Multidisciplinary Workshop on Advances in Preference Handling: Papers from the AAAI-14 Workshop Human and Computer Preferences at Chess Kenneth W. Regan Tamal Biswas Jason Zhou Department of CSE Department of CSE The Nichols School University at Buffalo University at Buffalo Buffalo, NY 14216 USA Amherst, NY 14260 USA Amherst, NY 14260 USA
[email protected] [email protected] Abstract In our case the third parties are computer chess programs Distributional analysis of large data-sets of chess games analyzing the position and the played move, and the error played by humans and those played by computers shows the is the difference in analyzed value from its preferred move following differences in preferences and performance: when the two differ. We have run the computer analysis (1) The average error per move scales uniformly higher the to sufficient depth estimated to have strength at least equal more advantage is enjoyed by either side, with the effect to the top human players in our samples, depth significantly much sharper for humans than computers; greater than used in previous studies. We have replicated our (2) For almost any degree of advantage or disadvantage, a main human data set of 726,120 positions from tournaments human player has a significant 2–3% lower scoring expecta- played in 2010–2012 on each of four different programs: tion if it is his/her turn to move, than when the opponent is to Komodo 6, Stockfish DD (or 5), Houdini 4, and Rybka 3. move; the effect is nearly absent for computers. The first three finished 1-2-3 in the most recent Thoresen (3) Humans prefer to drive games into positions with fewer Chess Engine Competition, while Rybka 3 (to version 4.1) reasonable options and earlier resolutions, even when playing was the top program from 2008 to 2011.