Identification and Functional Characterization of Novel Genes Implicated in Congenital Myopathies Xavière Lornage
Total Page:16
File Type:pdf, Size:1020Kb
Identification and functional characterization of novel genes implicated in congenital myopathies Xavière Lornage To cite this version: Xavière Lornage. Identification and functional characterization of novel genes implicated in congenital myopathies. Rhumatology and musculoskeletal system. Université de Strasbourg, 2019. English. NNT : 2019STRAJ067. tel-02900858 HAL Id: tel-02900858 https://tel.archives-ouvertes.fr/tel-02900858 Submitted on 16 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE (ED 414) IGBMC, INSERM, UNIVERSITE DE STRASBOURG THÈSE Présentée par : Xavière LORNAGE Soutenue le 13 Septembre 2019 En vue d’obtenir le grade de : Docteur de l’Université de Strasbourg Discipline : Aspects moléculaires et cellulaires de la biologie Identification and functional characterization of novel genes implicated in congenital myopathies THÈSE dirigée par : Mme Valérie BIANCALANA MCU-PH, Université de Strasbourg, IGBMC RAPPORTEURS : M. Helge AMTHOR PU-PH, Université Versailles Saint-Quentin-en-Yvelines Mme Catherine COIRAULT DR INSERM, Institut de Myologie AUTRES MEMBRES DU JURY : Mme Amélie PITON MCU-PH, Université de Strasbourg, IGBMC MEMBRES INVITES : M. Jocelyn Laporte DR INSERM, Université de Strasbourg, IGBMC M. Johann Böhm CR INSERM, Université de Strasbourg IGBMC ACKNOWLEDGEMENTS I would like to thank Catherine Coirault, Helge Amthor, and Amélie Piton for accepting to be part of the jury, and to read and evaluate my work. I am very grateful to Jocelyn Laporte, Johann Böhm, and Valérie Biancalana for giving me the chance to work in their team. By sharing your advice and knowledge, you helped me a lot to become closer to the scientist I want to be. I would like to express my gratitude to all the collaborators for this work, and especially to Norma Romero for sharing her very inspiring knowledge and her enthusiasm. I am also very grateful to all present and former MAD team members. Thanks a lot for the dynamic, friendly, and positive atmosphere, the discussions, the outings, and the friendships! Valentina, Raphaël, Kirsley, thanks a lot for your significant technical assistance. Special thanks to Elodie, Inès, Mégane and Laurine, it was a pleasure to supervise your work and discuss all your exciting results! Johann, danke für deinen Geduld, besonders bei den Korrekturen. Dank Dir habe ich viele Wissenschaftler, Ärzte, und auch Patienten kennengelernt! This work was made much easier thanks to all people from the molecular biology, microscopy, and antibody production platforms, and from the animal and cell culture facilities. Thanks to all of you! Papa et maman, merci beaucoup de m’avoir toujours encouragée à tenter ce que je considérais impossible. 1 TABLE OF CONTENT 1 INTRODUCTION ................................................................................................................... 6 1.1 The congenital myopathies ....................................................................................... 7 1.1.1 Normal and abnormal skeletal muscle function and structure .................................. 7 1.1.2 The classification of congenital myopathies ........................................................... 11 1.2 Diagnosis of congenital myopathies ....................................................................... 17 1.2.1 DNA sequencing in diagnostic laboratories ............................................................ 17 1.2.2 Rationale .................................................................................................................. 19 1.2.3 The MYOCAPTURE project .................................................................................. 19 1.2.4 Aims of the project .................................................................................................. 21 2 RESULTS .............................................................................................................................. 22 2.1 Mutations in known myopathy genes in patients with classical phenotypes ..... 22 2.1.1 Publication 1: Loss of sarcomeric scaffolding as a common baseline histopathologic lesion in titin-related myopathies (Avila-Polo et al. 2018) ................................................... 23 2.1.2 Publication 2: Common and variable clinical, histological, and imaging findings of recessive RYR1-related centronuclear myopathy patients (Abath Neto et al. 2017) ............. 25 2.2 Mutations in known myopathy genes with new phenotypes ............................... 27 2.2.1 Publication 3: Novel SPEG mutations in congenital myopathy without centralized nuclei (Lornage et al. 2018) .................................................................................................. 28 2.2.2 Publication 4: HSPB8 haploinsufficiency causes dominant adult-onset axial and distal myopathy (Echaniz-Laguna et al. 2017) ...................................................................... 30 2.2.3 Publication 5: Expanding the spectrum of congenital myopathy linked to recessive mutations in SCN4A (Mercier et al. 2017) ........................................................................... 32 2.2.4 Publication 6: CASQ1 mutations impair calsequestrin polymerization and cause tubular aggregate myopathy (Bohm et al. 2018) ................................................................... 33 2.2.5 Publication 7: HNRNPDL-related muscular dystrophy: expanding the clinical, morphological and MRI phenotypes (Berardo et al. 2019) ................................................... 35 2 2.2.6 Publication 8: Dihydropyridine receptor (DHPR, CACNA1S) congenital myopathy (Schartner et al. 2017) ........................................................................................................... 36 2.2.7 Publication 9: Affected female carriers of MTM1 mutations display a wide spectrum of clinical and pathological involvement: delineating diagnostic clues (Biancalana et al. 2017) 38 2.2.8 Publication 10: Sarcomeric disorganization and nemaline bodies in muscle biopsies of patients with EXOSC3-related type 1 pontocerebellar hypoplasia (Pinto et al. 2018) ..... 40 2.2.9 Publication 11: Discordant manifestations in Italian brothers with GNE myopathy (Dotti et al. 2018) .................................................................................................................. 41 2.3 Mutations in novel genes......................................................................................... 42 2.3.1 Publication 12: Recessive MYPN mutations cause cap myopathy with occasional nemaline rods (Lornage et al. 2017) ...................................................................................... 43 2.3.2 Publication 13: ACTN2 mutations cause “Multiple structured Core Disease” (MsCD) (Lornage et al. 2019) ............................................................................................... 45 2.3.3 Investigation of the pathogenicity of the ACTN2 c.302A>G p.(Asn101Ser) mutation 47 DISCUSSION ............................................................................................................................... 58 2.4 MYPN and ACTN2 – two novel congenital myopathy genes ............................... 58 2.4.1 MYPN mutations in human disease ......................................................................... 58 2.4.2 ACTN2 mutations in human disease ........................................................................ 63 2.4.3 ACTN2- and MYPN-related myopathies: conclusion .............................................. 69 2.5 MYOCAPTURE: contributions and future prospects ........................................ 70 2.5.1 Global analysis of the MYOCAPTURE project ..................................................... 70 2.5.2 Significance of the MYOCAPTURE project .......................................................... 72 2.5.3 Future prospects: identification of the missing myopathy genes ............................ 73 3 FRENCH SUMMARY ......................................................................................................... 81 4 REFERENCES ...................................................................................................................... 86 3 LIST OF FIGURES AND TABLES Table I1: Main clinical features of NMDs with primary muscle involvement ............................... 6 Fig I1: Overall skeletal muscle organization ................................................................................... 7 Fig I2: Overall sarcomere organization ........................................................................................... 8 Table I2: Properties of type 1 and type 2 muscle fibers ................................................................ 10 Fig I4: Type 1 fiber predominance in a patient with congenital myopathy .................................. 11 Fig I5: Histological anomalies of CNM patients .......................................................................... 12 Fig I6: Histological and ultrastructural characteristics of nemaline rods