, and are very susceptible to tetracyclines as well as to other antibiotics. They may be considered as fastidious bacteria whose major unique character is their obligate intracellu­ lar life, although there is at least one exception to this. In appearance, they range from coccoid forms 0.3 J.I. in diameter to long chains of bacillary forms. They are thus intermediate in size between most bacteria and filterable viruses, and form the family Rickettsiaceae Pinkerton. They stain poorly by Gram's method but well by the procedures of Macchiavello, Gimenez, and Giemsa.
    [Show full text]
  • Diagnostic Code Descriptions (ICD9)
    INFECTIONS AND PARASITIC DISEASES INTESTINAL AND INFECTIOUS DISEASES (001 – 009.3) 001 CHOLERA 001.0 DUE TO VIBRIO CHOLERAE 001.1 DUE TO VIBRIO CHOLERAE EL TOR 001.9 UNSPECIFIED 002 TYPHOID AND PARATYPHOID FEVERS 002.0 TYPHOID FEVER 002.1 PARATYPHOID FEVER 'A' 002.2 PARATYPHOID FEVER 'B' 002.3 PARATYPHOID FEVER 'C' 002.9 PARATYPHOID FEVER, UNSPECIFIED 003 OTHER SALMONELLA INFECTIONS 003.0 SALMONELLA GASTROENTERITIS 003.1 SALMONELLA SEPTICAEMIA 003.2 LOCALIZED SALMONELLA INFECTIONS 003.8 OTHER 003.9 UNSPECIFIED 004 SHIGELLOSIS 004.0 SHIGELLA DYSENTERIAE 004.1 SHIGELLA FLEXNERI 004.2 SHIGELLA BOYDII 004.3 SHIGELLA SONNEI 004.8 OTHER 004.9 UNSPECIFIED 005 OTHER FOOD POISONING (BACTERIAL) 005.0 STAPHYLOCOCCAL FOOD POISONING 005.1 BOTULISM 005.2 FOOD POISONING DUE TO CLOSTRIDIUM PERFRINGENS (CL.WELCHII) 005.3 FOOD POISONING DUE TO OTHER CLOSTRIDIA 005.4 FOOD POISONING DUE TO VIBRIO PARAHAEMOLYTICUS 005.8 OTHER BACTERIAL FOOD POISONING 005.9 FOOD POISONING, UNSPECIFIED 006 AMOEBIASIS 006.0 ACUTE AMOEBIC DYSENTERY WITHOUT MENTION OF ABSCESS 006.1 CHRONIC INTESTINAL AMOEBIASIS WITHOUT MENTION OF ABSCESS 006.2 AMOEBIC NONDYSENTERIC COLITIS 006.3 AMOEBIC LIVER ABSCESS 006.4 AMOEBIC LUNG ABSCESS 006.5 AMOEBIC BRAIN ABSCESS 006.6 AMOEBIC SKIN ULCERATION 006.8 AMOEBIC INFECTION OF OTHER SITES 006.9 AMOEBIASIS, UNSPECIFIED 007 OTHER PROTOZOAL INTESTINAL DISEASES 007.0 BALANTIDIASIS 007.1 GIARDIASIS 007.2 COCCIDIOSIS 007.3 INTESTINAL TRICHOMONIASIS 007.8 OTHER PROTOZOAL INTESTINAL DISEASES 007.9 UNSPECIFIED 008 INTESTINAL INFECTIONS DUE TO OTHER ORGANISMS
    [Show full text]
  • Comparative Population Genetic Structure of Two Ixodidae Ticks (Ixodes Ovatus and Haemaphysalis
    bioRxiv preprint doi: https://doi.org/10.1101/862904; this version posted March 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title 2 Comparative population genetic structure of two Ixodidae ticks (Ixodes ovatus and Haemaphysalis 3 flava) in Niigata Prefecture, Japan 4 Author names and affiliations 5 Maria Angenica Fulo Regilmea, Megumi Satob, Tsutomu Tamurac, Reiko Araic, Marcello Otake Satod, 6 Sumire Ikedae, Masaya Doia, Kohki Tanakaa, Maribet Gamboaa, Michael T. Monaghanf,g, Kozo 7 Watanabea, h 8 a Department of Civil and Environmental Engineering, Ehime University, Matsuyama, Ehime, 790- 9 8577, Japan 10 b Graduate School of Health Sciences, Niigata University, Niigata, 951-8518, Japan 11 c Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, 950-2144, Japan 12 d Department of Tropical Medicine and Parasitology, Dokkyo Medical University, 880 Kitakobayashi, 13 Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan 14 e Research Laboratories, Research and Development Headquarters, Earth Corporation, Hyogo 678- 15 0192, Japan 16 f Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany 17 g Institut für Biologie, Freie Universität Berlin, 14195, Germany 18 h Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, 790-8577, 19 Japan 20 Corresponding author 21 [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/862904; this version posted March 19, 2020.
    [Show full text]
  • Passive Surveillance in Maine, an Area Emergent for Tick-Borne Diseases
    VECTOR-BORNE DISEASES,SURVEILLANCE,PREVENTION Passive Surveillance in Maine, an Area Emergent for Tick-Borne Diseases PETER W. RAND,1,2 ELEANOR H. LACOMBE,1 RICHARD DEARBORN,3 BRUCE CAHILL,1 SUSAN ELIAS,1 CHARLES B. LUBELCZYK,1 4 1 GEOFF A. BECKETT, AND ROBERT P. SMITH, JR. J. Med. Entomol. 44(6): 1118Ð1129 (2007) ABSTRACT In 1989, a free-of-charge, statewide tick identiÞcation program was initiated in Maine, 1 yr after the Þrst Ixodes scapularis Say (ϭI. dammini Spielman, Clifford, Piesman & Corwin) ticks were reported in the state. This article summarizes data from 18 continuous years of tick submissions during which Ͼ24,000 ticks of 14 species were identiÞed. Data provided include tick stage, degree of engorgement, seasonal abundance, geographical location, host, and age of the person from whom the tick was removed. Maps depict the distributions of the three major species submitted. I. scapularis emerged Þrst along the coast, and then it advanced inland up major river valleys, Dermacentor variabilis Say slowly expanded centrifugally from where it was initially reported in southwestern Maine, and the distribution of long-established Ixodes cookei Packard remained unchanged. Submis- sions of nymphal I. scapularis closely correlated with reported Lyme diseases cases at the county level. Annual ßuctuations of nymphal submissions in Maine correlated with those of Lyme disease cases for New England, supporting the possibility of a regional inßuence on tick abundance. More ticks were removed from people Յ14 and Ն30 yr of age, and their degree of engorgement was greatest in people Յ20 yr of age and progressively increased in people Ն30 yr of age.
    [Show full text]
  • High Performance Stallions Standing Abroad
    High Performance Stallions Standing Abroad High Performance Stallions Standing Abroad An extract from the Irish Sport Horse Studbook Stallion Book The Irish Sport Horse Studbook is maintained by Horse Sport Ireland and the Northern Ireland Horse Board Horse Sport Ireland First Floor, Beech House, Millennium Park, Osberstown, Naas, Co. Kildare, Ireland Telephone: 045 850800. Int: +353 45 850800 Fax: 045 850850. Int: +353 45 850850 Email: [email protected] Website: www.horsesportireland.ie Northern Ireland Horse Board Office Suite, Meadows Equestrian Centre Embankment Road, Lurgan Co. Armagh, BT66 6NE, Northern Ireland Telephone: 028 38 343355 Fax: 028 38 325332 Email: [email protected] Website: www.nihorseboard.org Copyright © Horse Sport Ireland 2015 HIGH PERFORMANCE STALLIONS STANDING ABROAD INDEX OF APPROVED STALLIONS BY BREED HIGH PERFORMANCE RECOGNISED FOREIGN BREED STALLIONS & STALLIONS STALLIONS STANDING ABROAD & ACANTUS GK....................................4 APPROVED THROUGH AI ACTION BREAKER.............................4 BALLOON [GBR] .............................10 KROONGRAAF............................... 62 AIR JORDAN Z.................................. 5 CANABIS Z......................................18 LAGON DE L'ABBAYE..................... 63 ALLIGATOR FONTAINE..................... 6 CANTURO.......................................19 LANDJUWEEL ST. HUBERT ............ 64 AMARETTO DARCO ......................... 7 CASALL LA SILLA.............................22 LARINO.......................................... 66
    [Show full text]
  • Ehrlichiosis and Anaplasmosis Are Tick-Borne Diseases Caused by Obligate Anaplasmosis: Intracellular Bacteria in the Genera Ehrlichia and Anaplasma
    Ehrlichiosis and Importance Ehrlichiosis and anaplasmosis are tick-borne diseases caused by obligate Anaplasmosis: intracellular bacteria in the genera Ehrlichia and Anaplasma. These organisms are widespread in nature; the reservoir hosts include numerous wild animals, as well as Zoonotic Species some domesticated species. For many years, Ehrlichia and Anaplasma species have been known to cause illness in pets and livestock. The consequences of exposure vary Canine Monocytic Ehrlichiosis, from asymptomatic infections to severe, potentially fatal illness. Some organisms Canine Hemorrhagic Fever, have also been recognized as human pathogens since the 1980s and 1990s. Tropical Canine Pancytopenia, Etiology Tracker Dog Disease, Ehrlichiosis and anaplasmosis are caused by members of the genera Ehrlichia Canine Tick Typhus, and Anaplasma, respectively. Both genera contain small, pleomorphic, Gram negative, Nairobi Bleeding Disorder, obligate intracellular organisms, and belong to the family Anaplasmataceae, order Canine Granulocytic Ehrlichiosis, Rickettsiales. They are classified as α-proteobacteria. A number of Ehrlichia and Canine Granulocytic Anaplasmosis, Anaplasma species affect animals. A limited number of these organisms have also Equine Granulocytic Ehrlichiosis, been identified in people. Equine Granulocytic Anaplasmosis, Recent changes in taxonomy can make the nomenclature of the Anaplasmataceae Tick-borne Fever, and their diseases somewhat confusing. At one time, ehrlichiosis was a group of Pasture Fever, diseases caused by organisms that mostly replicated in membrane-bound cytoplasmic Human Monocytic Ehrlichiosis, vacuoles of leukocytes, and belonged to the genus Ehrlichia, tribe Ehrlichieae and Human Granulocytic Anaplasmosis, family Rickettsiaceae. The names of the diseases were often based on the host Human Granulocytic Ehrlichiosis, species, together with type of leukocyte most often infected.
    [Show full text]
  • Meeting the Challenge of Tick-Borne Disease Control a Proposal For
    Ticks and Tick-borne Diseases 10 (2019) 213–218 Contents lists available at ScienceDirect Ticks and Tick-borne Diseases journal homepage: www.elsevier.com/locate/ttbdis Letters to the Editor Meeting the challenge of tick-borne disease control: A proposal for 1000 Ixodes genomes T 1. Introduction reported to the Centers for Disease Control and Prevention (2018) each year represent only about 10% of actual cases (CDC; Hinckley et al., At the ‘One Health’ 9th Tick and Tick-borne Pathogen Conference 2014; Nelson et al., 2015). In Europe, roughly 85,000 LD cases are and 1st Asia Pacific Rickettsia Conference (TTP9-APRC1; http://www. reported annually, although actual case numbers are unknown ttp9-aprc1.com), 27 August–1 September 2017 in Cairns, Australia, (European Centre for Disease Prevention and Control (ECDC), 2012). members of the tick and tick-borne disease (TBD) research communities Recent studies are also shedding light on the transmission of human and assembled to discuss a high priority research agenda. Diseases trans- animal pathogens by Australian ticks and the role of Ixodes holocyclus, mitted by hard ticks (subphylum Chelicerata; subclass Acari; family as a vector (reviewed in Graves and Stenos, 2017; Greay et al., 2018). Ixodidae) have substantial impacts on public health and are on the rise Options to control hard ticks and the pathogens they transmit are globally due to human population growth and change in geographic limited. Human vaccines are not available, except against the tick- ranges of tick vectors (de la Fuente et al., 2016). The genus Ixodes is a borne encephalitis virus (Heinz and Stiasny, 2012).
    [Show full text]
  • Arthropod Parasites in Domestic Animals
    ARTHROPOD PARASITES IN DOMESTIC ANIMALS Abbreviations KINGDOM PHYLUM CLASS ORDER CODE Metazoa Arthropoda Insecta Siphonaptera INS:Sip Mallophaga INS:Mal Anoplura INS:Ano Diptera INS:Dip Arachnida Ixodida ARA:Ixo Mesostigmata ARA:Mes Prostigmata ARA:Pro Astigmata ARA:Ast Crustacea Pentastomata CRU:Pen References Ashford, R.W. & Crewe, W. 2003. The parasites of Homo sapiens: an annotated checklist of the protozoa, helminths and arthropods for which we are home. Taylor & Francis. Taylor, M.A., Coop, R.L. & Wall, R.L. 2007. Veterinary Parasitology. 3rd edition, Blackwell Pub. HOST-PARASITE CHECKLIST Class: MAMMALIA [mammals] Subclass: EUTHERIA [placental mammals] Order: PRIMATES [prosimians and simians] Suborder: SIMIAE [monkeys, apes, man] Family: HOMINIDAE [man] Homo sapiens Linnaeus, 1758 [man] ARA:Ast Sarcoptes bovis, ectoparasite (‘milker’s itch’)(mange mite) ARA:Ast Sarcoptes equi, ectoparasite (‘cavalryman’s itch’)(mange mite) ARA:Ast Sarcoptes scabiei, skin (mange mite) ARA:Ixo Ixodes cornuatus, ectoparasite (scrub tick) ARA:Ixo Ixodes holocyclus, ectoparasite (scrub tick, paralysis tick) ARA:Ixo Ornithodoros gurneyi, ectoparasite (kangaroo tick) ARA:Pro Cheyletiella blakei, ectoparasite (mite) ARA:Pro Cheyletiella parasitivorax, ectoparasite (rabbit fur mite) ARA:Pro Demodex brevis, sebacceous glands (mange mite) ARA:Pro Demodex folliculorum, hair follicles (mange mite) ARA:Pro Trombicula sarcina, ectoparasite (black soil itch mite) INS:Ano Pediculus capitis, ectoparasite (head louse) INS:Ano Pediculus humanus, ectoparasite (body
    [Show full text]
  • Ohio Department of Health, Bureau of Infectious Diseases Disease Name Class A, Requires Immediate Phone Call to Local Health
    Ohio Department of Health, Bureau of Infectious Diseases Reporting specifics for select diseases reportable by ELR Class A, requires immediate phone Susceptibilities specimen type Reportable test name (can change if Disease Name other specifics+ call to local health required* specifics~ state/federal case definition or department reporting requirements change) Culture independent diagnostic tests' (CIDT), like BioFire panel or BD MAX, E. histolytica Stain specimen = stool, bile results should be sent as E. histolytica DNA fluid, duodenal fluid, 260373001^DETECTED^SCT with E. histolytica Antigen Amebiasis (Entamoeba histolytica) No No tissue large intestine, disease/organism-specific DNA LOINC E. histolytica Antibody tissue small intestine codes OR a generic CIDT-LOINC code E. histolytica IgM with organism-specific DNA SNOMED E. histolytica IgG codes E. histolytica Total Antibody Ova and Parasite Anthrax Antibody Anthrax Antigen Anthrax EITB Acute Anthrax EITB Convalescent Anthrax Yes No Culture ELISA PCR Stain/microscopy Stain/spore ID Eastern Equine Encephalitis virus Antibody Eastern Equine Encephalitis virus IgG Antibody Eastern Equine Encephalitis virus IgM Arboviral neuroinvasive and non- Eastern Equine Encephalitis virus RNA neuroinvasive disease: Eastern equine California serogroup virus Antibody encephalitis virus disease; LaCrosse Equivocal results are accepted for all California serogroup virus IgG Antibody virus disease (other California arborviral diseases; California serogroup virus IgM Antibody specimen = blood, serum, serogroup
    [Show full text]