Response to the COVID-19 Epidemic: the Chinese Experience and Implications for Other Countries

Total Page:16

File Type:pdf, Size:1020Kb

Response to the COVID-19 Epidemic: the Chinese Experience and Implications for Other Countries International Journal of Environmental Research and Public Health Editorial Response to the COVID-19 Epidemic: The Chinese Experience and Implications for Other Countries Wei Liu 1,*, Xiao-Guang Yue 2,3 and Paul B. Tchounwou 4,* 1 Business School, Qingdao University, Qingdao 266100, China 2 School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus; [email protected] 3 CIICESI, ESTG, Politécnico do Porto, 4610-156 Felgueiras, Portugal 4 Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box 18750, Jackson, MS 39217, USA * Correspondence: [email protected] (W.L.); [email protected] (P.B.T.) Received: 26 March 2020; Accepted: 27 March 2020; Published: 30 March 2020 Abstract: The ongoing outbreak of the novel coronavirus disease (COVID-19) that occurred in China is rapidly spreading globally. China’s bond and strict containment measures have been proved (in practice) to significantly reduce the spread of the epidemic. This was obtained through the use of emergency control measures in the epidemic areas and the integration of resources from multiple systems, including business, community, technology, education, and transportation, across the country. In order to better understand how China has managed to reduce the public health and economic impacts of the COVID-19 epidemic, this editorial systematically reviews the specific measures for infection prevention and control of the disease. The best practices for COVID-19 eradication in China provide evidence-based strategies that could be replicated in other countries. Keywords: COVID-19; epidemic; China; emergency control measures; public health 1. Introduction The COVID-19 outbreak is an ongoing epidemic of viral pneumonia, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus [1]. Since the earliest known pneumonia cases of unknown origin that were identified in the Wuhan city of China in December 2019, the epidemic has rapidly spread throughout China in just several months, turning into a serious national public health crisis, and patients with the same symptoms have been gradually documented in other countries [2,3]. Under the circumstance of the significant public health risk that the international spread of epidemic poses to the world, the World Health Organization (WHO) has declared a public health emergency of international concern over the global outbreak of COVID-19 on 30 January 2020, and has escalated it to a global pandemic on 11 March [4]. Hitherto, there has been a total of 292,142 laboratory-confirmed cases and 12,784 deaths globally as of 22 March, of which 81,498 cases and 3,267 deaths are in China [5]. Even though China is temporarily the country with the largest number of cases, the increase of new cases is falling and there is evidence that the peak of the COVID-19 epidemic has passed for China [6]. Since 19 March, Wuhan, the city where the outbreak started, has reported no new confirmed or suspected cases for five consecutive days [7]. The epicenter of the outbreak was originally in China and has now been transferred to other countries such as Italy, the United States, Spain, and Germany. The WHO confirmed that “Europe has now become the epicenter of the pandemic, with more reported cases and deaths than the rest of the world” [8]. Figure1 reports the new and cumulative confirmed cases of COVID-19 data for China and the rest of the countries, by date of report. The figure shows a significant difference in the timing of case growth trends between the two location categories. The Chinese government has taken Int. J. Environ. Res. Public Health 2020, 17, 2304; doi:10.3390/ijerph17072304 www.mdpi.com/journal/ijerph Int. J. Environ. Res. Public Health 2020, 17, 2304 2 of 6 Int. J. Environ. Res. Public Health 2020, 17, x 2 of 6 a series of aggressive measures in a timely manner, which have proved to be effective in alleviating Chinesethe epidemic government to a large has extent.taken a Consequently, series of aggre thessive objective measures of this in editoriala timely ismanner, to review which a selection have provedof measures to be effective undertaken in alleviating in response the toepidemic the COVID-19 to a large epidemic extent. Consequently, in China, and the to provideobjective potential of this editorialevidence is andto review guidance a selection to other of countries. measures undertaken in response to the COVID-19 epidemic in China, and to provide potential evidence and guidance to other countries. FigureFigure 1. 1.NewNew and and cumulative cumulative confirmed confirmed cases cases of of COVID-19 COVID-19 for China and thethe restrest ofof thethe countries countries by bydate date of of report report (Data (Data sources: sources: World World Health Health Organization Organization Situation Situation Reports). Reports). 2. Response to the COVID-19 Epidemic in China 2. Response to the COVID-19 Epidemic in China SinceSince the the severe severe acute acute respiratory respiratory syndrome (SARS)(SARS) outbreakoutbreak in in 2003, 2003, the the Chinese Chinese government government has hasformulated formulated and and implemented implemented the th “Regulationse “Regulations on Preparednesson Preparedness for thefor Responsethe Response to Emergent to Emergent Public PublicHealth Health Hazards”, Hazards”, with thewith intention the intention of establishing of establishing a rapid a andrapid eff andective effective epidemic epidemic emergency emergency response responsemechanism mechanism and improving and improving its response its response capacity, capaci to reducety, to reduce the degree the degree of emergency of emergency disaster disaster to the toutmost the utmost extent extent [9]. Compared [9]. Compared with thewith SARS the SARS virus, thevirus, SARS-CoV-2 the SARS-CoV-2 virus of virus the COVID-19 of the COVID-19 outbreak outbreakhas the characteristicshas the characteristics of a stronger of infectivitya stronger and infectivity a longer incubationand a longer period incubation [2]. Additionally, period as[2]. the Additionally,COVID-19 outbreak as the COVID-19 occurred aroundoutbreak the occurred time of annual around Chinese the time Lunar of annual New Year Chinese holiday, Lunar billions New of Yearresidents holiday, returned billions to of their residents hometown returned to celebrate to their hometown the New Year to celebrate with their the families, New Year as is with traditional their families,in the Chinese as is traditional culture, whichin the Chinese greatly increasedculture, which the personnel greatly increased mobility the and personnel traffic congestion mobility inand the trafficshort congestion term [10]. in Wuhan the short city, term the epicenter [10]. Wuhan of the city, epidemic, the epicenter is also of the the core epidemic, transfer is hubalso ofthe China’s core transfertransportation hub of China’s system, whichtransportation connects system, most regions which in connects China. These most newregions changes in China. and characteristics These new changeshave undoubtedly and characteristics put forward have undoubtedly new requirements put forward and challenges new requirements for the government and challenges to respond for the to governmentthe COVID-19 to respond outbreak. to The the Chinese COVID-19 government outbreak. has The taken Chinese serious government comprehensive has andtaken nationwide serious comprehensiveresponse measures and nationwide to fight against response the spread measures of COVID-19 to fight against and has the achieved spread of positive COVID-19 results and on has the achievedbasis of positive empirical results evidence. on the Here basis are of empirical some major evidence. highlights Here that are thesome government major highlights has adopted, that the to governmentrespond to has the COVID-19adopted, to epidemic. respond to the COVID-19 epidemic. 2.1. The Emergency Control Measures of Epidemic Areas 2.1. The Emergency Control Measures of Epidemic Areas As the epicenter of the epidemic, Wuhan city first announced a travel quarantine area by the As the epicenter of the epidemic, Wuhan city first announced a travel quarantine area by the government on 23 January 2020, and the quarantine radius was expanded to all other cities in the Hubei government on 23 January 2020, and the quarantine radius was expanded to all other cities in the province, encompassing a total population of 45 million, by 30 January [11]. All public transportation Hubei province, encompassing a total population of 45 million, by 30 January [11]. All public in Wuhan city, including bus, subway, and ferry services were suspended, and expressways, airports, transportation in Wuhan city, including bus, subway, and ferry services were suspended, and and railway stations were temporarily closed. All large gatherings including the New Year celebrations expressways, airports, and railway stations were temporarily closed. All large gatherings including were canceled. As the asymptomatic incubation period of COVID-19 could be up to 14 days, all the New Year celebrations were canceled. As the asymptomatic incubation period of COVID-19 could be up to 14 days, all residents were restricted to stay at home in self-quarantine, in order to prevent the spread of the virus. All public places such as shopping centers, schools, restaurants, and cinemas Int. J. Environ. Res. Public Health 2020, 17, 2304 3 of 6 residents were restricted to stay at home in self-quarantine, in order to prevent the spread of the virus.
Recommended publications
  • Treatment with Convalescent Plasma for COVID‐19 Patients in Wuhan
    Tangfeng Lv ORCID iD: 0000-0001-7224-8468 Treatment with convalescent plasma for COVID-19 patients in Wuhan, China Mingxiang Ye, MD, PhD Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China Department of Infectious Disease, Unit 4-1, Wuhan Huoshenshan Hospital, Wuhan, China Dian Fu, MD Department of Urology, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China Department of Infectious Disease, Unit 4-1, Wuhan Huoshenshan Hospital, Wuhan, China Yi Ren, MD Department of Emergency, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China Department of Infectious Disease, Unit 4-1, Wuhan Huoshenshan Hospital, Wuhan, China This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/jmv.25882. Accepted Article This article is protected by copyright. All rights reserved. Faxiang Wang, MD Department of Emergency, 904 Hospital, Wuxi, China Department of Infectious Disease, Unit 4-1, Wuhan Huoshenshan Hospital, Wuhan, China Dong Wang, MD, PhD Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China Department of Infectious Disease, Unit 4-1, Wuhan Huoshenshan Hospital, Wuhan, China Fang Zhang, MD Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China Department of Infectious Disease, Unit 4-1, Wuhan Huoshenshan Hospital, Wuhan, China Xinyi Xia, MD Institute of Laboratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China Department of Laboratory Medicine, Wuhan Huoshenshan Hospital, Wuhan, China Accepted Article This article is protected by copyright.
    [Show full text]
  • Policy Disparities in Response to the First Wave of COVID-19 Between China and Germany Yuyao Zhang1, Leiyu Shi2, Haiqian Chen1, Xiaohan Wang1 and Gang Sun1,2*
    Zhang et al. International Journal for Equity in Health (2021) 20:86 https://doi.org/10.1186/s12939-021-01424-3 RESEARCH Open Access Policy disparities in response to the first wave of COVID-19 between China and Germany Yuyao Zhang1, Leiyu Shi2, Haiqian Chen1, Xiaohan Wang1 and Gang Sun1,2* Abstract Objective: Our research summarized policy disparities in response to the first wave of COVID-19 between China and Germany. We look forward to providing policy experience for other countries still in severe epidemics. Methods: We analyzed data provided by National Health Commission of the People’s Republic of China and Johns Hopkins University Coronavirus Resource Center for the period 10 January 2020 to 25 May 252,020. We used generalized linear model to evaluate the associations between the main control policies and the number of confirmed cases and the policy disparities in response to the first wave of COVID-19 between China and Germany. Results: The generalized linear models show that the following factors influence the cumulative number of confirmed cases in China: the Joint Prevention and Control Mechanism; locking down the worst-hit areas; the highest level response to public health emergencies; the expansion of medical insurance coverage to suspected patients; makeshift hospitals; residential closed management; counterpart assistance. The following factors influence the cumulative number of confirmed cases in Germany: the Novel Coronavirus Crisis Command; large gathering cancelled; real-time COVID-19 risk assessment; the medical emergency plan; schools closure; restrictions on the import of overseas epidemics; the no-contact protocol. Conclusions: There are two differences between China and Germany in non-pharmaceutical interventions: China adopted the blocking strategy, and Germany adopted the first mitigation and then blocking strategy; China’s goal is to eliminate the virus, and Germany’s goal is to protect high-risk groups to reduce losses.
    [Show full text]
  • CONNECTION the Official Newsletter of Zhejiang University Issue 16 Feb.2020
    CONNECTION The Official Newsletter of Zhejiang University Issue 16 Feb.2020 COVID-19 Special Issue Stand Strong Message from Editor-in-Chief CONNECTION Welcome to the special COVID-19 issue of Issue 16 CONNECTION, which highlights the efforts and contributions of ZJU community in face of the epidemic. As a group, they are heroes in harm's way, givers and doers who respond swiftly to the need of our city, our country and the world. When you read their stories, you'll recognize the strength and solidarity that define all ZJUers. ZJU community has demonstrated its courage and resilience in the battle against the novel coronavirus. At this time, let us all come together to protect ourselves and our loved ones, keep all those who are at the front lines in our prayers and pass on our gratitude to those who have joined and contributed to the fight against the virus. Together, we will weather this crisis. LI Min, Editor-in-Chief Director, Office of Global Engagement Editorial office : Global Communications Office of Global Engagement, Zhejiang University 866 Yuhangtang Road, Hangzhou, P.R. China 310058 Phone: +86 571 88981259 Fax: +86 571 87951315 Email: [email protected] Edited by : CHEN Weiying, AI Ni Designed by : HUANG Zhaoyi Material from Connection may be reproduced accompanied with appropriate acknowledgement. CONTENTS Faculty One of the heroes in harm’s way: LI Lanjuan 03 ZJU medics answered the call from Wuhan 04 Insights from ZJU experts 05 Alumni Fund for Prevention and Control of Viral Infectious Diseases set up 10 Alumni community mobilized in the battle against COVID-19 11 Education Classes start online during the epidemic 15 What ZJUers feel about online learning 15 Efforts to address concerns, avoid misinformation 17 International World standing with us 18 International students lending a hand against the epidemic 20 What our fans say 21 FacultyFaculty ZJU community has taken on the responsibility to join the concertedZJU community efforts has takenagainst on thethe responsibility spreadto join the of concerted the virus.
    [Show full text]
  • Read More In
    Contents Abstract ......................................................................................................................... 2 Introduction .................................................................................................................. 3 I. Facing COVID-19 – the Common Enemy .............................................................. 4 II. Taking Measures Suitable to National Circumstances ........................................ 6 2.1 China’s Intensive Combat against COVID-19 ................................................. 6 2.2 The “Protracted War” in Europe ...................................................................... 8 III. Working Together to Fight the Common Enemy ............................................. 14 3.1 Building Confidence through Mutual Support .............................................. 14 3.2 Sharing Experience to Improve Patient Treatment ........................................ 19 3.3 Providing Supplies in the Spirit of Reciprocity ............................................. 23 IV. Building a Community of Shared Future .......................................................... 27 4.1 Overcoming Prejudices .................................................................................. 27 4.2 Protecting the Economy and People’s Livelihood ......................................... 34 4.3 Working Together to Advance Post-Pandemic Development ........................ 37 Conclusion .................................................................................................................
    [Show full text]
  • Emergency Architecture. Modular Construction of Healthcare Facilities As a Response to Pandemic Outbreak
    E3S Web of Conferences 274, 01013 (2021) https://doi.org/10.1051/e3sconf/202127401013 STCCE – 2021 Emergency architecture. Modular construction of healthcare facilities as a response to pandemic outbreak Marina Smolova1, and Daria Smolova2[0000-0002-2297-0505] 1Kazan State University of Architecture and Engineering, 420043 Kazan, Russia 2NFOE Inc., QC H2Y 2W7 Montreal, Canada Abstract. Emerging infectious diseases originating from wildlife species continue to demolish humankind leaving an imprint on human history. December 2019 has marked the emergence of a novel coronavirus named SARS-CoV-2 (Covid-2019) originated in China in the city of Wuhan. Drastic emergence and spread of infectious disease have shown to appear in highly densified areas causing rapid spread of epidemic through population movement, transmission routes, major activity nodes, proximity, and connectivity of urban spaces. An extreme number of cases rising throughout the world caused space unavailability in healthcare facilities to serve patients infected with Covid-2019, therefore urging for innovative emergency management response from construction and architecture industry. Prefabricated modular construction has been widely utilized around the globe assembling rapid response facilities after catastrophic events such as tornadoes, hurricanes, and forest fires. An increasing number of Covid-2019 cases demanded effective and compressed implementation of medical centres to provide expeditious and secure healthcare. The paper examines the potential of standardization of modular construction of hospitals as a response to current and potential pandemic outbreaks. The research provides fundamental planning requirements of isolation units and their design flexibility as a key to rapid emergency solution. Keywords. Modular construction, prefabrication, prefabricated construction, emergency architecture, healthcare facilities, hospitals, prefabricated architecture, Covid-2019.
    [Show full text]
  • Clinical Course and Risk Factors for In-Hospital Death in Critical COVID-19 in Wuhan, China
    medRxiv preprint doi: https://doi.org/10.1101/2020.09.26.20189522; this version posted September 28, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-ND 4.0 International license . Clinical Course And Risk Factors For In-hospital Death In Critical COVID-19 In Wuhan, China Fei Li, MD, PhD1,2#, Yue Cai, MD1,2#, Chao Gao, MD, PhD1#, Lei Zhou, MD, PhD2,3#, Renjuan Chen, MD, PhD1, Kan Zhang, MD1,2, Weiqin Li, MD2,4, Ruining Zhang, MD1, Xijing Zhang, MD, PhD2,5, Duolao Wang, PhD 6*, Yi Liu, MD, PhD1*, Ling Tao, MD, PhD1* 1. Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China 2. Huoshenshan Hospital, Wuhan, China 3. Clinical Laboratory, Xijing Hospital, Fourth Military Medical University, Xi’an, China 4. Department of Critical Care Medicine, Jinling Hospital, Nanjing, China 5. Surgical ICU, Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China 6. Department of Clinical Sciences Liverpool School of Tropical Medicine Pembroke, Liverpool, United Kingdom Address for correspondence: Professor Ling Tao, MD, PhD. Professor of Cardiology – Xijing hospital, Xi’an, China 127 Changle west road, Xi’an, 710032, China Email: [email protected] Professor Yi Liu, MD, PhD. Professor of Cardiology – Xijing hospital, Xi’an, China 127 Changle west road, Xi’an, 710032, China Email: liuyimeishan@hotmail,.com 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • COVID-19 Publications - Week 33 2020 804 Publications
    Update August 10 - August 16, 2020, Dr. Peter J. Lansberg MD, PhD Weekly COVID-19 Literature Update will keep you up-to-date with all recent PubMed publications categorized by relevant topics COVID-19 publications - Week 33 2020 804 Publications PubMed based Covid-19 weekly literature update For those interested in receiving weekly updates click here For questions and requests for topics to add send an e-mail [email protected] Reliable on-line resources for Covid 19 WHO Cochrane Daily dashbord BMJ Country Guidance The Lancet Travel restriction New England Journal of Medicine Covid Counter JAMA Covid forcasts Cell CDC Science AHA Oxford Universtiy Press ESC Cambridge Univeristy Press EMEA Springer Nature Evidence EPPI Elsevier Wikipedia Wiley Cardionerds - COVID-19 PLOS Genomic epidemiology LitCovid NIH-NLM Oxygenation Ventilation toolkit SSRN (Pre-prints) German (ICU) bed capacity COVID reference (Steinhauser Verlag) COVID-19 Projections tracker AAN - Neurology resources COVID-19 resources (Harvard) COVID-19 resources (McMasters) COVID-19 resources (NHLBI) COVID-19 resources (MEDSCAPE) COVID-19 Diabetes (JDRF) COVID-19 TELEMEDICINE (BMJ) Global Causes of death (Johns Hopkins) COVID-19 calculators (Medscap) Guidelines NICE Guidelines Covid-19 Korean CDC Covid-19 guidelines Flattening the curve - Korea IDSA COVID-19 Guidelines Airway Management Clinical Practice Guidelines (SIAARTI/EAMS, 2020) ESICM Ventilation Guidelines Performing Procedures on Patients With Known or Suspected COVID-19 (ASA, 2020) OSHA Guidance on Preparing the Workplace
    [Show full text]
  • Superfast Hospital in Wuhan Ready of Support PLA Sends Medical Pour in Teams; 2Nd Facility to Open by Midweek from World
    Free wigs for Brexit: What next? High harmony cancer patients Britain to reform its system of Architect seeks compatibility between use real hair immigration after EU split LIFE, PAGE 18 humans and nature CHINA, PAGE 5 WORLD, PAGE 12 CHINADAILY MONDAY, February 3, 2020 www.chinadailyhk.com HK $10 Messages Superfast hospital in Wuhan ready of support PLA sends medical pour in teams; 2nd facility to open by midweek from world By WANG XIAODONG in Wuhan By CAO DESHENG and ZHAO LEI in Beijing [email protected] A 1,000-bed hospital in Wuhan, International support for China’s Hubei province, will begin receiving efforts in fighting the novel coronavi- highly contagious pneumonia rus has continued to pour in, with patients on Monday, less than 10 countries from around the world days after construction began. offering sympathy and medical The new facility will ease the assistance and calling for an objec- shortage of beds in the city resulting tive and rational evaluation of the from an increasing number of outbreak. patients infected with the novel cor- In a recent message to President onavirus. Xi Jinping, Russian President Vlad- Medical personnel from the Peo- imir Putin offered sympathy to the ple’s Liberation Army will take over Chinese families suffering pain and the new Huoshenshan Hospital, loss from the epidemic. with a total of 1,400 expected to start Putin said the Russian people receiving and treating patients on stand ready to offer assistance to Monday. their Chinese friends and that gov- A second special hospital for the ernment departments in Russia will treatment of the novel coronavirus maintain close coordination with — Leishenshan Hospital — is under their counterparts in China to elimi- construction in Wuhan.
    [Show full text]
  • Favipiravir Versus Arbidol for COVID-19: a Randomized Clinical
    medRxiv preprint doi: https://doi.org/10.1101/2020.03.17.20037432; this version posted April 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial Chang Chen, MD1,2,#, Yi Zhang, PhD3,4,#, Jianying Huang, MD1,5,#, Ping Yin, PhD6,#, Zhenshun Cheng, MD7, Jianyuan Wu, PhD1,3, Song Chen, MD8, Yongxi Zhang, MD9, Bo Chen, PhD1,3, Mengxin Lu, MD8, Yongwen Luo, MD8, Lingao Ju, MD8, Jingyi Zhang, MD10, Xinghuan Wang, MD, PhD1,3,5,11,* Author affiliations: 1Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China 2Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China 3Center for Life Sciences, Peking University, Beijing, 100871, China 4Euler Technology, ZGC Life Sciences Park, Beijing, 102200, China 5Wuhan Leishenshan Hospital, Wuhan, Hubei, 430000, China 6Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China 7Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China 8Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China 9Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.03.17.20037432; this version posted April 15, 2020.
    [Show full text]
  • Favipiravir Versus Arbidol for COVID-19: a Randomized Clinical
    medRxiv preprint doi: https://doi.org/10.1101/2020.03.17.20037432. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Favipiravir versus Arbidol for COVID-19: A Randomized Clinical Trial Chang Chen, MD1,2,#, Jianying Huang, MD1,3,#, Zhenshun Cheng, MD4, Jianyuan Wu, PhD1,3, Song Chen, MD5, Yongxi Zhang, MD6, Bo Chen, PhD1,3, Mengxin Lu, MD5, Yongwen Luo, MD5, Jingyi Zhang, MD7, Ping Yin, PhD8, Xinghuan Wang, MD1,3,5,9,* Author affiliations: 1Clinical Trial Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China 2Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China 3Wuhan Leishenshan Hospital, Wuhan, Hubei, 430000, China 4Department of Respiratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China 5Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China 6Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China 7Department of Cardiology, The Third People’s Hospital of Hubei Province, Wuhan, Hubei, 430033, China 8Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China 9Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of medRxiv preprint doi: https://doi.org/10.1101/2020.03.17.20037432. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved.
    [Show full text]
  • A Crisis Like No Other
    Rose LeMay Susan Riley Dayna Mahannah Jatin Nathwani Gwynne Dyer Why we need Parliamentary The uncertainty embedded COVID-19 crisis Toddler in chief in the race-based data on accountability or pandemic in oil and gas serves up off ers hope for a clean White House is frantic to COVID-19 p. 5 pandemonium? p. 4 another option p. 20 energy transition p. 18 reopen the economy p. 15 Michael Harris p.11 THIRTY-FIRST YEAR, NO. 1720 CANADA’S POLITICS AND GOVERNMENT NEWSPAPER MONDAY, APRIL 20, 2020 $5.00 News Canada-U.S.News COVID-19 & leadership News Senate Trump coronavirus Senate’s new pronouncements Next federal election a have had little COVID-19 impact on Canadian oversight response as few referendum on Trudeau’s committees have been realized, should leave say analysts management of rough stuff for BY NEIL MOSS the House, say s U.S. President Donald COVID-19, say pollsters, ATrump makes headline- grabbing suggestions that could Senators have wide-reaching effects on Canada’s response to curb CO- ‘a crisis like no other’ BY PETER MAZEREEUW VID-19, analysts say the presiden- tial pronouncements have little wo Senate committees just Veteran pollster Frank Graves says the COVID-19 global pandemic has brought the Tassigned to monitor the gov- Continued on page 23 world to the ‘cusp of another great transformation,’ but it’s unknown what changes it ernment’s response to COVID-19 should leave partisanship at the will create until this international crisis is over. But it’s never going back to normal. door, and cut the government some slack as it
    [Show full text]
  • COVID-19 Containment: China Provides Important Lessons for Global Response
    Front. Med. https://doi.org/10.1007/s11684-020-0766-9 COMMENTARY COVID-19 containment: China provides important lessons for global response * Shuxian Zhang1,*, Zezhou Wang2, , Ruijie Chang1, Huwen Wang1, Chen Xu1, Xiaoyue Yu1, Lhakpa Tsamlag1, Yinqiao Dong3, Hui Wang (✉)1, Yong Cai (✉)1 1School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; 2Department of Cancer Prevention, Shanghai Cancer Center, Fudan University, Shanghai 200032, China; 3Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China © Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract The world must act fast to contain wider international spread of the epidemic of COVID-19 now. The unprecedented public health efforts in China have contained the spread of this new virus. Measures taken in China are currently proven to reduce human-to-human transmission successfully. We summarized the effective intervention and prevention measures in the fields of public health response, clinical management, and research development in China, which may provide vital lessons for the global response. It is really important to take collaborative actions now to save more lives from the pandemic of COVID-19. Keywords coronavirus disease 2019 (COVID-19); control measure; public health response Background “very high” at a global level. China’s approach to contain the spread of the virus has changed the trajectory of the The novel coronavirus disease (COVID-19) is now fast epidemic [3]. China’s efforts to contain the novel spreading to 94 countries and, updated as of March 7, coronavirus can provide vital lessons for other nations 2020, 101 927 confirmed cases have been reported experiencing the rapid spreading or at the risk of an worldwide [1].
    [Show full text]