Introducing the Boring Sponge

Total Page:16

File Type:pdf, Size:1020Kb

Introducing the Boring Sponge Introducing the Boring Sponge JOSEPHL. PARKHURST,JR. Colonia, New Jersey If you enjoy picking up shells from the tidal There are beaches near New York where a debris of the seashore you have probably single species like Microciona prolifera, the red wondered about the ones perforated with little sponge, is the most conspicuous object along holes. The answer to this question might be tide lines. You might see an outstanding speci- found at the market when they are shucking men of Chalina oculata, a branching type, on a box of oysters. Some of these may be honey- a New England wharf when it is brought in combed in the same way and have a bright and set out by fishermen. Downloaded from http://online.ucpress.edu/abt/article-pdf/22/3/166/16456/4439291.pdf by guest on 24 September 2021 yellow color where the shells are cracked. With the exception of bath sponges the av- This is the trademark of an amazing sponge, erage person pays little attention to this inter- with the name Cliona celata, or C. sulfurea. esting part of the animal kingdom. The Cliona starts its growth in the warmer sponges have been hard to pin down, with months of the year, boring into the shells of such a variety of form and size, and you oysters and clams, and making a network of would have to be a specialist to understand tunnels. After consuming the shell the sponge them. Possibly these few lines have been help- grows over it, forming a cheese-like yellow ful to the beginner, or at least suggest a fasci- mass with regular spots. This massive growth nating subject. occurs in the winter, and specimens can be [Editor's Note: Cover picture accompanies this several feet long and very heavy. article.] Sponges are a singular group of aquatic ani- mal life, confused for a long time with vege- Conservation Books tation, and live by merely filtering tiny food particles from the water. On the inside lining The following books are availablefrom the there are specialized cells equipped with hairs InterstatePrinters & Publishers,Inc., Jackson to stir up a current of sea water. First the at VanBuren, Danville, Illinois, at 10% dis- count for and discount water is drawn through the porous surface and single copies 20% for tw\%oor more copies: then expelled through a larger or opening, The ConservationHandbook, The National mouth. The round holes in the conspicuous Association of Biology Teachers-$4.50 with these mouths. oyster shell correspond Approved Practices in Soil Conservation, Extensive colonies of Cliona on oyster beds Albert B. Foster-$2.50 of the Atlantic coast cause a considerable an- Our NaturalResources, P. E. McNall-$3.50 noyance for oystermen. Boring sponges are Materials for Teaching Conservation anid probably best known in this connection, as Resource-Use, The National Association of fouling agents, smothering oysters, and other Biology Teachers-350 forms of anchored life. This habit of boring in Our Daily Bread, Susan Myrick-$2.04 sponges, along with certain worms and mol- This Is Our Soil, Ernest D. Walker and lusks, aids in the disintegration of shell heaps Albert B. Foster-$.50 on the bottom. Soil ConservationWorkbook-$.75 One noticeable thing about sponges is their SupplementalIrrigation for Eastern United lack of individuality. Sponges of the same States, Harry Rubey-$3.00 species appear as cake-like crusts near the CGettingStarted in IrrigationFarming, Roy shore and branch out in deeper water. Two W. Dugger-$1.2 5 of them growing next to each other may fuse Manual for Outdoor Laboratories,Richard into one large mass. If one is cut up new speci- L. Weaver-$1.2 5 mens will grow from each of the pieces. Our Soils and Their Management,Roy L. Some of the other northern sponges are fre- Donahue-$ 3.75 quently seen in the tide wrack of bavs and Science: Suggestions for Teaching, Phila- coves, and you may find undamaged young delphia Suburban School Study Council specimens, or pieces large enough to identifv. Group "C"-$2.50 166 .
Recommended publications
  • Growth Inhibition of Red Abalone (Haliotis Rufescens) Infested with an Endolithic Sponge (Cliona Sp.)
    GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) By Kirby Gonzalo Morejohn A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment Of the Requirements for the Degree Master of Science In Natural Resources: Biology May, 2012 GROWTH INHIBITION OF RED ABALONE (HALIOTIS RUFESCENS) INFESTED WITH AN ENDOLITHIC SPONGE (CLIONA SP.) HUMBOLDT STATE UNIVERSITY By Kirby Gonzalo Morejohn We certify that we have read this study and that it conforms to acceptable standards of scholarly presentation and is fully acceptable, in scope and quality, as a thesis for the degree of Master of Science. ________________________________________________________________________ Dr. Sean Craig, Major Professor Date ________________________________________________________________________ Dr. Tim Mulligan, Committee Member Date ________________________________________________________________________ Dr. Frank Shaughnessy, Committee Member Date ________________________________________________________________________ Dr. Laura Rogers-Bennett, Committee Member Date ________________________________________________________________________ Dr. Michael Mesler, Graduate Coordinator Date ________________________________________________________________________ Dr. Jená Burges, Vice Provost Date ii ABSTRACT Understanding the effects of biotic and abiotic pressures on commercially important marine species is crucial to their successful management. The red abalone (Haliotis rufescensis) is a commercially
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Serpula vermicularis reefs on very sheltered circalittoral muddy sand MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Frances Perry, Catherine Wilding, Jacqueline Hill and Dr Harvey Tyler-Walters 2020-05-27 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/41]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Perry, F., Wilding, C., Hill, J., & Tyler-Walters, H., 2020. [Serpula vermicularis] reefs on very sheltered circalittoral muddy sand. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.41.3 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2020-05-27 Serpula vermicularis reefs on very sheltered circalittoral muddy sand - Marine Life Information Network A colony of tube worms forming a small reef, Loch Creran.
    [Show full text]
  • Intertidal Organisms of Point Reyes National Seashore
    Intertidal Organisms of Point Reyes National Seashore PORIFERA: sea sponges. CRUSTACEANS: barnacles, shrimp, crabs, and allies. CNIDERIANS: sea anemones and allies. MOLLUSKS : abalones, limpets, snails, BRYOZOANS: moss animals. clams, nudibranchs, chitons, and octopi. ECHINODERMS: sea stars, sea cucumbers, MARINE WORMS: flatworms, ribbon brittle stars, sea urchins. worms, peanut worms, segmented worms. UROCHORDATES: tunicates. Genus/Species Common Name Porifera Prosuberites spp. Cork sponge Leucosolenia eleanor Calcareous sponge Leucilla nuttingi Little white sponge Aplysilla glacialis Karatose sponge Lissodendoryx spp. Skunk sponge Ophlitaspongia pennata Red star sponge Haliclona spp. Purple haliclona Leuconia heathi Sharp-spined leuconia Cliona celata Yellow-boring sponge Plocarnia karykina Red encrusting sponge Hymeniacidon spp. Yellow nipple sponge Polymastia pachymastia Polymastia Cniderians Tubularia marina Tubularia hydroid Garveia annulata Orange-colored hydroid Ovelia spp. Obelia Sertularia spp. Sertularia Abientinaria greenii Green's bushy hydroid Aglaophenia struthionides Giant ostrich-plume hydroid Aglaophenia latirostris Dainty ostrich-plume hydroid Plumularia spp. Plumularia Pleurobrachia bachei Cat's eye Polyorchis spp. Bell-shaped jellyfish Chrysaora melanaster Striped jellyfish Velella velella By-the-wind-sailor Aurelia auria Moon jelly Epiactus prolifera Proliferating anemone Anthopleura xanthogrammica Giant green anemone Anthopleura artemissia Aggregated anemone Anthopleura elegantissima Burrowing anemone Tealia lofotensis
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Defense Mechanism and Feeding Behavior of Pteraster Tesselatus Ives (Echinodermata, Asteroidea)
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1976-08-12 Defense mechanism and feeding behavior of Pteraster tesselatus Ives (Echinodermata, Asteroidea) James Milton Nance Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd BYU ScholarsArchive Citation Nance, James Milton, "Defense mechanism and feeding behavior of Pteraster tesselatus Ives (Echinodermata, Asteroidea)" (1976). Theses and Dissertations. 7836. https://scholarsarchive.byu.edu/etd/7836 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. DEFENSE MECHANISM AND FEEDING BEHAVIOR OF PTEP.ASTER TESSELATUS IVES (ECHINODER.1v!ATA, ASTEROIDEA) A Manuscript of a Journal Article Presented to the Department of Zoology Brigham Young University In Partial Fulfillment of the Requirements for the Degree Master of Science by James Milton Nance December 1976 This manuscript, by James M. Nance is accepted in its present form by the Department of Zoology of Brigham Young University as satisfying the thesis requirement for the degree of Master of Science. Date ii ACKNOWLEDGMENTS I express my deepest appreciation to Dr. Lee F. Braithwaite for his friendship, academic help, and financial assistance throughout my graduate studies at Brigham Young University. I also extend my thanks to Dr. Kimball T. Harper and Dr. James R. Barnes for their guidance and suggestions during the writing of this thesis. I am grateful to Dr. James R. Palmieri who made the histochemical study possible, and to Dr.
    [Show full text]
  • Life-History Traits of a Common Caribbean Coral-Excavating Sponge, Cliona Tenuis (Porifera: Hadromerida) Manuel González-Riveroa,B,G*, Alexander V
    Journal of Natural History, 2013 http://dx.doi.org/10.1080/00222933.2013.802042 Life-history traits of a common Caribbean coral-excavating sponge, Cliona tenuis (Porifera: Hadromerida) Manuel González-Riveroa,b,g*, Alexander V. Ereskovskyc , Christine H. L. Schönbergd , Renata Ferrarie,g, Jane Fromonte and Peter J. Mumbyb,g aCoral Reefs Ecosystems Laboratory, School of Biological Sciences, The University of Queensland. St Lucia campus, Brisbane. Qld 4072. Australia; bCollege of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom; cInstitut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE), CNRS, Aix-Marseille Université, Marseille, France; dAustralian Institute of Marine Science, Oceans Institute at The University of Western Australia, Crawley, Australia; eCoastal & Marine Ecology Group, School of Biological Sciences, The University of Sydney, Australia; fWestern Australian Museum, Welshpool, Australia; gMarine Spatial Ecology Lab, School of Biological Sciences, University of Queensland. St Lucia Campus, Brisbane. Qld 4072. Australia (Received 3 June 2012; final version received 15 April 2013) Clionaids are important competitors and bio-eroding agents on coral reefs; how- ever, little is known of their biology. We studied aspects of life history of Cliona tenuis, in particular its sexual reproduction and growth. Temporal variations in these traits were studied over a year, in correlation with water temperature as a proxy for seasonality. Growth and sexual reproduction occurred at separate times and followed intra-annual variations in temperature. Growth increased during the warmest months of the year, reaching an average rate of 29.9 ± 6.7 mm dur- ing 286 days. Cliona tenuis is oviparous, and the results suggest gonochorism.
    [Show full text]
  • Evaluating a Potential Relict Arctic Invertebrate and Algal Community on the West Side of Cook Inlet
    Evaluating a Potential Relict Arctic Invertebrate and Algal Community on the West Side of Cook Inlet Nora R. Foster Principal Investigator Additional Researchers: Dennis Lees Sandra C. Lindstrom Sue Saupe Final Report OCS Study MMS 2010-005 November 2010 This study was funded in part by the U.S. Department of the Interior, Bureau of Ocean Energy Management, Regulation and Enforcement (BOEMRE) through Cooperative Agreement No. 1435-01-02-CA-85294, Task Order No. 37357, between BOEMRE, Alaska Outer Continental Shelf Region, and the University of Alaska Fairbanks. This report, OCS Study MMS 2010-005, is available from the Coastal Marine Institute (CMI), School of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK 99775-7220. Electronic copies can be downloaded from the MMS website at www.mms.gov/alaska/ref/akpubs.htm. Hard copies are available free of charge, as long as the supply lasts, from the above address. Requests may be placed with Ms. Sharice Walker, CMI, by phone (907) 474-7208, by fax (907) 474-7204, or by email at [email protected]. Once the limited supply is gone, copies will be available from the National Technical Information Service, Springfield, Virginia 22161, or may be inspected at selected Federal Depository Libraries. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. Evaluating a Potential Relict Arctic Invertebrate and Algal Community on the West Side of Cook Inlet Nora R.
    [Show full text]
  • Marine Habitats
    NPWS Magharee Islands SAC (site code: 2261) Conservation objectives supporting document - Marine Habitats Version 1 December 2013 Introduction Magharee Islands SAC is designated for the marine Annex I qualifying interest of Reefs (Figure 1). An intertidal survey was carried out in 2009 (RPS, 2013), subtidal surveys were undertaken in 2009 and 2010 (ERM, 2010 and Aquafact, 2011) and a BioMar survey of the area was carried out in 1996 (Picton & Costello, 1997). These data were used to determine the physical and biological nature of this SAC. Aspects of the biology and ecology of the Annex I habitat are provided in Section 1. The corresponding site-specific conservation objective will facilitate Ireland delivering on its surveillance and reporting obligations under the EU Habitats Directive (92/43/EC). Ireland also has an obligation to ensure that consent decisions concerning operations/activities planned for Natura 2000 sites are informed by an appropriate assessment where the likelihood of such operations or activities having a significant effect on the site cannot be excluded. Further ancillary information concerning the practical application of the site-specific objectives and targets in the completion of such assessments is provided in Section 2. 1 Section 1 Principal Benthic Communities Within the Magharee Islands SAC, three community types are recorded in the Annex I habitat. These are shown in table 1 and a description of each community type is given below. SAC Annex I Habitat Community Type Reefs (1170) Intertidal reef community complex Laminaria-dominated community complex Subtidal reef community complex Table 1 The community types recorded in Magharee Islands SAC Estimated area of each community type within the Annex I habitat, based on interpolation, are given in the objective targets in Section 2.
    [Show full text]
  • Systematics, Zoogeography and Affinity of Boring Sponges Infesting the Brown Mussel, Perna Indica Kuriakose and Nair from the Southwest Coast of India
    Available online at: www.mbai.org.in doi: 10.6024/jmbai.2015.57.2.1849-06 Systematics, zoogeography and affinity of boring sponges infesting the brown mussel, Perna indica Kuriakose and Nair from the southwest coast of India P. Sunil kumar and P. A. Thomas* ICAR - Central Marine Fisheries Research Institute, Kochi-682018, Kerala, India *Correspondence e-mail: [email protected] Received: 18 May 2015, Accepted: 20 Dec 2015, Published: 30 Dec 2015 Original Article Abstract major threat to any molluscan culture farm along this estuary in future. Systematics, description, distribution of A study on the boring sponges infesting the brown mussel population of the southwest coast of India was initiated in all the nine species along with illustrations are given in this 1998, and bored shells collected from five major mussel paper. fishing centres along the coast were analysed on a regular basis. It could be seen that out of 5,600 shells examined Keywords: Brown mussel, dreadful sponge pests, southwest during 1998-2000 period, 997 shells were found coast, India infested with boring sponges registering an overall incidence of 17.8%, and this, when compared with 3-8 % noticed in natural molluscan beds was too high. The total number of boring sponge species recorded from mussel is nine, and these fall under two families and four genera, the most speciose genus being Cliona with five species. The Enayam centre accounted for all the nine species, and the two new infiltrants,Pione margaritifera and C. lobata formed a common factor with high specific incidence (%) Introduction in all the centres surveyed.
    [Show full text]
  • Cliona Viridis Complex’ from South-Eastern Brazil Camille V
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 10. # Marine Biological Association of the United Kingdom, 2015 doi:10.1017/S0025315415001642 Morphological and molecular systematics of the ‘Cliona viridis complex’ from south-eastern Brazil camille v. leal1, thiago s. de paula2, gisele lo^bo-hajdu2, christine h. l. scho¤nberg3,4 and eduardo l. esteves5 1Departamento de Invertebrados, Museu Nacional, Universidade Federal do Rio de Janeiro, Quinta da Boa Vista, s/n, 20940-040 Rio de Janeiro, RJ, Brazil, 2Departamento de Gene´tica, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rua Sa˜o Francisco Xavier, 524 – PHLC – Sala 205, 20550-013 Rio de Janeiro, RJ, Brazil, 3The University of Western Australia Oceans Institute (MO96), 39 Fairway, Crawley, WA 6009, Australia, 4Western Australian Museum, 49 Kew Street, Welshpool, WA 6106, Australia, 5Departamento de Zoologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rua Sa˜o Francisco Xavier, 524 – PHLC – Sala 520, 20550-013 Rio de Janeiro, RJ, Brazil Bioeroding sponges of the Cliona viridis species complex play a large role in carbonate cycling and reef health. In the present study we provide the first record and a description of a Mediterranean lineage of C. viridis (Schmidt, 1862) in the south- western Atlantic. Specimens were collected in Marica´s Archipelago, Rio de Janeiro State in September 2010 by scuba diving at 10–12 m depth and deposited in the Porifera collection of Museu Nacional, Universidade Federal do Rio de Janeiro. Morphologically, the specimens presently examined are very similar to those described in the beta and gamma growth form from the Mediterranean.
    [Show full text]
  • Towards Integrated Marine Research Strategy and Programmes CIGESMED
    Towards Integrated Marine Research Strategy and Programmes CIGESMED : Coralligenous based Indicators to evaluate and monitor the "Good Environmental Status" of the Mediterranean coastal waters French dates: 1st March2013 -29th October2016 Greek dates: 1st January2013 -31st December2015 Turkish dates: 1st February2013 –31st January2016 FINAL REPORT Féral (J.-P.)/P.I., Arvanitidis (C.), Chenuil (A.), Çinar (M.E.), David (R.), Egea (E.), Sartoretto (S.) 1 INDEX 1. Project consortium. Total funding and per partner .............................................................. 3 2. Executive summary ............................................................................................................... 3 3. Aims and scope (objectives) .................................................................................................. 6 4. Results by work package ....................................................................................................... 8 WP1: MANAGEMENT, COORDINATION & REPORTING ............................................................. 8 WP2: CORALLIGEN ASSESSMENT AND THREATS ..................................................................... 15 WP3: INDICATORS DEVELOPMENT AND TEST ......................................................................... 39 WP4: INNOVATIVE MONITORING TOOLS ................................................................................ 52 WP5: CITIZEN SCIENCE NETWORK IMPLEMENTATION ........................................................... 58 WP6: DATA MANAGEMENT, MAPPING
    [Show full text]
  • Adult Size Defined As the Average Length of Adults (Self Reported in the Source, Mean of a Range Size, Mean of a Table Or Measured by Ourselves)
    Adult size Defined as the average length of adults (self reported in the source, mean of a range size, mean of a table or measured by ourselves). In case of strong sex dimorphism and when available, female size was preferred. Species Size (cm) Sources Abatus_agassizi 2.45 1 Abatus_cordatus 2.77 2 Allolobophora_chlorotica_L1 5.5 3 Allolobophora_chlorotica_L1 5.5 3 Allolobophora_chlorotica_L4 5.5 3 Aporrectodea_icterica 9.5 4 Aptenodytes_patagonicus 90 5 Armadillidium_nasatum 1.8 6 Armadillidium_vulgare 1.8 6 Artemia_franciscana 1 7 Artemia_salina 1 7 Artemia_sinica 1 7 Artemia_tibetana 1 7 Bostrycapulus_aculeatus 2.5 8 Caenorhabditis_brenneri 0.15 9 Caenorhabditis_sp.10 0.15 9 Callithrix_jacchus 13.5 10 Camponotus_aethiops 1.4 Measured (queen) Camponotus_ligniperdus 1.9 Measured (queen) Carcinus_aestuarii 2.79 11 Chelonoidis_nigra 110 12 Chlorocebus_aethiops 50 13 Ciona_intestinalis_A 15.5 14 Ciona_intestinalis_B 15.5 14 Crepidula_fornicata 3.5 14 Crepidula_plana 1 15 Culex_hortensis 0.5 Measured (female) Culex_pipiens 0.5 Measured (female) Culex_torrentium 0.5 Measured (female) Cystodytes_dellechiajei_blue 0.5 16 Cystodytes_dellechiajei_purple 0.5 16 Echinocardium_cordatum_B2 6.5 14 Echinocardium_mediterraneum 4.5 17 Emys_orbicularis 25 18 Eudyptes_filholi 55 19 Eudyptes_moseleyi 55 19 Eulemur_coronatus 34 20 Eulemur_mongoz 35 21 Eunicella_cavolinii 30 22 Eunicella_verrucosa 37.5 14 Galago_senegalensis 13 23 Halictus_scabiosae 1.5 Measured (female) Hippocampus_guttulatus 13.3 24 Hippocampus_hippocampus 10 24 Hippocampus_kuda 12 25 Homo_sapiens
    [Show full text]