Guide for Morpholino Users: Toward Therapeutics

Total Page:16

File Type:pdf, Size:1020Kb

Guide for Morpholino Users: Toward Therapeutics Open Access Journal of Drug Discovery, Development and Delivery Special Article - Antisense Drug Research and Development Guide for Morpholino Users: Toward Therapeutics Moulton JD* Gene Tools, LLC, USA Abstract *Corresponding author: Moulton JD, Gene Tools, Morpholino oligos are uncharged molecules for blocking sites on RNA. They LLC, 1001 Summerton Way, Philomath, Oregon 97370, are specific, soluble, non-toxic, stable, and effective antisense reagents suitable USA for development as therapeutics and currently in clinical trials. They are very versatile, targeting a wide range of RNA targets for outcomes such as blocking Received: January 28, 2016; Accepted: April 29, 2016; translation, modifying splicing of pre-mRNA, inhibiting miRNA maturation and Published: May 03, 2016 activity, as well as less common biological targets and diagnostic applications. Solutions have been developed for delivery into a range of cultured cells, embryos and adult animals; with development of a non-toxic and effective system for systemic delivery, Morpholinos have potential for broad therapeutic development targeting pathogens and genetic disorders. Keywords: Splicing; Duchenne muscular dystrophy; Phosphorodiamidate morpholino oligos; Internal ribosome entry site; Nonsense-mediated decay Morpholinos: Research Applications, the transcript from miRNA regulation; Therapeutic Promise • Block regulatory proteins from binding to RNA, shifting Morpholino oligos bind to complementary sequences of RNA alternative splicing; and get in the way of processes. Morpholino oligos are commonly • Block association of RNAs with cytoskeletal motor protein used to prevent a particular protein from being made in an organism complexes, preventing RNA translocation; or cell culture. Morpholinos are not the only tool used for this: a protein’s synthesis can be inhibited by altering DNA to make a null • Inhibit poly-A tailing of pre-mRNA; mutant (called a gene knockout) or by interrupting processes on RNA • Trigger frame shifts at slippery sequences; (called a gene knockdown). Some DNA alterations cause production of a protein to decrease without stopping all production; confusingly, • Invade RNA secondary structure, changing its these are also called gene knockdowns. DNA alterations are conformation; permanent, while knockdowns of RNA are either transient, generally • Serve as guide sequences for RNase-P activity; or last several days after dosing with antisense (such as Morpholinos), or are long-term, depending on continued production of knockdown • Block activity of a ribozyme. RNA in cells (such as shRNA transcribed in cells from a plasmid). Morpholinos have been broadly used in the developmental biology Once introduced into cells, Morpholinos freely diffuse between community to knock down genes in embryos of organisms such as the cytosol and nuclear compartments and bind complementary zebrafish (Danio rerio), African clawed frogs (Xenopus sp.), chicks sequences of RNA. Morpholinos have been used as gene knockdown (Gallus gallus), sea urchins (e.g. Strongylocentrotus sp.), sea squirts reagents in cell cultures and in animals, bacteria, protists, plants and (Ciona sp.), and many more. The oligos are usually microinjected fungi. The RNA-blocking property of Morpholinos has also been through fine glass needles into early embryos at the one-to-few used to cause a range of different outcomes beyond simple gene cell stage. Many kinds of antisense have toxic effects during knockdowns. Morpholinos have different effects depending on the development of an embryo. Because Morpholinos have little sort of target they bind. Morpholinos can: interaction with protein they are unusually non-toxic antisense, sufficiently non-toxic to make them the first choice of most • Block ribosome assembly and stop translation of a protein developmental biologists for transient gene knockdowns. In from an mRNA; contrast, injection of oligos containing phosophorothioate • Bind splice junctions and deny access to the small intersubunit linkages often kills embryos [1]. Morpholinos are nuclear Ribonuclear Proteins (snRNPs) that mark the junctions for highly specific antisense, having less interaction with unintended spliceosomes, altering splicing; RNAs than antisense which employs protein activity; this is because a Morpholino must be complementary to a longer • Bind to precursors of miRNA, inhibiting the maturation of sequence of RNA than antisense using catalytic activity (e.g. RNAi, the miRNA; phosphorothioate DNA, etc.) [2]. Less specific antisense causes • Bind to mature miRNA, inhibiting the activity of the changes in gene expression during development of the embryo and miRNA; can cause developmental defects (teratogenesis) [3]. • Bind to miRNA recognition elements on mRNA, relieving If you want to use an antisense oligo for a therapeutic, non- toxicity and specificity are excellent characteristics with which to J Drug Discov Develop and Deliv - Volume 3 Issue 2 - 2016 Citation: Moulton JD. Guide for Morpholino Users: Toward Therapeutics. J Drug Discov Develop and Deliv. ISSN : 2471-0288 | www.austinpublishinggroup.com 2016; 3(2): 1023. Moulton. © All rights are reserved Moulton JD Austin Publishing Group start. Morpholinos are also reasonably water soluble, with most oligos is referred to as RNase-H independent antisense. Some other oligo staying in solution for many months to years at 1mM concentration types, such as 2’-O-methyl phosphorothioate, peptide nucleic acid, in room temperature water; this gives them a great advantage over and locked nucleic acid oligos, are also steric blocking, RNase-H another kind of potential therapeutic antisense, the Peptide Nucleic independent antisense. Acids (PNA) [4]. Clinical trials conducted by Sarepta Theraeputics Benefits of Morpholino Structure Inc. (formerly AVI BioPharma Inc.) have shown excellent safety of the oligos in humans (Table 1). Lack of electrostatic charge Efficacy of Morpholino oligos in humans has been shown We hypothesize that the lack of protein interaction with in clinical trials for Duchenne muscular dystrophy. The splice- Morpholinos is due to their lack of electrostatic charge. Nucleic acids interact with proteins through relatively weak hydrogen bonding modifying Morpholino eteplirsen has partially restored function to and stronger charge-charge interactions. Proteins that have evolved the dystrophin protein, enough to show significant clinical benefit on to bind nucleic acids stabilize binding by attraction between cationic a six-minute walk test [5] versus the untreated control group. amino acids of the protein and the anionic charge on the backbone Introduction to the Molecules phosphates of the nucleic acid, along with weaker hydrogen-bonding interactions. Morpholinos arriving at the active site of a nucleic-acid Morpholino oligos are uncharged analogs of nucleic acids. Typical binding protein will not be held by the charge-charge interactions Morpholino oligos are from 18-30 subunits long, with a nucleic acid because the Morpholino backbone has no charge. This leaves base on each subunit. They are used to alter gene expression by binding hydrogen bonding, which is insufficient force to hold a Morpholino to complementary targets on RNA molecules and blocking processes. in the catalytic site of a nuclease or bind it into a Toll-like receptor. The interactions of Morpholinos with proteins are very weak so they are not cleaved by nucleases and have little effect on cells apart from Morpholinos do not bind to serum, which fits with our hypothesis their RNA binding activity. The structure, design and characteristics that the Morpholino’s lack of electrostatic charge prevents protein of Morpholino oligos have been reviewed elsewhere [6]. binding. Morpholino-serum interaction was assessed by surface plasmon resonance spectroscopy and no significant binding was Morpholino oligos are referred to by a variety of names and detected (Hong Moulton, Pers. Comm). As a result, unmodified acronyms. We usually call them Morpholinos, but in the literature Morpholino oligos have a short serum half-life relative to other oligo they are called Phosphorodiamidate Morpholino Oligos (PMO), types. While the exposure time of cells to Morpholino in the blood Morpholino Oligos (MO), Morpholino Antisense Oligos (MASO) and is relatively short, the oligos are free in solution and available for cell Neu-genes. Variations include delivery-enabled Vivo-Morpholinos, interactions as they are not associated with serum protein. photocleavable Photo-Morpholinos, and cell-penetrating Peptide- conjugated Phosphorodiamidate Morpholino Oligos (PPMO and Stability pip-PMO). The complete resistance of Morpholinos to nucleases has been shown in a study exposing the oligos to a range of nucleases Mechanism of Action and proteases for up to five hours in cell-free enzyme systems [7] Antisense oligos are molecules that bind to RNA by base pairing and by exposure to liver lysates [8]. No degradation of oligos was and change gene expression. The region of RNA complementary to detected in these tests. Later work exposed Morpholino-peptide an antisense oligo is called a target. The sequence of an mRNA is conjugates to serum and living cells. After varying incubation called the sense sequence. times, the Morpholinos were extracted and assessed by MALDI- TOF spectrometry. While intermediate and complete degradation Some antisense oligos rely on the activity of other molecules products of the peptide component were detected, no degradation of such as proteins for their effects
Recommended publications
  • CRNKL1 Is a Highly Selective Regulator of Intron-Retaining HIV-1 and Cellular Mrnas
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934927; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 CRNKL1 is a highly selective regulator of intron-retaining HIV-1 and cellular mRNAs 2 3 4 Han Xiao1, Emanuel Wyler2#, Miha Milek2#, Bastian Grewe3, Philipp Kirchner4, Arif Ekici4, Ana Beatriz 5 Oliveira Villela Silva1, Doris Jungnickl1, Markus Landthaler2,5, Armin Ensser1, and Klaus Überla1* 6 7 1 Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander 8 Universität Erlangen-Nürnberg, Erlangen, Germany 9 2 Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the 10 Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany 11 3 Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany 12 4 Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen- 13 Nürnberg, Erlangen, Germany 14 5 IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115, Berlin, 15 Germany 16 # these two authors contributed equally 17 18 19 *Corresponding author: 20 Prof. Dr. Klaus Überla 21 Institute of Clinical and Molecular Virology, University Hospital Erlangen 22 Friedrich-Alexander Universität Erlangen-Nürnberg 23 Schlossgarten 4, 91054 Erlangen 24 Germany 25 Tel: (+49) 9131-8523563 26 e-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934927; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Structural Insights Into Mrna Reading Frame Regulation by Trna
    RESEARCH ARTICLE Structural insights into mRNA reading frame regulation by tRNA modification and slippery codon–anticodon pairing Eric D Hoffer1, Samuel Hong1, S Sunita1, Tatsuya Maehigashi1, Ruben L Gonzalez Jnr2, Paul C Whitford3, Christine M Dunham1* 1Department of Biochemistry, Emory University School of Medicine, Atlanta, United States; 2Department of Chemistry, Columbia University, New York, United States; 3Department of Physics, Northeastern University, Boston, United States Abstract Modifications in the tRNA anticodon loop, adjacent to the three-nucleotide anticodon, influence translation fidelity by stabilizing the tRNA to allow for accurate reading of the mRNA genetic code. One example is the N1-methylguanosine modification at guanine nucleotide 37 (m1G37) located in the anticodon loop andimmediately adjacent to the anticodon nucleotides 34, 35, 36. The absence of m1G37 in tRNAPro causes +1 frameshifting on polynucleotide, slippery codons. Here, we report structures of the bacterial ribosome containing tRNAPro bound to either cognate or slippery codons to determine how the m1G37 modification prevents mRNA frameshifting. The structures reveal that certain codon–anticodon contexts and the lack of m1G37 destabilize interactions of tRNAPro with the P site of the ribosome, causing large conformational changes typically only seen during EF-G-mediated translocation of the mRNA-tRNA pairs. These studies provide molecular insights into how m1G37 stabilizes the interactions of tRNAPro with the ribosome in the context of a slippery mRNA codon. *For correspondence: Introduction [email protected] Post-transcriptionally modified RNAs, including ribosomal RNA (rRNA), transfer RNA (tRNA) and messenger RNA (mRNA), stabilize RNA tertiary structures during ribonucleoprotein biogenesis, reg- Competing interests: The ulate mRNA metabolism, and influence other facets of gene expression.
    [Show full text]
  • 1 Ribosomal Frameshifting Stimulation
    www.nature.com/scientificreports OPEN Mechanical unfolding kinetics of the SRV-1 gag-pro mRNA pseudoknot: possible implications Received: 26 August 2016 Accepted: 24 November 2016 for −1 ribosomal frameshifting Published: 21 December 2016 stimulation Zhensheng Zhong1, Lixia Yang1, Haiping Zhang2, Jiahao Shi1, J. Jeya Vandana1, Do Thuy Uyen Ha Lam1,3, René C. L. Olsthoorn4, Lanyuan Lu2 & Gang Chen1 Minus-one ribosomal frameshifting is a translational recoding mechanism widely utilized by many RNA viruses to generate accurate ratios of structural and catalytic proteins. An RNA pseudoknot structure located in the overlapping region of the gag and pro genes of Simian Retrovirus type 1 (SRV-1) stimulates frameshifting. However, the experimental characterization of SRV-1 pseudoknot (un)folding dynamics and the effect of the base triple formation is lacking. Here, we report the results of our single- molecule nanomanipulation using optical tweezers and theoretical simulation by steered molecular dynamics. Our results directly reveal that the energetic coupling between loop 2 and stem 1 via minor- groove base triple formation enhances the mechanical stability. The terminal base pair in stem 1 (directly in contact with a translating ribosome at the slippery site) also affects the mechanical stability of the pseudoknot. The −1 frameshifting efficiency is positively correlated with the cooperative one- step unfolding force and inversely correlated with the one-step mechanical unfolding rate at zero force. A significantly improved correlation was observed between− 1 frameshifting efficiency and unfolding rate at forces of 15–35 pN, consistent with the fact that the ribosome is a force-generating molecular motor with helicase activity.
    [Show full text]
  • Mechanisms of Mrna Frame Maintenance and Its Subversion During Translation of the Genetic Code
    Biochimie xxx (2015) 1e7 Contents lists available at ScienceDirect Biochimie journal homepage: www.elsevier.com/locate/biochi Mini-review Mechanisms of mRNA frame maintenance and its subversion during translation of the genetic code * Jack A. Dunkle, Christine M. Dunham Emory University School of Medicine, Department of Biochemistry, 1510 Clifton Road NE, Suite G223, Atlanta, GA 30322, USA article info abstract Article history: Important viral and cellular gene products are regulated by stop codon readthrough and mRNA frame- Received 11 December 2014 shifting, processes whereby the ribosome detours from the reading frame defined by three nucleotide Accepted 11 February 2015 codons after initiation of translation. In the last few years, rapid progress has been made in mechanis- Available online xxx tically characterizing both processes and also revealing that trans-acting factors play important regu- latory roles in frameshifting. Here, we review recent biophysical studies that bring new molecular Keywords: insights to stop codon readthrough and frameshifting. Lastly, we consider whether there may be com- Ribosome mon mechanistic themes in À1 and þ1 frameshifting based on recent X-ray crystal structures of þ1 Protein synthesis Frameshifting frameshift-prone tRNAs bound to the ribosome. © RNA structure 2015 Elsevier B.V. and Societe française de biochimie et biologie Moleculaire (SFBBM). All rights Translocation reserved. The ribosome is a macromolecular machine that performs incorporated, at least for the most error-prone codoneanticodon protein synthesis, one of the most conserved cellular functions in pairs [5e7]. The most common translational errors are missense or all organisms. Translating the information encoded on the tRNA miscoding errors but non-initiation, stop codon readthrough messenger RNA (mRNA) template into amino acids is a highly and mRNA reading frame errors do occur, although at lower fre- complex but coordinated process with four defined stages - initi- quencies [8].
    [Show full text]
  • Replication and Kinetic Trapping of Nucleic Acids in Alternative Environments
    REPLICATION AND KINETIC TRAPPING OF NUCLEIC ACIDS IN ALTERNATIVE ENVIRONMENTS A Dissertation Presented to The Academic Faculty by Adriana Lozoya Colinas In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry and Biochemistry Georgia Institute of Technology December 2020 COPYRIGHT © 2020 BY ADRIANA LOZOYA COLINAS REPLICATION AND KINETIC TRAPPING OF NUCLEIC ACIDS IN ALTERNATIVE ENVIRONMENTS Approved by: Dr. Nicholas V. Hud, Advisor Dr. Amanda Stockton School of Chemistry and Biochemistry School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Martha A. Grover Dr. Adegboyega (Yomi) Oyelere School of Chemical & Biomolecular School of Chemistry and Biochemistry Engineering Georgia Institute of Technology Georgia Institute of Technology Dr. Loren Williams School of Chemistry and Biochemistry Georgia Institute of Technology Date Approved: October 16, 2020 ACKNOWLEDGEMENTS I would like to thank my mom and dad for all their support and setting up an example for me to follow. I really appreciate everything you have done to encourage me to succeed and follow my dreams. I want to thank Mario for always supporting me. I know it hasn’t always been easy being far away, thank you for being patient and supportive with me. Thank you for the time and adventures we lived together. To all my Latino family at Georgia Tech, thank you for making me feel closer to home. We spent a lot of time together, learned a lot from each other and shared our culture, all of which have made my PhD experience more enjoyable. I would also like to acknowledge my advisor, Nick Hud, for being supportive and sharing his passion for science with me.
    [Show full text]
  • Revealing− 1 Programmed Ribosomal Frameshifting
    Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine Volume 2012, Article ID 569870, 9 pages doi:10.1155/2012/569870 Review Article Revealing −1 Programmed Ribosomal Frameshifting Mechanisms by Single-Molecule Techniques and Computational Methods Kai-Chun Chang Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10617, Taiwan Correspondence should be addressed to Kai-Chun Chang, [email protected] Received 25 November 2011; Accepted 16 January 2012 Academic Editor: Shang-Te Danny Hsu Copyright © 2012 Kai-Chun Chang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Programmed ribosomal frameshifting (PRF) serves as an intrinsic translational regulation mechanism employed by some viruses to control the ratio between structural and enzymatic proteins. Most viral mRNAs which use PRF adapt an H-type pseudoknot to stimulate −1 PRF. The relationship between the thermodynamic stability and the frameshifting efficiency of pseudoknots has not been fully understood. Recently, single-molecule force spectroscopy has revealed that the frequency of −1 PRF correlates with the unwinding forces required for disrupting pseudoknots, and that some of the unwinding work dissipates irreversibly due to the torsional restraint of pseudoknots. Complementary to single-molecule techniques, computational modeling provides insights into global motions of the ribosome, whose structural transitions during frameshifting have not yet been elucidated in atomic detail. Taken together, recent advances in biophysical tools may help to develop antiviral therapies that target the ubiquitous −1PRF mechanism among viruses. 1. Introduction to Programmed −1Ribosomal be any homopolymeric sequence, YYY can be either AAA Frameshifting in Viruses or UUU, and Z can be A, U or C.
    [Show full text]
  • Long Non-Coding Rnas Are Largely Dispensable for Zebrafish Embryogenesis, Viability and Fertility
    bioRxiv preprint doi: https://doi.org/10.1101/374702; this version posted July 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Long non-coding RNAs are largely dispensable for zebrafish embryogenesis, viability and fertility Mehdi Goudarzi1, Kathryn Berg1, Lindsey M. Pieper1, and Alexander F. Schier1,2,3,4,5 1Department oF Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA. 2Center For Brain Science, Harvard University, Cambridge, MA 02138, USA., 3FAS Center For Systems Biology, Harvard University, Cambridge, MA 02138, USA., 4Allen Discovery Center For Cell Lineage Tracing, University oF Washington, Seattle, 5 WA 98195, USA., Biozentrum, University oF Basel, Switzerland. Correspondence should be addressed to M.G. ([email protected]) or A.F.S. ([email protected]). Hundreds oF long non-coding RNAs (lncRNAs) have been identiFied as potential regulators oF gene expression, but their Functions remain largely unknown. To study the role oF lncRNAs during vertebrate development, we selected 25 zebraFish lncRNAs based on their conservation, expression proFile or proximity to developmental regulators, and used CRISPR-Cas9 to generate 32 deletion alleles. We observed altered transcription oF neighboring genes in some mutants, but none oF the lncRNAs were required For embryogenesis, viability or Fertility. Even RNAs with previously proposed non-coding Functions (cyrano and squint) and other conserved lncRNAs (gas5 and lnc-setd1ba) were dispensable. In one case (lnc-phox2bb), absence oF putative DNA regulatory-elements, but not of the lncRNA transcript itselF, resulted in abnormal development.
    [Show full text]
  • Mrna Stem-Loops Can Pause the Ribosome by Hindering A-Site Trna
    RESEARCH ARTICLE mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding Chen Bao1†, Sarah Loerch2†, Clarence Ling1, Andrei A Korostelev3,4, Nikolaus Grigorieff2,4*, Dmitri N Ermolenko1* 1Department of Biochemistry and Biophysics at School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, United States; 2Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States; 3Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States; 4RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, United States Abstract Although the elongating ribosome is an efficient helicase, certain mRNA stem-loop structures are known to impede ribosome movement along mRNA and stimulate programmed ribosome frameshifting via mechanisms that are not well understood. Using biochemical and single- molecule Fo¨ rster resonance energy transfer (smFRET) experiments, we studied how frameshift- inducing stem-loops from E. coli dnaX mRNA and the gag-pol transcript of Human Immunodeficiency Virus (HIV) perturb translation elongation. We find that upon encountering the ribosome, the stem-loops strongly inhibit A-site tRNA binding and ribosome intersubunit rotation *For correspondence: that accompanies translation elongation. Electron cryo-microscopy (cryo-EM) reveals that the HIV [email protected] (NG); stem-loop docks into the A site of the ribosome. Our results suggest that mRNA stem-loops can Dmitri_Ermolenko@urmc. transiently escape the ribosome helicase by binding to the A site. Thus, the stem-loops can rochester.edu (DNE) modulate gene expression by sterically hindering tRNA binding and inhibiting translation †These authors contributed elongation. equally to this work Competing interest: See page 22 Introduction Funding: See page 22 During translation elongation, the ribosome moves along mRNA in a codon-by-codon manner while Received: 06 February 2020 the mRNA is threaded through the mRNA channel of the small ribosomal subunit.
    [Show full text]
  • Targeting Protein Translation, RNA Splicing, and Degradation by Morpholino-Based Conjugates in Plasmodium Falciparum
    Targeting protein translation, RNA splicing, and degradation by morpholino-based conjugates in Plasmodium falciparum Aprajita Garga, Donna Wesolowskib, Dulce Alonsob,1, Kirk W. Deitschc, Choukri Ben Mamouna, and Sidney Altmanb,2 aDepartment of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520; bDepartment of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520; and cDepartment of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065 Contributed by Sidney Altman, August 11, 2015 (sent for review May 27, 2015; reviewed by Ron Dzikowski and Rima Mcleod) Identification and genetic validation of new targets from available same targets, MO conjugates have also been used to inhibit RNA genome sequences are critical steps toward the development of splicing and initiation of protein translation (9, 17, 18). new potent and selective antimalarials. However, no methods are To enhance cellular uptake of morpholino oligomers and other currently available for large-scale functional analysis of the Plasmo- drug-like molecules, arginine-rich peptides and polyguanidino dium falciparum genome. Here we present evidence for successful dendrimers have been used (19–23). For morpholino-based anti- use of morpholino oligomers (MO) to mediate degradation of target microbial activity, two types of conjugates have been developed, mRNAs or to inhibit RNA splicing or translation of several genes of PPMOs and vivo morpholino oligomers (VMOs, octa-guanidinium P. falciparum involved in chloroquine transport, apicoplast biogen- dendrimer-conjugated MOs; Materials and Methods). PPMOs are esis, and phospholipid biosynthesis. Consistent with their role in the produced following conjugation of a specific MO to a cell-pen- parasite life cycle, down-regulation of these essential genes resulted etrating, arginine-rich peptide, whereas VMOs are synthesized in inhibition of parasite development.
    [Show full text]
  • Advances in Oligonucleotide Drug Delivery
    REVIEWS Advances in oligonucleotide drug delivery Thomas C. Roberts 1,2 ✉ , Robert Langer 3 and Matthew J. A. Wood 1,2 ✉ Abstract | Oligonucleotides can be used to modulate gene expression via a range of processes including RNAi, target degradation by RNase H-mediated cleavage, splicing modulation, non-coding RNA inhibition, gene activation and programmed gene editing. As such, these molecules have potential therapeutic applications for myriad indications, with several oligonucleotide drugs recently gaining approval. However, despite recent technological advances, achieving efficient oligonucleotide delivery, particularly to extrahepatic tissues, remains a major translational limitation. Here, we provide an overview of oligonucleotide-based drug platforms, focusing on key approaches — including chemical modification, bioconjugation and the use of nanocarriers — which aim to address the delivery challenge. Oligonucleotides are nucleic acid polymers with the In addition to their ability to recognize specific tar- potential to treat or manage a wide range of diseases. get sequences via complementary base pairing, nucleic Although the majority of oligonucleotide therapeutics acids can also interact with proteins through the for- have focused on gene silencing, other strategies are being mation of three-dimensional secondary structures — a pursued, including splice modulation and gene activa- property that is also being exploited therapeutically. For tion, expanding the range of possible targets beyond example, nucleic acid aptamers are structured
    [Show full text]
  • Guide for Morpholino Users: Toward Therapeutics
    Open Access Journal of Drug Discovery, Development and Delivery Special Article - Antisense Drug Research and Development Guide for Morpholino Users: Toward Therapeutics Moulton JD* Gene Tools, LLC, USA Abstract *Corresponding author: Moulton JD, Gene Tools, Morpholino oligos are uncharged molecules for blocking sites on RNA. They LLC, 1001 Summerton Way, Philomath, Oregon 97370, are specific, soluble, non-toxic, stable, and effective antisense reagents suitable USA for development as therapeutics and currently in clinical trials. They are very versatile, targeting a wide range of RNA targets for outcomes such as blocking Received: January 28, 2016; Accepted: April 29, 2016; translation, modifying splicing of pre-mRNA, inhibiting miRNA maturation and Published: May 03, 2016 activity, as well as less common biological targets and diagnostic applications. Solutions have been developed for delivery into a range of cultured cells, embryos and adult animals; with development of a non-toxic and effective system for systemic delivery, Morpholinos have potential for broad therapeutic development targeting pathogens and genetic disorders. Keywords: Splicing; Duchenne muscular dystrophy; Phosphorodiamidate morpholino oligos; Internal ribosome entry site; Nonsense-mediated decay Morpholinos: Research Applications, the transcript from miRNA regulation; Therapeutic Promise • Block regulatory proteins from binding to RNA, shifting Morpholino oligos bind to complementary sequences of RNA alternative splicing; and get in the way of processes. Morpholino oligos are commonly • Block association of RNAs with cytoskeletal motor protein used to prevent a particular protein from being made in an organism complexes, preventing RNA translocation; or cell culture. Morpholinos are not the only tool used for this: a protein’s synthesis can be inhibited by altering DNA to make a null • Inhibit poly-A tailing of pre-mRNA; mutant (called a gene knockout) or by interrupting processes on RNA • Trigger frame shifts at slippery sequences; (called a gene knockdown).
    [Show full text]
  • Strategies for Genetic Inactivation of Long Noncoding Rnas in Zebrafish
    Downloaded from rnajournal.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Strategies for Genetic Inactivation of Long Noncoding RNAs in Zebrafish Perrine Lavalou1, Helene Eckert1, Louise Damy1, Florian Constanty1, Sara Majello1, Angelo Bitetti1, Antoine Graindorge1, Alena Shkumatava1,* 1Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, Paris, France *Corresponding author E-mail: [email protected] (AS) ABSTRACT The number of annotated long noncoding RNAs (lncRNAs) continues to groW, hoWever their functional characterization in model organisms has been hampered by the lack of reliable genetic inactivation strategies. While partial or full deletions of lncRNA loci disrupt lncRNA expression, they do not permit the formal association of a phenotype With the encoded transcript. Here, we examined several alternative strategies for generating lncRNA null alleles in zebrafish and found that they often resulted in unpredicted changes to lncRNA expression. Removal of the transcriptional start sites (TSSs) of lncRNA genes resulted in hypomorphic mutants due to the usage of either constitutive or tissue-specific alternative TSSs. Deletions of short, deeply conserved lncRNA regions can also lead to overexpression of truncated transcripts. By contrast, a knock-in of a polyadenylation signal enabled complete inactivation of malat1, the most abundant vertebrate lncRNA. In summary, lncRNA null alleles require extensive in vivo validation and We propose insertion of transcription termination sequences as the most reliable approach to generate lncRNA- deficient zebrafish. 1 Downloaded from rnajournal.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press INTRODUCTION Thousands of lncRNAs have been identified in multiple vertebrate species (Hezroni et al., 2015; Necsulea et al., 2014), but their biological functions remain mostly unknoWn.
    [Show full text]