Transcriptional Features of Multiple Myeloma Patients with Chromosome 1Q Gain

Total Page:16

File Type:pdf, Size:1020Kb

Transcriptional Features of Multiple Myeloma Patients with Chromosome 1Q Gain Letters to the Editor 1113 References 5 Dworzak MN, Froschl G, Printz D, Mann G, Po¨tschger U, Mu¨hlegger N et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute 1 Woessmann W, Seidemann K, Mann G, Zimmermann M, Burkhardt lymphoblastic leukemia. Blood 2002; 99: 1952–1958. B, Oschlies I et al. The impact of the methotrexate administration 6 Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth schedule and dose in the treatment of children and adolescents with TF et al. A biologic definition of Burkitt’s lymphoma from B-cell neoplasms: a report of the BFM Group Study NHL-BFM95. transcriptional and genomic profiling. N Engl J Med 2006; 354: Blood 2005; 105: 948–958. 2419–2430. 2 Busch K, Borkhardt A, Wossmann W, Reiter A, Harbott J. Combined 7 Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ et al. polymerase chain reaction methods to detect c-myc/IgH rearrange- Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med 2006; ment in childhood Burkitt’s lymphoma for minimal residual disease 354: 2431–2442. analysis. Haematologica 2004; 89: 818–825. 8 Attarbaschi A, Mann G, Dworzak M, Trebo M, Urban C, Fink FM 3 Mussolin L, Basso K, Pillon M, d’Amore ES, Lombardi A, Luzzatto L et al. Malignant non-Hodgkin’s lymphoma of childhood and et al. Prospective analysis of minimal bone marrow infiltration in adolescence in Austria – therapy results between 1986 and 2000. pediatric Burkitt’s lymphomas by long-distance polymerase chain Wien Klin Wochenschr 2002; 114: 978–986. reaction for t(8;14)(q24;q32). Leukemia 2003; 17: 585–589. 9 Canonico B, Zamai L, Burattini S, Granger V, Mannello F, 4 Dworzak MN, Fritsch G, Fleischer C, Printz D, Fro¨schl G, Buchinger Gobbi P et al. Evaluation of leukocyte stabilisation in P et al. Comparative phenotype mapping of normal vs malignant TransFix-treated blood samples by flow cytometry and trans- pediatric B-lymphopoiesis unveils leukemia-associated aberrations. mission electron microscopy. J Immunol Methods 2004; 295: Exp Hematol 1998; 26: 305–313. 67–78. Transcriptional features of multiple myeloma patients with chromosome 1q gain Leukemia (2007) 21, 1113–1116. doi:10.1038/sj.leu.2404616; TC3 including tumors that do not fall into any of the other published online 22 February 2007 groups, most of which express CCND2; TC4 showing high CCND2 levels and the presence of the t(4;14) translocation and TC5 expressing the highest levels of CCND2 in association with Abnormalities of chromosome 1 are among the most either the t(14;16) or t(14;20) translocation.3 frequent chromosomal alterations in multiple myeloma Assessment of 1q/gain by FISH was performed by using three (MM), being found in up to 45% of patients.1,2 It has been BAC clones specific for the BCL9 (1q21.1), CKS1B (1q22) and reported that the short arm of chromosome 1 is preferentially ARF1 (1q42.13) loci, and setting the threshold as 10%. Specific involved in deletions, whereas the long arm is associated alterations were identified in 40/77 (51.9%) patients; three with amplification. The gain of 1q (1q/gain) can occur as (75%) or four (12.5%) signals of all the 1q probes were found in isochromosomes, duplications or jumping translocations. It 35 patients and, in the remaining five samples (12.5%), the has been widely reported that 1q/gain MM patients are probes mapping to 1q21 and 1q22 showed more signals than characterized by complex karyotypes and aggressive disease, that mapping to 1q42. 1q/gain was observed in the majority of and a close association with poor-risk genetic features, such purified plasma cells (490%) in all but three patients (range as chromosome 13q deletion (D13) and the t(4;14) trans- 12–20%). 1q/gain was significantly absent in TC2 group location has also been described.1 It has been recently (Po10À4) and present in TC3 (P ¼ 0.008), whereas the correla- demonstrated that gains/amplification of 1q21 increase as tion was not significant in the TC1 (P ¼ 0.053) or TC4 the condition goes from smoldering to overt MM, thus (P ¼ 0.142) groups; in addition, 1q extra copies significantly suggesting that these regions contain critical genes for disease associated with D13 (Po10À4) and chromosome 11 polisomy progression.2 These findings along with the limited information (although at a limited significance level of P ¼ 0.038), but not concerning specific transcriptional profiles prompted us to ploidy status (P ¼ 0.0971). molecularly characterize 1q/gain MMs by FISH and microarray To identify a specific transcriptional fingerprint characterizing analyses. 1q/gain, we made a supervised analysis of 1q/gain versus 1q/ Our study includes a panel of 77 MM patients at diagnosis, normal MM patients using SAM algorithm. Seventy-two probe whose characteristics have been deposited in National Center sets (specific for 61 genes) distinguished the 40 1q/gain from the for Biotechnology Information’s Gene Expression Omnibus 37 1q/normal cases (Figure 1a and Table 1a, b). Notably, in the (GEO; http://www.ncbi.nlm.mih.gov/geo, accession number 1q/gain patients 41 of the 43 upregulated genes mapped to GSE6401). Bone marrow plasma cells were purified (490% in 1q12-q44, whereas a significant percentage of the down- all cases) using CD138-immunomagnetic bead selection and regulated genes was localized on chromosomes 13q (7/18; characterized by FISH for the presence of 11 polisomy, the most 39%) and 11 (6/18, 33%). To verify whether the 1q/gain recurrent IGH translocations, ploidy status, D13, and global reflected transcriptional imbalances of specific chromosomal gene expression profiling using the Affymetrix U133A gene regions, the expression data from the 1q/gain and 1q/normal chips, as described previously.3 Patients were then stratified samples were also analyzed in the context of the physical accordingly to the proposed translocation/cyclin D (TC) localization of the genes using a model-free statistical method classification in five groups: TC1 characterized by the t(11;14) (LAP),4 allowing the identification of five modulated chromoso- or t(6;14) translocations, with the consequent overexpression of mal regions (Figure 1b). In the 1q/gain patients, the region either CCND1 or CCND3, and a nonhyperdiploid status; TC2 1q21.1-q44 (absolute positions: 146,567,360-245,353,955) was showing low/moderate levels of the CCND1 gene in the absence upregulated and 13q12-14 (22,800,966-47,961,101) down- of any primary IGH translocations, and a hyperdiploid status; regulated, which is in line with the significant association Leukemia Letters to the Editor 1114 between 1q abnormalities and D13; regional downregulation 15q24.1-q25 (72,397,963-78,483,746), which may reflect the was also observed in chromosome regions 11p15 (2,380, higher frequency of hyperdiploid patients in the 1q/normal 098-6,372,930), 11q13-q23 (71,317,730-113,946,523) and group. Figure 1 (a) Supervised analysis of 1q/gain versus 1q/normal patients. The differentially expressed genes discriminating 1q/gain and 1q/normal classes were identified using Significant Analysis of Microarrays software version 2.21 (SAM; Excel front-end publicly available at http://www- stat.stanford.edu/~tibs/SAM/index.html; cutoff for significance: q-value ¼ 0 with median FDR ¼ 0%, 90th %ile FDR ¼ 0%) and visualized by means of dChip software. The color scale bar represents relative gene expression changes normalized by standard deviations. Information about chromosome 11 trisomy ( þ 11), D13, ploidy status (HD ¼ hyperdiploid), TC classes and 1q extra copies (1q þ ) are included (n ¼ data not available). (b) Regional analysis of 1q/gain versus 1q/normal patients. The whole genome plot of the differentially expressed 858 genes identified using LAP algorithm4 (q-value ¼ 0) shows five modulated chromosomal regions. The vertical axis represents the progressive chromosome number, and the horizontal axis (blue lines) the progressive absolute position of the probes represented on HG-U133A gene chips for each chromosome. The white bars indicate the exact chromosomal locations, and the colored perpendicular lines the locations and up- (red) or downregulation (green) of genes in the 1q/gain patients (see geneplotter package from Bioconductor for details). Table 1a Forty-three upregulated genes in 1q/gain, ordered by chromosomal location and gene name whenever more than one probe recognized the same gene, the one with the best score is shown Probe ID Gene symbol Chromosome location Probe ID Gene symbol Chromosome location 202337_at PMF1 1q12 208716_s_at TMCO1 1q22-q25 209044_x_at SF3B4 1q12-q21 201403_s_at MGST3 1q23 210386_s_at MTX1 1q21 208114_s_at ISG20L2 1q23.1 210417_s_at PIK4CB 1q21 215158_s_at DEDD 1q23.3 201771_at SCAMP3 1q21 208684_at COPA 1q23-q25 216591_s_at SDHC 1q21 202846_s_at PIGC 1q23-q25 209561_at THBS3 1q21 202427_s_at BRP44 1q24 202596_at ENSA 1q21.2 214838_at SFT2D2 1q24.2 222212_s_at LASS2 1q21.2 217748_at ADIPOR1 1q32 210460_s_at PSMD4 1q21.2 212165_at C1orf37 1q32.1 221189_s_at TARSL1 1q21.2 202187_s_at PPP2R5A 1q32.2-q32.3 216873_s_at ATP8B2 1q21.3 204478_s_at RABIF 1q32-q41 200052_s_at ILF2 1q21.3 208755_x_at H3F3A 1q41 209609_s_at MRPL9 1q21.3 202374_s_at RAB3GAP2 1q41 203515_s_at PMVK 1q21.3 200065_s_at ARF1 1q42 201378_s_at UBAP2L 1q21.3 221497_x_at EGLN1 1q42.1 217978_s_at UBE2Q1 1q21.3 214170_x_at FH 1q42.1 218270_at MRPL24 1q21-q22 202324_s_at ACBD3 1q42.12 200896_x_at HDGF 1q21-q23 212371_at C1orf121 1q44 201275_at FDPS 1q22 214831_at MED28 4p16 218296_x_at MSTO1 1q22 210859_x_at CLN3 16p12.1 218291_at MAPBPIP 1q22 Leukemia Letters to the Editor 1115 Table 1b
Recommended publications
  • Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
    Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10.
    [Show full text]
  • Effects of Stressors on Differential Gene Expression And
    EFFECTS OF STRESSORS ON DIFFERENTIAL GENE EXPRESSION AND SECONDARY METABOLITES BY AXINELLA CORRUGATA by Jennifer Grima A Thesis Submitted to the Faculty of Charles E. Schmidt College of Science in Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, Florida May 2013 ACKNOWLEDGEMENTS This thesis was made possible by the help and support of my mentors and friends. Without their guidance and expertise, I would not have been able to accomplish all that I have. Their belief and encouragement in my efforts have motivated and inspired me along through this journey and into a new era in my life. First and foremost, I am grateful to Dr. Shirley Pomponi for taking on the role as my advisor and giving me the opportunity to experience life as a researcher. Not only has she guided me in my scientific studies, she has become a wonderful, lifelong friend. Dr. Pomponi and Dr. Amy Wright have also provided financial support that enabled me to conduct the research and complete this thesis. I would also like to acknowledge Dr. Amy Wright for her willingness to tender advice on all things chemistry related as well as providing me with the space, equipment, and supplies to conduct the chemical analyses. I am grateful to Dr. Esther Guzman who not only served as a committee member, but has also been readily available to help me in any endeavor, whether it be research or personal related. She is truly one of kind with her breadth of knowledge in research and her loyal and caring character.
    [Show full text]
  • Datasheet: VMA00439 Product Details
    Datasheet: VMA00439 Description: MOUSE ANTI ACBD3 Specificity: ACBD3 Format: Purified Product Type: PrecisionAb™ Monoclonal Clone: 5F9 Isotype: IgG1 Quantity: 100 µl Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation Mouse monoclonal antibody purified by affinity chromatography from ascites Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 1% Bovine Serum Albumin 50% Glycerol Immunogen Full length recombinant human ACBD3 (NP_073572) produced in HEK293T cells External Database Links UniProt: Q9H3P7 Related reagents Entrez Gene: 64746 ACBD3 Related reagents Page 1 of 2 Synonyms GCP60, GOCAP1, GOLPH1 Specificity Mouse anti Human ACBD3 antibody recognizes ACBD3, also known as PBR- and PKA-associated protein 7, PKA (RIalpha)-associated protein, acyl-Coenzyme A binding domain containing 3, golgi complex associated protein 1 60kDa, golgi phosphoprotein 1 and peripheral benzodiazepine receptor-associated protein PAP7.
    [Show full text]
  • DNA·RNA Triple Helix Formation Can Function As a Cis-Acting Regulatory
    DNA·RNA triple helix formation can function as a cis-acting regulatory mechanism at the human β-globin locus Zhuo Zhoua, Keith E. Gilesa,b,c, and Gary Felsenfelda,1 aLaboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892; bUniversity of Alabama at Birmingham Stem Cell Institute, University of Alabama at Birmingham, Birmingham, AL 35294; and cDepartment of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294 Contributed by Gary Felsenfeld, February 4, 2019 (sent for review January 4, 2019; reviewed by James Douglas Engel and Sergei M. Mirkin) We have identified regulatory mechanisms in which an RNA tran- of the criteria necessary to establish the presence of a triplex script forms a DNA duplex·RNA triple helix with a gene or one of its structure, we first describe and characterize triplex formation at regulatory elements, suggesting potential auto-regulatory mecha- the FAU gene in human erythroid K562 cells. FAU encodes a nisms in vivo. We describe an interaction at the human β-globin protein that is a fusion containing fubi, a ubiquitin-like protein, locus, in which an RNA segment embedded in the second intron of and ribosomal protein S30. Although fubi function is unknown, the β-globin gene forms a DNA·RNA triplex with the HS2 sequence posttranslational processing produces S30, a component of the within the β-globin locus control region, a major regulator of glo- 40S ribosome. We used this system to refine methods necessary bin expression. We show in human K562 cells that the triplex is to detect triplex formation and to distinguish it from R-loop stable in vivo.
    [Show full text]
  • Knock-Out of ACBD3 Leads to Dispersed Golgi Structure, but Unaffected Mitochondrial Functions in HEK293 and Hela Cells
    International Journal of Molecular Sciences Article Knock-Out of ACBD3 Leads to Dispersed Golgi Structure, but Unaffected Mitochondrial Functions in HEK293 and HeLa Cells Tereza Da ˇnhelovská 1 , Lucie Zdražilová 1 , Hana Štufková 1, Marie Vanišová 1, Nikol Volfová 1, Jana Kˇrížová 1 , OndˇrejKuda 2 , Jana Sládková 1 and Markéta Tesaˇrová 1,* 1 Department of Paediatrics and Inherited Metabolic Disorders, Charles University, First Faculty of Medicine and General University Hospital in Prague, 128 01 Prague, Czech Republic; [email protected] (T.D.); [email protected] (L.Z.); [email protected] (H.Š.); [email protected] (M.V.); [email protected] (N.V.); [email protected] (J.K.); [email protected] (J.S.) 2 Institute of Physiology, Academy of Sciences of the Czech Republic, 142 00 Prague, Czech Republic; [email protected] * Correspondence: [email protected] Abstract: The Acyl-CoA-binding domain-containing protein (ACBD3) plays multiple roles across the cell. Although generally associated with the Golgi apparatus, it operates also in mitochondria. In steroidogenic cells, ACBD3 is an important part of a multiprotein complex transporting cholesterol into mitochondria. Balance in mitochondrial cholesterol is essential for proper mitochondrial protein biosynthesis, among others. We generated ACBD3 knock-out (ACBD3-KO) HEK293 and HeLa cells and characterized the impact of protein absence on mitochondria, Golgi, and lipid profile. In ACBD3- Citation: Daˇnhelovská,T.; KO cells, cholesterol level and mitochondrial structure and functions are not altered, demonstrating Zdražilová, L.; Štufková, H.; that an alternative pathway of cholesterol transport into mitochondria exists. However, ACBD3- Vanišová, M.; Volfová, N.; Kˇrížová,J.; Kuda, O.; Sládková, J.; Tesaˇrová,M.
    [Show full text]
  • Investigation of Candidate Genes and Mechanisms Underlying Obesity
    Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between
    [Show full text]
  • Genes with 5' Terminal Oligopyrimidine Tracts Preferentially Escape Global Suppression of Translation by the SARS-Cov-2 NSP1 Protein
    Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Genes with 5′ terminal oligopyrimidine tracts preferentially escape global suppression of translation by the SARS-CoV-2 Nsp1 protein Shilpa Raoa, Ian Hoskinsa, Tori Tonna, P. Daniela Garciaa, Hakan Ozadama, Elif Sarinay Cenika, Can Cenika,1 a Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA 1Corresponding author: [email protected] Key words: SARS-CoV-2, Nsp1, MeTAFlow, translation, ribosome profiling, RNA-Seq, 5′ TOP, Ribo-Seq, gene expression 1 Downloaded from rnajournal.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Viruses rely on the host translation machinery to synthesize their own proteins. Consequently, they have evolved varied mechanisms to co-opt host translation for their survival. SARS-CoV-2 relies on a non-structural protein, Nsp1, for shutting down host translation. However, it is currently unknown how viral proteins and host factors critical for viral replication can escape a global shutdown of host translation. Here, using a novel FACS-based assay called MeTAFlow, we report a dose-dependent reduction in both nascent protein synthesis and mRNA abundance in cells expressing Nsp1. We perform RNA-Seq and matched ribosome profiling experiments to identify gene-specific changes both at the mRNA expression and translation level. We discover that a functionally-coherent subset of human genes are preferentially translated in the context of Nsp1 expression. These genes include the translation machinery components, RNA binding proteins, and others important for viral pathogenicity. Importantly, we uncovered a remarkable enrichment of 5′ terminal oligo-pyrimidine (TOP) tracts among preferentially translated genes.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Mitoxplorer, a Visual Data Mining Platform To
    mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, Cecilia Garcia-Perez, José Villaveces, Salma Gamal, Giovanni Cardone, Fabiana Perocchi, et al. To cite this version: Annie Yim, Prasanna Koti, Adrien Bonnard, Fabio Marchiano, Milena Dürrbaum, et al.. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dy- namics and mutations. Nucleic Acids Research, Oxford University Press, 2020, 10.1093/nar/gkz1128. hal-02394433 HAL Id: hal-02394433 https://hal-amu.archives-ouvertes.fr/hal-02394433 Submitted on 4 Dec 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Nucleic Acids Research, 2019 1 doi: 10.1093/nar/gkz1128 Downloaded from https://academic.oup.com/nar/advance-article-abstract/doi/10.1093/nar/gkz1128/5651332 by Bibliothèque de l'université la Méditerranée user on 04 December 2019 mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations Annie Yim1,†, Prasanna Koti1,†, Adrien Bonnard2, Fabio Marchiano3, Milena Durrbaum¨ 1, Cecilia Garcia-Perez4, Jose Villaveces1, Salma Gamal1, Giovanni Cardone1, Fabiana Perocchi4, Zuzana Storchova1,5 and Bianca H.
    [Show full text]
  • Human Prostate Cancer Cell Apoptosis
    HUMAN PROSTATE CANCER CELL APOPTOSIS INDUCED BY INTERFERON-γ AND DOUBLE-STRANDED RNA AND STUDIES ON THE BIOLOGICAL ROLES OF TRANSMEMBRANE AND COILED-COIL DOMAINS 1 HAIYAN TAN Bachelor of Science in Medicine Norman Bethune University of Medical Sciences, China July, 1995 Submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICAL CHEMISTRY at the CLEVEALND STATE UNIVERSTIY August, 2010 This dissertation has been approved for the Department of Chemistry and the College of Graduate Studies by Dissertation Committee Chairperson, Dr. Aimin Zhou Department & Date Dr. David Anderson Department & Date Dr. Xue-long Sun Department & Date Dr. Crystal M Weyman Department & Date Dr. Sihe Wang Department & Date ACKNOWLEDGEMENTS First and foremost, I want to heartily thank my advisor, Dr. Aimin Zhou, for his exceptional mentorship and constant support throughout my Ph.D. work. He was always available to listen to and discuss my ideas and questions, and showed me different ways to research problems. Most importantly, he taught me the need to be persistent to accomplish any goal, and his optimistic attitude toward his career and life has deeply affected me. I would like to express my special appreciation to my advisory committee, Dr. David Anderson, Dr. Crystal M Weyman, Dr. Sihe Wang, and Dr. Xue-long Sun, for their advice, encouragement, and support. Dr. Anderson provided me with a lot of encouragement and support. His instruction for my first job interview in the United States really touched me. Dr. Weyman is a model of a successful woman scientist and her instruction is always helpful.
    [Show full text]
  • Homozygous Frameshift Mutation in TMCO1 Causes a Syndrome with Craniofacial Dysmorphism, Skeletal Anomalies, and Mental Retardation
    Homozygous frameshift mutation in TMCO1 causes a syndrome with craniofacial dysmorphism, skeletal anomalies, and mental retardation Baozhong Xina, Erik G. Puffenbergerb,c, Susan Turbena, Haiyan Tand, Aimin Zhoud, and Heng Wanga,e,f,1 aDDC Clinic for Special Needs Children, Middlefield, OH 44062; bThe Clinic for Special Children, Strasburg, PA 17579; cDepartment of Biology, Franklin and Marshall College, Lancaster, PA 17603; dDepartment of Chemistry, Cleveland State University, Cleveland, OH 44115; eDepartment of Pediatrics, Rainbow Babies and Children’s Hospital, Cleveland, OH 44106; and fDepartment of Molecular Cardiology, Cleveland Clinic, Cleveland, OH 44195 Edited by Albert de la Chapelle, Ohio State University Comprehensive Cancer Center, Columbus, OH, and approved November 18, 2009 (received for review July 27, 2009) We identified an autosomal recessive condition in 11 individuals Results in the Old Order Amish of northeastern Ohio. The syndrome was Clinical Phenotype. TMCO1 defect syndrome was diagnosed in 11 characterized by distinctive craniofacial dysmorphism, skeletal individuals (6 males, 5 females) ranging in age from 3 to 39 years. anomalies, and mental retardation. The typical craniofacial dys- All 11 patients demonstrated Old Order Amish ancestry, and morphism included brachycephaly, highly arched bushy eye- genealogical analyses revealed multiple lines of common descent brows, synophrys, long eyelashes, low-set ears, microdontism of between all parents of affected children (Fig. 1). The phenotype primary teeth, and generalized gingival hyperplasia, whereas was not observed in the parents or 23 unaffected siblings. Sprengel deformity of scapula, fusion of spine, rib abnormities, A history of first trimester spontaneous abortions was reported pectus excavatum, and pes planus represented skeletal anomalies.
    [Show full text]