Brochure Acquafarm 2020

Total Page:16

File Type:pdf, Size:1020Kb

Brochure Acquafarm 2020 19-20 FEBRUARY 2020 PORDENONE EXHIBITION CENTER VENICE AREA -ITALY INTERNATIONAL CONFERENCE & TRADE SHOW ON AQUACULTURE, ALGACULTURE AND FISHING INDUSTRY 4th edition AQUACULTURE ALGACULTURE CO-LOCATED: FISHING INDUSTRY INTERNATIONAL CONFERENCE & TRADE SHOW FOR NEW GROWING SYSTEMS, SOILLESS AND VERTICAL FARMING FEBRUARY 19-20, 2020 PORDENONE EXHIBITION CENTER VENICE AREA-ITALY INTERNATIONAL CONFERENCE & TRADE SHOW ON AQUACULTURE, ALGACULTURE AND FISHING INDUSTRY Figures refer to AquaFarm 2019 VISITORS 2500 qualified 41 visitors countries More than 2500 visitors: 25% foreign visitors from 41 countries + 60% visitors in one year +15% increase in terms of internationality TOP TEN COUNTRIES • SLOVENIA • GREAT BRITAIN • CROATIA • GERMANY • FRANCE • NETHERLANDS • BOSNIA AND HERZEGOVINA • ALBANIA • SPAIN • POLAND • BELGIUM VISITOR’S PROFILE • Importer/Exporter • Research and development • Great Distribution • Research / Education / • Fish Farmers Government • Equipment & Technologies • Horeca sector • Feed and feed materials EXHIBITORS 124 exhibitors 35% foreign exhibitors + 60% of the exhibition space compared to the 2018 edition PRODUCT CATEGORIES • Systems, plants and equipment for fishing and breeding of fish • Breeding systems, containment, caging and flotation • Feed and raw materials for feed • Systems for the storage and distribution of feed • Systems and plants for water treatment • Technologies and products for collection, transformation and packaging of food microalgae • Technologies and products for microalgae cultivation • Technologies, products and machineries for the molluscs farming • Technologies for the processing and transformation of fish • Measurement and control instrumentation • Antibiotics, vitamins, antiseptics and disinfectants • Technologies and equipment for storage (refrigeration and freezing) • Energy production system in cogeneration mode • Instrumentation for distribution and commercialization • Environmental control technologies • Composting and anaerobic of waste system • Industry Associations • Services and consultancy NEWS 2020: FINISHED • Researchers and academics PRODUCT AREA • Public administration • Media sectors • Fish farmers WHY EXHIBIT AT AQUAFARM 2020? • The exclusive B2B event dedicated to aquaculture, algaculture and fishing industry in the Mediterranean Basin • A fast growing international trade show • It offers an opportunity forprofessional updating and networking • It combines an international trade exhibition along with a high-level conference program • New Finished Product Area (from farmer to market) AQUAFARM 2020 nd CO-LOCATED: 2 NOVELFARM 2020 edition FEBRUARY 19-20, 2020 PORDENONE FIERE EXHIBITION CENTER (VENICE AREA) The international B2B reserved to the operators of the INTERNATIONAL CONFERENCE & TRADE sector of new growing systems, soilless and vertical farming SHOW FOR NEW GROWING SYSTEMS, SOILLESS AND VERTICAL FARMING WWW.NOVELFARMEXPO.IT EXHIBITOR REVIEWS “Aquafarm has remained a valuable meeting moment and an excellent exchange among fish farmers, suppliers, institutions and researchers.” API – Italian Fish Farmers Association “An important and fastest growing event dedicated to the aquaculture sector.” VRM srl - Naturalleva “Aquafarm is a unique event within the sector and its formula is the most effective both for professional training and for exhibitors to widen their opportunities.” Fatro “We have had the opportunity to meet new customers and new partners. Aquafarm is an interesting event, very familiar and very dynamic.” FMM – Mauritius “Aquafarm is where human relationships meet business: it is the right occasion to discuss a problem, share opinions and improve best practices.” Milanese Srl “A successfull event, full of contact opportunities and business requests” Boldarino Spa MAIN SPONSOR SPONSOR PARTNERS PATRONAGE UNIONE EUROPEA A STRATEGIC LOCATION INTERNATIONAL 3 AIRPORTS MINUTES FROM 5 THE TRAIN STATION DIRECT MOTORWAY LINK PORDENONE FIERE: CLOSE TO YOU • 30 minutes from Treviso Airport High-speed trains run from Pordenone to major Italian • 30 minutes from Venice Airport (Venice, Milan, Trieste, Bolonia) and European cities. • 45 minutes from Trieste Airport • 90 minutes from Verona Airport CONTACTS Lucia Prosdocimo Raffaella Piacentini Project Manager Sales Consultant [email protected] [email protected] +39 0434 232 209 +39 02 87 213 851 CONFERENCE CONSULTANT & PRESS OFFICE Studio Comelli [email protected] +39 347 172 28 20 WWW.AQUAFARMEXPO.IT Pordenone Fiere S.p.A. - Viale Treviso, 1 - 33170 - Pordenone - Italy Tel.: +39 0434 232 111 - www.fierapordenone.it.
Recommended publications
  • The Highland Seaweed Company Pre‐Application Consuntation (Pac) Report June 2020
    THE HIGHLAND SEAWEED COMPANY PRE‐APPLICATION CONSUNTATION (PAC) REPORT JUNE 2020 CONTENTS 1 Project Summary and Information 1.1The Moray Firth 1.2Kelp farm project 2 Consenting Procedures and Requirements 2.1Marine Licence 2.2Environmental Impact Assessment 2.3Marine Pre‐Application Consultation (PAC) 3 List of Stakeholders 4 Stakeholder Engagement Methodology 4.1Statutory Requirements met, media 5 Additional Stakeholder Engagement 5.1Public Notices 5.2Direct Stakeholder Contact 6 The Pre‐Application Consultation (PAC) Event 6.1Key Points 6.2Summary of Event Display Materials 6.3Summary of Stakeholder Feedback 6.4Consideration of Stakeholder Feedback 7 Reporting and Recording 7.1Recording Feedback 8 Post Application 8.1Ongoing Engagement 8.2Ongoing Project Contact Appendices Information provided prior to public consultation Public consultation presentation – April 14th 2020 Presentation used for meeting with Scottish natural heritage 7th April 2020 Formalised biosecurity policy and habitat regulation appraisal Contacts with stakeholders and feedback 1 Project Summary and Information 1.1The Moray Firth The Moray firth, situated in the North East of Scotland covers an area between Duncansby Head in the North, the Beauly Firth in the West and Fraserburgh in the East. Within the Firth, lies a designated special area of conservation covering approximately 150,000 square hectares. This area is primarily to protect a number of species, including Bottlenose dolphins and migratory birds. The area is fished by trawlers and worked by creel fishermen as well as sailors and tourists. 1.2 Kelp farm project Our aim is to establish a kelp farm in the Moray Firth. By using three nearby sites, we are able to attain market viability whilst simultaneously reducing our impact on any one location.
    [Show full text]
  • Microalgae for Future Biodiesel Production: Algaculture, Environnement Impact Oumaima Ezzeroual1*, Nadia El Kadmiri1, 2
    Ezzeroual et al., Maghr. J. Pure & Appl. Sci., 7 N° 1 (2021) 8- 14 Maghrebian Journal of Pure and Applied Science ISSN : 2458-715X http://revues.imist.ma/?journal=mjpas&page=index https://doi.org/10.48383/IMIST.PRSM/mjpas-v6i2.22927 Microalgae for future biodiesel production: Algaculture, Environnement impact 1* 1, 2 Oumaima Ezzeroual , Nadia El Kadmiri 1 Sciences and Technology Department, Polydisciplinary Faculty of Taroudant, IBN ZOHR University, Taroudant, Morocco. 2 Laboratory of Medical Genetics and Molecular Pathology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca, Morocco. *Corresponding Author; Email: [email protected]; Phone: +212658227800. Received 21 Novembre 2020, Revised 31 January 2021, Accepted 28 February 2021 Abstract Currently, the continued use of petroleum based fuels is considered unsustainable due to resource depletion and the accumulation of greenhouse gases in the environment, in addition to land and water degradation. Therefore, biofuels from renewable sources can be an alternative to reduce the consumption of fossil fuels and contribute to maintaining a healthy global environment and economic profitability. Unfortunately, biodiesel produced from food stocks generally consumed by humans and animals can be a source of increased food market prices due to the increased use of arable land for growing biomass for the production of first and second generation biofuels. The production of biofuels from microalgae, as a third generation of biodiesel production, has some distinctive advantages, such as their rapid growth rate, greenhouse gas binding capacity and high lipid production capacity. This mini-study examines the current status of algae-based biofuels as a renewable energy source and their impact on the environment.
    [Show full text]
  • Industrial Photobioreactors and Scale-Up Concepts Jeremy Pruvost, François Le Borgne, Arnaud Artu, Jean-François Cornet, Jack Legrand
    Industrial Photobioreactors and Scale-Up Concepts Jeremy Pruvost, François Le Borgne, Arnaud Artu, Jean-François Cornet, Jack Legrand To cite this version: Jeremy Pruvost, François Le Borgne, Arnaud Artu, Jean-François Cornet, Jack Legrand. Industrial Photobioreactors and Scale-Up Concepts. Elsevier. Advances Chemical Engineering, 48, pp.257-310, 2016, Photobioreaction Engineering, 10.1016/bs.ache.2015.11.002. hal-02539887 HAL Id: hal-02539887 https://hal.archives-ouvertes.fr/hal-02539887 Submitted on 10 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CHAPTER FIVE Industrial Photobioreactors and Scale-Up Concepts Jeremy Pruvost*,1, Francois Le Borgne†, Arnaud Artu*,†, Jean-Franc¸ois Cornet{, Jack Legrand* *GEPEA, Universite de Nantes, CNRS, UMR6144, Bd de l’Universite, Saint-Nazaire Cedex, France †AlgoSource Technologies, Bd de l’Universite, Saint-Nazaire Cedex, France { Universite Clermont Auvergne, ENSCCF, Clermont-Ferrand, France and CNRS, Institut Pascal, Aubiere, France 1Corresponding author: e-mail address: [email protected] Contents 1. Introduction 258 2. PBR Engineering and Scaling Rules 259 2.1 Main Parameters Affecting PBR Biomass Productivity 259 3. Modeling PBRs 274 3.1 Introduction 274 3.2 Overview of Light-Limited Growth Modeling in a PBR 275 3.3 Kinetic Growth Model 276 3.4 Modeling of Radiative Transfer 279 3.5 Determination of Radiative Properties 281 3.6 Solar PBR Modeling 281 4.
    [Show full text]
  • Algae in Aquaculture. the Larvae of Molluscs, Echinoderms and Crustaceans As Well As the Live Prey of Some Fish Larvae Feed on Algae
    International Journal of Health Sciences and Research www.ijhsr.org ISSN: 2249-9571 Review Article Algae in Aquaculture Priyadarshani I.1, Sahu D.1, Rath B.2* 2Reader and Head; 1Department of Biotechnlogy, North Orissa University, Sriram Chandra Vihar, Takatpur, Baripada-757003, Odisha. *Correspondence Email: [email protected] Received: 25/11//2011 Revised: 30/12/2011 Accepted: 5/01/2012 ABSTRACT Algae are the first link in the chain of live food manufacturer and nutrition. It is the culture diet for rotifers and provides a direct nutrition for larvae. Algae are utilized diversely in aquaculture, but their main applications are related to nutrition. They are used in toto, as a sole component or as a food additive to supply basic nutrients, color the flesh of salmonids or for other biological activities. The need for nutritional sources safer than traditional animal products has renewed interest in plants in general and algae in particular. This report deals principally with the different role of algae in aquaculture. The larvae of molluscs, echinoderms and crustaceans as well as the live prey of some fish larvae feed on algae. Though attempts have been made to substitute inert particles for these micro-organisms which are difficult to produce, concentrate and store, only shrimp and live prey for fish will accept inert food, and only shrimp accept it fully. Several studies have confirmed that a live, multi-specific, low-bacteria algal biomass remains essential for shellfish hatcheries. Major advances are expected from new production system designs and operations, from batch-run open tanks to more sophisticated continuously run and closed loop reactors Key Words: Aquatic, coastal, commercial, environment, fish, microalgae INTRODUCTION times as food stuff.
    [Show full text]
  • Wetlands and Agriculture
    Wetlands and Agriculture Secretariat Focal Point Lead/Co-lead Participate Invited Expert • Paul Ouedraogo • Matthew McCartney • Ritesh Kumar TBD • Stanley Liphadzi • Randy Milton • Randy Thaman Devin Bartley • Sonali Senaratna (IWMI) • Marieke Sassen (UNEP- WCMC) High priority task Wise use of wetlands in relation to coastal and inland aquaculture (2013-15/46) Develop guidance for the wise use of wetlands in relation to coastal and inland aquaculture. Builds on aspects of COP9 Resolution IX.4 (2005): productive and sustainable use of fisheries resources Rationale 100 90 80 70 The global dependence on aquaculture is 60 growing and wild stocks continue to be 50 40 depleted Million TonnesMillion 30 20 10 0 2006 2007 2008 2009 2010 2011 Capture Fisheries Aquaculture Source: FAO State of World Fisheries 2012 Impacts Direct - habitat loss, wild harvest of species Indirect - pollution, contamination of wetlands, impact of novel compounds, genetic modification Guidance Guidance is needed for the wise of wetlands in relation to burgeoning new coastal aquaculture but also for stocked inland wetlands Guidance for: wetland managers/aquaculture practitioners? Outcomes/outputs: Briefing Note; Guidance for Parties (RTR, COP 12 information paper) Existing Guidance: FAO code of conduct for responsible fisheries (includes aquaculture) FAO Ecosystem Approach to Fisheries Management World Fish Water Resource Commission IWMI – Rice-Fish Systems Something new? Maybe case studies from Ramsar sites Lower Priority tasks 1. Impacts of agricultural practices on rice paddies as wetland systems (2013-15/47) Compile and review information on the positive and negative impacts of agricultural practices on rice paddies as wetland systems in terms of enhancing their biodiversity and ecosystem services, and prepare advice to the Convention on these matters 2.
    [Show full text]
  • Traditional and Integrated Aquaculture
    BELLONA REPORT 2013 Traditional and Integrated Aquaculture Today’s environmental challenges and solutions of tomorrow The Bellona Foundation is an international environ- mental NGO based in Norway. Founded in 1986 as a direct action protest group, Bellona has become a recognised technology and solution-oriented organi- zation with offices in Oslo, Brussels, St. Petersburg and Murmansk. Altogether, some 65 engineers, ecologists, nuclear physicists, economists, lawyers, political scientists and journalists work at Bellona. © Bellona 2013 Design: Bellona/TE Coverphoto: Thinkstockphotos CONTENTS PUBLISHED BY THE BELLONA FOUNDATION.............................................................................. 5 1. Introduction ......................................................................................................................... 10 1.1 Challenges in today’s Norwegian aquaculture industry ................................................ 10 1.2 The world needs more food ........................................................................................... 10 1.3 The world needs more renewable energy ..................................................................... 11 1.4 About the report ............................................................................................................ 11 2. Today’s fish farming and its challenges ............................................................................... 12 2.1 Production .....................................................................................................................
    [Show full text]
  • Cultivation of Algae in Photobioreactors for Biodiesel Production Jeremy Pruvost
    Cultivation of algae in photobioreactors for biodiesel production Jeremy Pruvost To cite this version: Jeremy Pruvost. Cultivation of algae in photobioreactors for biodiesel production. Ashok Pandey; Christian Larroche; Claude-Gilles Dussap; Edgard Gnansounou; Samir Kumar Khanal; Steven Ricke. Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (Second Edition), Elsevier, pp.629-659, 2019, Biomass, Biofuels, Biochemicals, 978-0-12- 816856-1. 10.1016/B978-0-12-816856-1.00026-9. hal-02539898 HAL Id: hal-02539898 https://hal.archives-ouvertes.fr/hal-02539898 Submitted on 20 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. CHAPTER 26 Cultivation of Algae in Photobioreactors for Biodiesel Production Jeremy Pruvost GEPEA, University of Nantes, CNRS, UMR6144, Saint-Nazaire, France 26.1 INTRODUCTION Photosynthetic microorganisms such as microalgae and cyanobacteria (named for conve- nience “microalgae” in what follows, except when cited) have a high potential in biofuel pro- duction. Their main advantages are: solar production with higher surface productivities than plants, simultaneous consumption of inorganic carbon, allowing a null carbon balance exploi- tation, and possible production in closed systems, offering several advantages including an intensified, controlled production with very low environmental impact (no fertilizer is released and water can be reused).
    [Show full text]
  • International Journal of Fisheries and Aquaculture
    OPEN ACCESS International Journal of Fisheries and Aquaculture February 2019 ISSN 2006-9839 DOI: 10.5897/IJFA www.academicjournals.org ABOUT IJFA The International Journal of Fisheries and Aquaculture (IJFA) (ISSN: 2006-9839) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as algaculture, Mariculture, fishery in terms of ecosystem health, Fisheries acoustics etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in the IJFA are peer-reviewed. Contact Us Editorial Office: [email protected] Help Desk: [email protected] Website: http://www.academicjournals.org/journal/IJFA Submit manuscript online http://ms.academicjournals.me/ Editors Dr. V.S. Chandrasekaran Central Institute of Brackishwater Aquaculture Indian Council of Agricultural Research (ICAR) Chennai, India. Prof. Nihar Rajan Chattopadhyay Department of Aquaculture Faculty of Fishery Sciences West Bengal University of Animal & Fishery Sciences West Bengal, India. Dr. Lourdes Jimenez-Badillo Ecology and Fisheries Centre Universidad Veracruzana Veracruz, México. Dr. Kostas Kapiris Institute of Marine Biological Resources of H.C.M.R. Athens, Greece. Dr. Masoud Hedayatifard Department of Fisheries Sciences and Aquaculture College of Agriculture and Natural Resources Advanced Education Center Islamic Azad University Ghaemshahr, Iran. Dr. Zhang Xiaoshuan China Agricultural University Beijing, China. Dr Joseph Selvin Marine Bioprospecting Lab Dept of Microbiology Bharathidasan University Tiruchirappalli, India. Dr. Sebastián Villasante Editorial Board Fisheries Economics and Natural Resources Research Unit University of Santiago de Compostela Dr. Dada Adekunle Ayokanmi A Coruña, Department of Fisheries and Aquaculture Spain.
    [Show full text]
  • Microalgae-Based Feed Ingredients for Salmonid Aquaculture in Context of the Blue Revolution Tibbetts, Sean Michael
    NRC Publications Archive Archives des publications du CNRC The potential for ‘next-generation’, microalgae-based feed ingredients for salmonid aquaculture in context of the blue revolution Tibbetts, Sean Michael For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.5772/intechopen.73551 Microalgal Biotechnology, pp. 151-175, 2018-06-27 NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=1c11b561-8bff-4f6f-9844-b9e264278fb8 https://publications-cnrc.canada.ca/fra/voir/objet/?id=1c11b561-8bff-4f6f-9844-b9e264278fb8 Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected].
    [Show full text]
  • WBS 1.3.5.201 Algae Technology Educational Consortium (ATEC) Advanced Algal Systems March 7, 2019
    DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review WBS 1.3.5.201 Algae Technology Educational Consortium (ATEC) Advanced Algal Systems March 7, 2019 Ira “Ike” Levine, Algae Foundation, University of Southern Maine [USM] Cindy Gerk, National Renewable Energy Laboratory [NREL] Goal Statement: Create and Distribute Algal-based Curricula to DevelopGoal Statement a Skilled Workforce Goal: Develop and implement collaborative educational programs ranging from K-12 to community college degrees and extension short courses. Outcomes: Formation of the Algae Technology Educational Consortium (ATEC) to develop curriculum assets utilized by the ATEC network to educate and train the next generation of algal technicians to fill U.S. job openings supporting algal commercialization. Relevance: Support algal industry growth through the development of ATEC curricula and the formation of a national network of participating community colleges and aquaculture extension agents providing unique training opportunities. Additionally, ATEC supports BETO’s mission for education and workforce development. U.S. DOE BETO exhibit booth at Algae Biomass Summit NREL | 2 Barriers addressed Quad Chart Overview • Aft-A Biomass Availability and Cost • Geographically expand algae cultivation and reduce employee training costs Timeline • Aft-B Sustainable Algae Production • Start: FY2016 • Provide skilled workers • Merit review cycle: FY2016-2019 • Aft-H Integration – will be pursuing the effort beyond FY19 • Provide interdisciplinary expertise – Merit review June
    [Show full text]
  • Canadian Aquaculture R&D Review 2017
    CANADIAN AQUACULTURE R&D REVIEW 2017 INSIDE Effects of Cage Aquaculture on Freshwater Benthic Communities Impact of Mussel Culture on Infauna and Sediment Biogeochemistry Marine Reservoirs of Infectious Agents Associated with Proliferative Gill Disorders in Farmed Salmon Epidemiological Analysis and Modeling of Aquatic Pathogens Susceptibility of Sockeye Salmon to Viral Hemorrhagic Septicemia The Effect of Dietary Camelina Oil on Health of Salmon The Effects of Smolt Size on the Intensity of Kudoa thyrsites Infections in Atlantic Salmon AQUACULTURE ASSOCIATION OF CANADA SPECIAL PUBLICATION 25 Canadian Aquaculture R&D Review 2017 AAC Special Publication #25 ISBN: 978-0-9881415-7-5 © 2017 Aquaculture Association of Canada Cover Photo (Front): Atlantic Salmon farm in Doctor's Cove, New Brunswick (Photo: Kobb Media) Photo Inside Cover (Front): La Butte Ronde on the island of Havre-aux-Maisons, Magdalen Islands (Québec), overlooking baie de Plaisance (Photo: Dan McPhee – DFO) Cover Photo (Back): Atlantic Salmon farm in Doctor's Cove, New Brunswick (Photo: Kobb Media) Photo Inside Cover (Back): Shoreline on the island of Havre-aux-Maisons in the Magdalen Islands Québec (Photo: Dan McPhee – DFO) The Canadian Aquaculture R&D Review 2017 has been published with support provided by Fisheries and Oceans Canada's Aquaculture Collaborative Research and Development Program (ACRDP) and the Aquaculture Association of Canada (AAC). Submitted materials may have been edited for length and writing style. Projects not included in this edition should be submitted before the deadline to be set for the next edition. Editors: Dan McPhee, Johannie Duhaime, Alex Tuen, and G. Jay Parsons Cited as: D McPhee, J Duhaime, A Tuen, and GJ Parsons (eds).
    [Show full text]
  • Diversification in Aquaculture: a Tool for Sustainability
    Diversification in aquaculture: A tool for sustainability GOBIERNO MINISTERIO DE ESPAÑA DE MEDIO AMBIENTE, Y MEDIO RURAL Y MARINO Diversification in aquaculture: A tool for sustainability GOBIERNO MINISTERIO DE ESPAÑA DE MEDIO AMBIENTE, Y MEDIO RURAL Y MARINO Table of contents GOBIERNO MINISTERIO Authors .................................................................................................................................................... 7 DE ESPAÑA DE MEDIO AMBIENTE, Y MEDIO RURAL Y MARINO 1. Introduction: the need for diversification in achieving sustainable aquaculture ........................... 9 1.1. Aquaculture and diversification ................................................................................................................................... 10 1.2. Justification for writing this guide ............................................................................................................................... 12 MARM. General Marine Secretariat. 1.3. Purpose of the guide ...................................................................................................................................................... 13 1.4. Organisation of the document .................................................................................................................................... 13 Establishment of directive guidelines promoting the sustainable development of aquaculture in the Mediterranean 2. Diversification of sites ......................................................................................................................
    [Show full text]