Deciphering the Molecular Basis of the SARS-Cov-2 Coronavirus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuclear Import Protein KPNA7 and Its Cargos Acta Universitatis Tamperensis 2346
ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos ELISA Acta Universitatis Tamperensis 2346 ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology AUT 2346 AUT ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology ACADEMIC DISSERTATION To be presented, with the permission of the Faculty Council of the Faculty of Medicine and Life Sciences of the University of Tampere, for public discussion in the auditorium F114 of the Arvo building, Arvo Ylpön katu 34, Tampere, on 9 February 2018, at 12 o’clock. UNIVERSITY OF TAMPERE ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology Acta Universitatis Tamperensis 2346 Tampere University Press Tampere 2018 ACADEMIC DISSERTATION University of Tampere, Faculty of Medicine and Life Sciences Finland Supervised by Reviewed by Professor Anne Kallioniemi Docent Pia Vahteristo University of Tampere University of Helsinki Finland Finland Docent Maria Vartiainen University of Helsinki Finland The originality of this thesis has been checked using the Turnitin OriginalityCheck service in accordance with the quality management system of the University of Tampere. Copyright ©2018 Tampere University Press and the author Cover design by Mikko Reinikka Acta Universitatis Tamperensis 2346 Acta Electronica Universitatis Tamperensis 1851 ISBN 978-952-03-0641-0 (print) ISBN 978-952-03-0642-7 (pdf) ISSN-L 1455-1616 ISSN 1456-954X ISSN 1455-1616 http://tampub.uta.fi Suomen Yliopistopaino Oy – Juvenes Print Tampere 2018 441 729 Painotuote CONTENTS List of original communications ................................................................................................ -
Observation and a Numerical Study of Gravity Waves During Tropical Cyclone Ivan (2008)
Open Access Atmos. Chem. Phys., 14, 641–658, 2014 Atmospheric www.atmos-chem-phys.net/14/641/2014/ doi:10.5194/acp-14-641-2014 Chemistry © Author(s) 2014. CC Attribution 3.0 License. and Physics Observation and a numerical study of gravity waves during tropical cyclone Ivan (2008) F. Chane Ming1, C. Ibrahim1, C. Barthe1, S. Jolivet2, P. Keckhut3, Y.-A. Liou4, and Y. Kuleshov5,6 1Université de la Réunion, Laboratoire de l’Atmosphère et des Cyclones, UMR8105, CNRS-Météo France-Université, La Réunion, France 2Singapore Delft Water Alliance, National University of Singapore, Singapore, Singapore 3Laboratoire Atmosphères, Milieux, Observations Spatiales, UMR8190, Institut Pierre-Simon Laplace, Université Versailles-Saint Quentin, Guyancourt, France 4Center for Space and Remote Sensing Research, National Central University, Chung-Li 3200, Taiwan 5National Climate Centre, Bureau of Meteorology, Melbourne, Australia 6School of Mathematical and Geospatial Sciences, Royal Melbourne Institute of Technology (RMIT) University, Melbourne, Australia Correspondence to: F. Chane Ming ([email protected]) Received: 3 December 2012 – Published in Atmos. Chem. Phys. Discuss.: 24 April 2013 Revised: 21 November 2013 – Accepted: 2 December 2013 – Published: 22 January 2014 Abstract. Gravity waves (GWs) with horizontal wavelengths ber 1 vortex Rossby wave is suggested as a source of domi- of 32–2000 km are investigated during tropical cyclone (TC) nant inertia GW with horizontal wavelengths of 400–800 km, Ivan (2008) in the southwest Indian Ocean in the upper tropo- while shorter scale modes (100–200 km) located at northeast sphere (UT) and the lower stratosphere (LS) using observa- and southeast of the TC could be attributed to strong local- tional data sets, radiosonde and GPS radio occultation data, ized convection in spiral bands resulting from wave number 2 ECMWF analyses and simulations of the French numerical vortex Rossby waves. -
Dolly the Sheep – the First Cloned Adult Animal
DOLLY THE SHEEP – THE FIRST CLONED ADULT ANIMAL NEW TECHNOLOGY FOR IMPROVING LIVESTOCK From Squidonius via Wikimedia Commons In 1996, University of Edinburgh scientists celebrated the birth of Dolly the Sheep, the first mammal to be cloned using SCNT cloning is the only technology adult somatic cells. The Edinburgh team’s success followed available that enables generation of 99.8% its improvements to the single cell nuclear transfer (SCNT) genetically identical offspring from selected technique used in the cloning process. individuals of adult animals (including sterilized animals). As such, it is being Dolly became a scientific icon recognised worldwide and exploited as an efficient multiplication tool SCNT technology has spread around the world and has been to support specific breeding strategies of used to clone multiple farm animals. farm animals with exceptionally high genetic The cloning of livestock enables growing large quantities of value. the most productive, disease resistant animals, thus providing more food and other animal products. Sir Ian Wilmut (Inaugural Director of MRC Centre for Regeneration and Professor at CMVM, UoE) and colleagues worked on methods to create genetically improved livestock by manipulation of stem cells using nuclear transfer. Their research optimised interactions between the donor nucleus and the recipient cytoplasm at the time of fusion and during the first cell cycle. Nuclear donor cells were held in mitosis before being released and used as they were expected to be passing through G1 phase. CLONING IN COMMERCE, CONSERVATION OF AGRICULTURE AND PRESERVATION ANIMAL BREEDS OF LIVESTOCK DIVERSITY Cloning has been used to conserve several animal breeds in the recent past. -
CRNKL1 Is a Highly Selective Regulator of Intron-Retaining HIV-1 and Cellular Mrnas
bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934927; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 CRNKL1 is a highly selective regulator of intron-retaining HIV-1 and cellular mRNAs 2 3 4 Han Xiao1, Emanuel Wyler2#, Miha Milek2#, Bastian Grewe3, Philipp Kirchner4, Arif Ekici4, Ana Beatriz 5 Oliveira Villela Silva1, Doris Jungnickl1, Markus Landthaler2,5, Armin Ensser1, and Klaus Überla1* 6 7 1 Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander 8 Universität Erlangen-Nürnberg, Erlangen, Germany 9 2 Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the 10 Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany 11 3 Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany 12 4 Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen- 13 Nürnberg, Erlangen, Germany 14 5 IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115, Berlin, 15 Germany 16 # these two authors contributed equally 17 18 19 *Corresponding author: 20 Prof. Dr. Klaus Überla 21 Institute of Clinical and Molecular Virology, University Hospital Erlangen 22 Friedrich-Alexander Universität Erlangen-Nürnberg 23 Schlossgarten 4, 91054 Erlangen 24 Germany 25 Tel: (+49) 9131-8523563 26 e-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934927; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. -
Structural Insights Into Mrna Reading Frame Regulation by Trna
RESEARCH ARTICLE Structural insights into mRNA reading frame regulation by tRNA modification and slippery codon–anticodon pairing Eric D Hoffer1, Samuel Hong1, S Sunita1, Tatsuya Maehigashi1, Ruben L Gonzalez Jnr2, Paul C Whitford3, Christine M Dunham1* 1Department of Biochemistry, Emory University School of Medicine, Atlanta, United States; 2Department of Chemistry, Columbia University, New York, United States; 3Department of Physics, Northeastern University, Boston, United States Abstract Modifications in the tRNA anticodon loop, adjacent to the three-nucleotide anticodon, influence translation fidelity by stabilizing the tRNA to allow for accurate reading of the mRNA genetic code. One example is the N1-methylguanosine modification at guanine nucleotide 37 (m1G37) located in the anticodon loop andimmediately adjacent to the anticodon nucleotides 34, 35, 36. The absence of m1G37 in tRNAPro causes +1 frameshifting on polynucleotide, slippery codons. Here, we report structures of the bacterial ribosome containing tRNAPro bound to either cognate or slippery codons to determine how the m1G37 modification prevents mRNA frameshifting. The structures reveal that certain codon–anticodon contexts and the lack of m1G37 destabilize interactions of tRNAPro with the P site of the ribosome, causing large conformational changes typically only seen during EF-G-mediated translocation of the mRNA-tRNA pairs. These studies provide molecular insights into how m1G37 stabilizes the interactions of tRNAPro with the ribosome in the context of a slippery mRNA codon. *For correspondence: Introduction [email protected] Post-transcriptionally modified RNAs, including ribosomal RNA (rRNA), transfer RNA (tRNA) and messenger RNA (mRNA), stabilize RNA tertiary structures during ribonucleoprotein biogenesis, reg- Competing interests: The ulate mRNA metabolism, and influence other facets of gene expression. -
Amphioxus Adaptive Immune System: the Insights from Genes
The Journal of Immunology Genes “Waiting” for Recruitment by the Adaptive Immune System: The Insights from Amphioxus1 Cuiling Yu,2* Meiling Dong,2* Xiaokun Wu,2* Shengguo Li,§ Shengfeng Huang,* Jing Su,* Jianwen Wei,* Yang Shen,* Chunyan Mou,* Xiaojin Xie,* Jianghai Lin,* Shaochun Yuan,* Xuesong Yu,* Yanhong Yu,* Jingchun Du,* Shicui Zhang,† Xuanxian Peng,‡ Mengqing Xiang,§ and Anlong Xu3* In seeking evidence of the existence of adaptive immune system (AIS) in ancient chordate, cDNA clones of six libraries from a protochordate, the Chinese amphioxus, were sequenced. Although the key molecules such as TCR, MHC, Ig, and RAG in AIS have not been identified from our database, we demonstrated in this study the extensive molecular evidence for the presence of genes homologous to many genes that are involved in AIS directly or indirectly, including some of which may represent the putative precursors of vertebrate AIS-related genes. The comparative analyses of these genes in different model organisms revealed the different fates of these genes during evolution. Their gene expression pattern suggested that the primitive digestive system is the pivotal place of the origin and evolution of the AIS. Our studies support the general statement that AIS appears after the jawless/jawed vertebrate split. However our study further reveals the fact that AIS is in its twilight in amphioxus and the evolution of the molecules in amphioxus are waiting for recruitment by the emergence of AIS. The Journal of Immunology, 2005, 174: 3493–3500. he hallmark of the adaptive immune system (AIS)4 is the brate (2, 3). The studies for the origin of the AIS focus on many presence of cells and molecules participating in the im- aspects: the origin of the Ag receptor, Ag processing and presen- T mune recognition of foreign pathogens and the memory tation system, and the effector cells (3, 4). -
The UVB-Induced Gene Expression Profile of Human Epidermis in Vivo Is Different from That of Cultured Keratinocytes
Oncogene (2006) 25, 2601–2614 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc ORIGINAL ARTICLE The UVB-induced gene expression profile of human epidermis in vivo is different from that of cultured keratinocytes CD Enk1, J Jacob-Hirsch2, H Gal3, I Verbovetski4, N Amariglio2, D Mevorach4, A Ingber1, D Givol3, G Rechavi2 and M Hochberg1 1Department of Dermatology, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel; 2Department of Pediatric Hemato-Oncology and Functional Genomics, Safra Children’s Hospital, Sheba Medical Center and Sackler School of Medicine, Tel-Aviv University,Tel Aviv, Israel; 3Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel and 4The Laboratory for Cellular and Molecular Immunology, Department of Medicine, The Hadassah-Hebrew University Medical Center, Jerusalem, Israel In order to obtain a comprehensive picture of the radiation. UVB, with a wavelength range between 290 molecular events regulating cutaneous photodamage of and 320 nm, represents one of the most important intact human epidermis, suction blister roofs obtained environmental hazards affectinghuman skin (Hahn after a single dose of in vivo ultraviolet (UV)B exposure and Weinberg, 2002). To protect itself against the were used for microarray profiling. We found a changed DNA-damaging effects of sunlight, the skin disposes expression of 619 genes. Half of the UVB-regulated genes over highly complicated cellular programs, including had returned to pre-exposure baseline levels at 72 h, cell-cycle arrest, DNA repair and apoptosis (Brash et al., underscoring the transient character of the molecular 1996). Failure in selected elements of these defensive cutaneous UVB response. -
1 Ribosomal Frameshifting Stimulation
www.nature.com/scientificreports OPEN Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications Received: 26 August 2016 Accepted: 24 November 2016 for −1 ribosomal frameshifting Published: 21 December 2016 stimulation Zhensheng Zhong1, Lixia Yang1, Haiping Zhang2, Jiahao Shi1, J. Jeya Vandana1, Do Thuy Uyen Ha Lam1,3, René C. L. Olsthoorn4, Lanyuan Lu2 & Gang Chen1 Minus-one ribosomal frameshifting is a translational recoding mechanism widely utilized by many RNA viruses to generate accurate ratios of structural and catalytic proteins. An RNA pseudoknot structure located in the overlapping region of the gag and pro genes of Simian Retrovirus type 1 (SRV-1) stimulates frameshifting. However, the experimental characterization of SRV-1 pseudoknot (un)folding dynamics and the effect of the base triple formation is lacking. Here, we report the results of our single- molecule nanomanipulation using optical tweezers and theoretical simulation by steered molecular dynamics. Our results directly reveal that the energetic coupling between loop 2 and stem 1 via minor- groove base triple formation enhances the mechanical stability. The terminal base pair in stem 1 (directly in contact with a translating ribosome at the slippery site) also affects the mechanical stability of the pseudoknot. The −1 frameshifting efficiency is positively correlated with the cooperative one- step unfolding force and inversely correlated with the one-step mechanical unfolding rate at zero force. A significantly improved correlation was observed between− 1 frameshifting efficiency and unfolding rate at forces of 15–35 pN, consistent with the fact that the ribosome is a force-generating molecular motor with helicase activity. -
Diversification of Importin-Α Isoforms in Cellular Trafficking and Disease States
Thomas Jefferson University Jefferson Digital Commons Department of Biochemistry and Molecular Biology Department of Biochemistry and Molecular Biology Faculty Papers 2-15-2015 Diversification of importin-α isoforms in cellular trafficking and disease states. Ruth A. Pumroy Thomas Jefferson University, [email protected] Gino Cingolani Thomas Jefferson University, [email protected] Let us know how access to this document benefits ouy Follow this and additional works at: https://jdc.jefferson.edu/bmpfp Part of the Medical Biochemistry Commons Recommended Citation Pumroy, Ruth A. and Cingolani, Gino, "Diversification of importin-α isoforms in cellular trafficking and disease states." (2015). Department of Biochemistry and Molecular Biology Faculty Papers. Paper 107. https://jdc.jefferson.edu/bmpfp/107 This Article is brought to you for free and open access by the Jefferson Digital Commons. The effeJ rson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The ommonC s is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The effeJ rson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Biochemistry and Molecular Biology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. HHS Public Access Author manuscript Author Manuscript Author ManuscriptBiochem Author Manuscript J. Author manuscript; Author Manuscript available in PMC 2015 April 21. Published in final edited form as: Biochem J. -
Mechanisms of Mrna Frame Maintenance and Its Subversion During Translation of the Genetic Code
Biochimie xxx (2015) 1e7 Contents lists available at ScienceDirect Biochimie journal homepage: www.elsevier.com/locate/biochi Mini-review Mechanisms of mRNA frame maintenance and its subversion during translation of the genetic code * Jack A. Dunkle, Christine M. Dunham Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Suite G223, Atlanta, GA 30322, USA article info abstract Article history: Important viral and cellular gene products are regulated by stop codon readthrough and mRNA frame- Received 11 December 2014 shifting, processes whereby the ribosome detours from the reading frame defined by three nucleotide Accepted 11 February 2015 codons after initiation of translation. In the last few years, rapid progress has been made in mechanis- Available online xxx tically characterizing both processes and also revealing that trans-acting factors play important regu- latory roles in frameshifting. Here, we review recent biophysical studies that bring new molecular Keywords: insights to stop codon readthrough and frameshifting. Lastly, we consider whether there may be com- Ribosome mon mechanistic themes in À1 and þ1 frameshifting based on recent X-ray crystal structures of þ1 Protein synthesis Frameshifting frameshift-prone tRNAs bound to the ribosome. © RNA structure 2015 Elsevier B.V. and Societe française de biochimie et biologie Moleculaire (SFBBM). All rights Translocation reserved. The ribosome is a macromolecular machine that performs incorporated, at least for the most error-prone codoneanticodon protein synthesis, one of the most conserved cellular functions in pairs [5e7]. The most common translational errors are missense or all organisms. Translating the information encoded on the tRNA miscoding errors but non-initiation, stop codon readthrough messenger RNA (mRNA) template into amino acids is a highly and mRNA reading frame errors do occur, although at lower fre- complex but coordinated process with four defined stages - initi- quencies [8]. -
Revealing− 1 Programmed Ribosomal Frameshifting
Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine Volume 2012, Article ID 569870, 9 pages doi:10.1155/2012/569870 Review Article Revealing −1 Programmed Ribosomal Frameshifting Mechanisms by Single-Molecule Techniques and Computational Methods Kai-Chun Chang Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan Correspondence should be addressed to Kai-Chun Chang, [email protected] Received 25 November 2011; Accepted 16 January 2012 Academic Editor: Shang-Te Danny Hsu Copyright © 2012 Kai-Chun Chang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Programmed ribosomal frameshifting (PRF) serves as an intrinsic translational regulation mechanism employed by some viruses to control the ratio between structural and enzymatic proteins. Most viral mRNAs which use PRF adapt an H-type pseudoknot to stimulate −1 PRF. The relationship between the thermodynamic stability and the frameshifting efficiency of pseudoknots has not been fully understood. Recently, single-molecule force spectroscopy has revealed that the frequency of −1 PRF correlates with the unwinding forces required for disrupting pseudoknots, and that some of the unwinding work dissipates irreversibly due to the torsional restraint of pseudoknots. Complementary to single-molecule techniques, computational modeling provides insights into global motions of the ribosome, whose structural transitions during frameshifting have not yet been elucidated in atomic detail. Taken together, recent advances in biophysical tools may help to develop antiviral therapies that target the ubiquitous −1PRF mechanism among viruses. 1. Introduction to Programmed −1Ribosomal be any homopolymeric sequence, YYY can be either AAA Frameshifting in Viruses or UUU, and Z can be A, U or C. -
Guide for Morpholino Users: Toward Therapeutics
Open Access Journal of Drug Discovery, Development and Delivery Special Article - Antisense Drug Research and Development Guide for Morpholino Users: Toward Therapeutics Moulton JD* Gene Tools, LLC, USA Abstract *Corresponding author: Moulton JD, Gene Tools, Morpholino oligos are uncharged molecules for blocking sites on RNA. They LLC, 1001 Summerton Way, Philomath, Oregon 97370, are specific, soluble, non-toxic, stable, and effective antisense reagents suitable USA for development as therapeutics and currently in clinical trials. They are very versatile, targeting a wide range of RNA targets for outcomes such as blocking Received: January 28, 2016; Accepted: April 29, 2016; translation, modifying splicing of pre-mRNA, inhibiting miRNA maturation and Published: May 03, 2016 activity, as well as less common biological targets and diagnostic applications. Solutions have been developed for delivery into a range of cultured cells, embryos and adult animals; with development of a non-toxic and effective system for systemic delivery, Morpholinos have potential for broad therapeutic development targeting pathogens and genetic disorders. Keywords: Splicing; Duchenne muscular dystrophy; Phosphorodiamidate morpholino oligos; Internal ribosome entry site; Nonsense-mediated decay Morpholinos: Research Applications, the transcript from miRNA regulation; Therapeutic Promise • Block regulatory proteins from binding to RNA, shifting Morpholino oligos bind to complementary sequences of RNA alternative splicing; and get in the way of processes. Morpholino oligos are commonly • Block association of RNAs with cytoskeletal motor protein used to prevent a particular protein from being made in an organism complexes, preventing RNA translocation; or cell culture. Morpholinos are not the only tool used for this: a protein’s synthesis can be inhibited by altering DNA to make a null • Inhibit poly-A tailing of pre-mRNA; mutant (called a gene knockout) or by interrupting processes on RNA • Trigger frame shifts at slippery sequences; (called a gene knockdown).