Bar, Stripe and Spot Development in Sand-Dwelling Cichlids from Lake Malawi

Total Page:16

File Type:pdf, Size:1020Kb

Bar, Stripe and Spot Development in Sand-Dwelling Cichlids from Lake Malawi Hendrick et al. EvoDevo (2019) 10:18 https://doi.org/10.1186/s13227-019-0132-7 EvoDevo RESEARCH Open Access Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi Laura A. Hendrick1, Grace A. Carter1, Erin H. Hilbrands1, Brian P. Heubel1, Thomas F. Schilling2 and Pierre Le Pabic1* Abstract Background: Melanic patterns such as horizontal stripes, vertical bars and spots are common among teleost fshes and often serve roles in camoufage or mimicry. Extensive research in the zebrafsh model has shown that the devel- opment of horizontal stripes depends on complex cellular interactions between melanophores, xanthophores and iri- dophores. Little is known about the development of horizontal stripes in other teleosts, and even less is known about bar or spot development. Here, we compare chromatophore composition and development of stripes, bars and spots in two cichlid species of sand-dwellers from Lake Malawi—Copadichromis azureus and Dimidiochromis compressiceps. Results: (1) In D. compressiceps, stripes are made of dense melanophores underlaid by xanthophores and overlaid by iridophores. Melanophores and xanthophores are either loose or absent in interstripes, and iridophores are dense. In C. azureus, spots and bars are composed of a chromatophore arrangement similar to that of stripes but are separated by interbars where density of melanophores and xanthophores is only slightly lower than in stripes and iridophore density appears slightly greater. (2) Stripe, bar and spot chromatophores appear in the skin at metamorphosis. Stripe melanophores directly diferentiate along horizontal myosepta into the adult pattern. In contrast, bar number and position are dynamic throughout development. As body length increases, new bars appear between old ones or by splitting of old ones through new melanophore appearance, not migration. Xanthophore and iridophore distributions follow melanophore patterns. (3) Metamorphic pigmentation arises in cichlids in a fashion similar to that described in zebrafsh: melanophore progenitors derived from the medial route of neural crest migration migrate from the vicinity of the neural tube to the skin during metamorphosis. Conclusion: The three pigment cell types forming stripes, bars and spots arise in the skin at metamorphosis. Stripes develop by diferentiation of melanophores along horizontal myosepta, while bars do not develop along patent ana- tomical boundaries and increase in number in relation with body size. We propose that metamorphic melanophore diferentiation and migratory arrest upon arrival to the skin lead to stripe formation, while bar formation must be sup- ported by extensive migration of undiferentiated melanophores in the skin. Keywords: Cichlid, Pigment pattern, Melanophore, Xanthophore, Iridophore, Evolution, Pigmentation development, Neural crest, Morphogenesis *Correspondence: [email protected] 1 Department of Biology and Marine Biology, University of North Carolina Wilmington, 5216 Randall Drive, Wilmington, NC 28403, USA Full list of author information is available at the end of the article © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Hendrick et al. EvoDevo (2019) 10:18 Page 2 of 18 Background melanophores providing darkness, while iridophores pro- Te evolutionary diversifcation of body coloration is a vide iridescence and blue hue or green hue when com- fascinating subject because body color is at the center bined with xanthophores. Light interstripes are made of of multiple selective pressures, such as light protection, xanthophores overlaid on iridophores [14, 15]. Tis adult female mate choice and predation. As such, coloration pattern arises gradually during metamorphosis, spanning likely plays an important role in the creation and mainte- the period of 3 to 6/7 weeks post-fertilization [16, 17]. nance of biodiversity, yet the genetic and developmental A key fnding in zebrafsh stripe development is that the changes required for the evolution of new patterns with distribution of each chromatophore depends on interac- adaptive value remain largely unknown. tions with other chromatophore types. Melanophores Various mechanisms underlie the diversity of colors prevent the spreading of dense iridophores into dark and color patterns observed among vertebrates. Te mel- stripe territory, iridophores and xanthophores promote anocyte is the only pigment cell type, or chromatophore, melanophore numbers, yet xanthophores also prevent found in birds and mammals [1]. Melanocytes may pro- spreading of iridophores into dark stripe regions, main- duce diferent kinds of melanin pigment to produce tain the integrity of melanophore stripes and prevent colors ranging from yellowish (pheomelanin) to black spreading of melanophores in light stripe regions [18– (eumelanin). Other colors seen in birds and mammals 21]. It is thus crucial to consider all chromatophore types result from food-derived pigments interacting with skin when attempting to understand body color development extracellular matrix [2, 3]. A greater diversity of chro- in other organisms. While horizontal stripes are com- matophore types underlies body coloration in reptiles, monly found in other teleost species, the development amphibians and fsh, with seven types described in fsh: of other color pattern elements, such as vertical bars and xanthophores, erythrophores, iridophores, leucophores, spots, remains poorly studied. It is unknown if the cell– melanophores, cyanophores and erythro-iridophores cell interactions described in danios exist in other genera [4–7]. and if so, how they generate complex body coloration. Vertebrate chromatophores are derived from an embry- In addition, only a handful of studies have identifed the onic population of pluripotent and highly migratory cells types of genetic and developmental changes driving the called neural crest (NC) cells. Tese cells emerge from evolution of such complex patterns [22–24]. the dorsal neural tube toward the end of neurulation and Te great diversity of color patterns seen in the cich- migrate throughout the embryo to give rise to the skeletal lid species focks of East African rift lakes makes them and connective tissues of the face, neurons and glia of the great models to elucidate the developmental basis of pre- peripheral nervous system and chromatophores, among viously unexplored patterns. Te young ages of the spe- many other derivatives [8]. Trunk NC cells migrate cies assemblies found in lakes Victoria (500,000 years) through two distinct routes previously thought to be and Malawi (4 million years; [25]) make them amenable associated with distinct fates. Chromatophore progeni- to genetic mapping by allowing the production of fertile tors migrate along a “lateral” route between surface ecto- hybrids in laboratory conditions. Moreover, the presence derm and somite, while neuronal and glial progenitors of highly similar yet independently evolved color patterns migrate along a “medial” route between somite and neu- in species from these lakes ofers great opportunities to ral tube [9–11]. Recent evidence has shown that chro- elucidate the mechanisms underlying convergent evolu- matophores also arise from NC cells that travel along the tion [26] as recently demonstrated by Kratochwill et al. medial route in zebrafsh and give rise to melanophores [23]. and iridophores during metamorphosis or regeneration Here, we describe and compare the development of the [12, 13]. It is unknown if this mechanism is conserved in distinct color patterns of two cichlid species from Lake other teleosts or other vertebrate clades. Malawi, Copadichromis azureus and Dimidiochromis Te highly diverse patterns of chordate body colors compressiceps, in order to identify the developmental dif- result from the particular distribution of pigments and/or ferences underlying their divergent color patterns. Te chromatophores and in many instances of their particu- color pattern of C. azureus includes three dark spots and lar combinations and overlapping patterns in the skin. a series of vertical dark bars. Te D. compressiceps pat- Te numerous studies focusing on zebrafsh horizon- tern includes three horizontal dark stripes. Similar to tal stripe formation have made the developmental and zebrafsh, we fnd that three pigment cell types underlie genetic basis of this complex pattern the best understood the color patterns of both species, melanophores, xan- of all animals. Tree chromatophore types, black mel- thophores and iridophores, with diferent distributions in anophores, yellow xanthophores and silver/blue irido- D. compressiceps and C. azureus adults. Te time of frst phores make up the zebrafsh stripe pattern. Dark stripes appearance of each chromatophore type is similar in D. are composed of all three chromatophore types with compressiceps and C. azureus. Development of the adult Hendrick et al. EvoDevo (2019) 10:18 Page 3 of 18 pattern begins during larval development, essentially and spots. Tree pigment cell types were identifed:
Recommended publications
  • Indian and Madagascan Cichlids
    FAMILY Cichlidae Bonaparte, 1835 - cichlids SUBFAMILY Etroplinae Kullander, 1998 - Indian and Madagascan cichlids [=Etroplinae H] GENUS Etroplus Cuvier, in Cuvier & Valenciennes, 1830 - cichlids [=Chaetolabrus, Microgaster] Species Etroplus canarensis Day, 1877 - Canara pearlspot Species Etroplus suratensis (Bloch, 1790) - green chromide [=caris, meleagris] GENUS Paretroplus Bleeker, 1868 - cichlids [=Lamena] Species Paretroplus dambabe Sparks, 2002 - dambabe cichlid Species Paretroplus damii Bleeker, 1868 - damba Species Paretroplus gymnopreopercularis Sparks, 2008 - Sparks' cichlid Species Paretroplus kieneri Arnoult, 1960 - kotsovato Species Paretroplus lamenabe Sparks, 2008 - big red cichlid Species Paretroplus loisellei Sparks & Schelly, 2011 - Loiselle's cichlid Species Paretroplus maculatus Kiener & Mauge, 1966 - damba mipentina Species Paretroplus maromandia Sparks & Reinthal, 1999 - maromandia cichlid Species Paretroplus menarambo Allgayer, 1996 - pinstripe damba Species Paretroplus nourissati (Allgayer, 1998) - lamena Species Paretroplus petiti Pellegrin, 1929 - kotso Species Paretroplus polyactis Bleeker, 1878 - Bleeker's paretroplus Species Paretroplus tsimoly Stiassny et al., 2001 - tsimoly cichlid GENUS Pseudetroplus Bleeker, in G, 1862 - cichlids Species Pseudetroplus maculatus (Bloch, 1795) - orange chromide [=coruchi] SUBFAMILY Ptychochrominae Sparks, 2004 - Malagasy cichlids [=Ptychochrominae S2002] GENUS Katria Stiassny & Sparks, 2006 - cichlids Species Katria katria (Reinthal & Stiassny, 1997) - Katria cichlid GENUS
    [Show full text]
  • The Complexity of Alternative Splicing of Hagoromo Mrnas Is Increased in an Explosively Speciated Lineage in East African Cichlids
    The complexity of alternative splicing of hagoromo mRNAs is increased in an explosively speciated lineage in East African cichlids Yohey Terai*, Naoko Morikawa*, Koichi Kawakami†, and Norihiro Okada*‡§ *Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan; †Department of Developmental Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; and ‡Division of Cell Fusion, National Institute of Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki 444-8585 Aichi, Japan Edited by Tomoko Ohta, National Institute of Genetics, Mishima, Japan, and approved August 29, 2003 (received for review May 12, 2003) The adaptive radiation of cichlid fishes in the lakes of East Africa other fish, including cichlids. With insertional mutagenesis, the is a prime example of speciation. The choice of cichlid mates on the zebrafish gene hagoromo (hag) was shown to be responsible for basis of a variety of coloration represents a potential basis for pigment pattern formation (17). Recently, we cloned a cichlid speciation that led to adaptive radiation. Here, we characterize the homolog of hag and showed a correlation between the morpho- cichlid homolog of the zebrafish hagoromo (hag) gene that was logical diversity of the Great Lakes lineage and the evolutionary recently cloned and characterized from a pigmentation mutant. rate of amino acid sequence changes in the hag gene (18). Here Although only one hag mRNA was reported in zebrafish, cichlids we show a correlation between the explosive speciation of express nine different hag mRNAs resulting from alternative splic- cichlids and the complexity of alternative splicing variants of this ing.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 30 April 2021 Order CICHLIFORMES (part 2 of 8) Family CICHLIDAE Cichlids (part 2 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Abactochromis through Greenwoodochromis) Abactochromis Oliver & Arnegard 2010 abactus, driven away, banished or expelled, referring to both the solitary, wandering and apparently non-territorial habits of living individuals, and to the authors’ removal of its one species from Melanochromis, the genus in which it was originally described, where it mistakenly remained for 75 years; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Abactochromis labrosus (Trewavas 1935) thick-lipped, referring to lips produced into pointed lobes Allochromis Greenwood 1980 allos, different or strange, referring to unusual tooth shape and dental pattern, and to its lepidophagous habits; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Allochromis welcommei (Greenwood 1966) in honor of Robin Welcomme, fisheries biologist, East African Freshwater Fisheries Research Organization (Jinja, Uganda), who collected type and supplied ecological and other data Alticorpus Stauffer & McKaye 1988 altus, deep; corpus, body, referring to relatively deep body of all species Alticorpus geoffreyi Snoeks & Walapa 2004 in honor of British carcinologist, ecologist and ichthyologist Geoffrey Fryer (b.
    [Show full text]
  • Cichlids As a Model for the Evolution of Visual Sensitivity Tyrone Clifford Spady University of New Hampshire, Durham
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2006 Cichlids as a model for the evolution of visual sensitivity Tyrone Clifford Spady University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Spady, Tyrone Clifford, "Cichlids as a model for the evolution of visual sensitivity" (2006). Doctoral Dissertations. 331. https://scholars.unh.edu/dissertation/331 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. CICHLIDS AS A MODEL FOR THE EVOLUTION OF VISUAL SENSITIVITY BY TYRONE CLIFFORD SPADY B.S., University of Maryland Baltimore County, 2000 DISSERTATION Submitted to the University of New Hampshire In Partial Fulfillment of the Requirements for the Defense of Doctor of Philosophy in Zoology May, 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3217442 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • Cichlids Correct Feeding for a Good Husbandry
    Cichlids correct feeding for a good husbandry www.JBL.de Dear Cichlid-friend, We have produced this brochure in order to make easier for you to give your cichlids the right food and care for this species. With about 2.000 varieties of cichlid, all types of eating habits are represented here: from plant-eaters to omnivorous species to pure predators. Giving the right food makes sense, as the wrong food will be excreted by the fish un- digested (or partially digested). Incorrect feeding is proven to lead to increased water pollution. Clean (unpolluted) water free of ammonium/ ammonia and nitrite is a basic requirement of successful aquarium- keeping – special water qualities are often only essential for breeding. Wishing you continued pleasure from this fascinating group of fish! Your JBL Research Team Contents Feeding in a community aquarium ......................................... 3 Water values .......................................................................... 3 Central and South America Small predators ..................................................................... 4 Medium-sized predators ........................................................ 5 Large predators ..................................................................... 6 Africa West and Central Africa ......................................................... 7 East Africa Lake Tanganyika Predators .......................................................................8-9 Grazing cichlids ..........................................................10-11 Lake
    [Show full text]
  • Molecular and Cellular Bases of Color Pattern Evolution in Cichlid Fishes
    Molecular and cellular bases of color pattern evolution in cichlid fishes Doctoral dissertation for obtaining the academic degree Doctor of Natural Sciences submitted by Liang, Yipeng at the Faculty of Sciences Department of Biology Konstanz, 2020 Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-rkd9iiw5z5k24 Date of the oral examination: 14th July 2020 1. Reviewer: Prof. Dr. Axel Meyer 2. Reviewer: Prof. Dr. Mark van Kleunen ⁕ Table of contents ⁕ Table of contents Table of contents .......................................................................................... i List of Figures ............................................................................................. iv List of Tables ............................................................................................. vii Summary ..................................................................................................... ix Zusammenfassung .................................................................................... xii General Introduction .................................................................................. 1 Cellular and molecular basis of vertebrate color patterns ................................ 1 Cichlid fishes as a model system for studying color pattern formation ........... 4 Objectives of the Thesis ................................................................................. 11 Chapter I Agouti-related Peptide 2 Facilitates Convergent Evolution of Stripe Patterns across Cichlid
    [Show full text]
  • African Cichlid Livestock List
    African Cichlid Livestock List Animal Welfare Regulations Licence Number: LN/000015406 Please Note: Livestock lists are correct at time of publishing and availability is subject to change Updated: 01-10-2021 Common Scientific Name Size Price Stock Status Tanganyika Cichlid Aurora Cichlid Maylandia aurora £7.95 each Available Black Calvus Altolamprologus calvus £12.95 each Available Cylindricus Cichlid Neolamprologus cylindricus £9.95 each Available Gold Head Compressiceps Altolamprologus compressiceps £14.95 each Available Rostratus Cichlid Fossorochromis rostratus £8.95 each Available Sardine Cichlid Cyprichromis leptosoma £13.95 each Available Sixbar Lamprologus Neolamprologus sexfasciatus £15.95 each Available Shell Dweller Cichlid Neolamprologus Multifasciatus £8.95 each Available (Multies) 1 / 4 Common Scientific Name Size Price Stock Status Tanganyika Cichlid White Spotted Tropheus Tropheus Duboisi £12.95 each Available Malawi Cichlid Assorted Malawi Assorted SP. £10.95 each Available Blue Victoria Mouthbrooder Astatotilapia Nubila £9.95 each Available Electric Blue Hap Sciaenochromis fryeri £9.95 each Available Fenesratus Cichlid Haplochromis fenestratus £9.95 each Available Freibergs Peacock Aulonocara jacobfreibergi £9.95 each Available Hongi Red Top Labidochromis sp Hongi £10.95 each Available Ice Blue Zebra Mbuna Maylandia greshakei £9.95 each Available Kingsisze Cichlid cynotilapia pulpican £9.95 each Available 2 / 4 Common Scientific Name Size Price Stock Status Tanganyika Cichlid Livingstoni Cichlid Nimbochromis livingstonii
    [Show full text]
  • De Vertebrados De Moçambique Checklist of Vertebrates of Mozambique
    ‘Checklist’ de Vertebrados de Moçambique Checklist of Vertebrates of Mozambique Michael F. Schneider*, Victorino A. Buramuge, Luís Aliasse & Filipa Serfontein * autor para a correspondência – author for correspondence [email protected] Universidade Eduardo Mondlane Faculdade de Agronomia e Engenharia Florestal Departamento de Engenharia Florestal Maputo, Moçambique Abril de 2005 financiado por – funded by IUCN Mozambique Fundo Para a Gestão dos Recursos Naturais e Ambiente (FGRNA) Projecto No 17/2004/FGRNA/PES/C2CICLO2 Índice – Table of Contents Abreviaturas – Abbreviations..............................................................................2 Nomes vernáculos – vernacular names: .............................................................3 Referências bibliográficas – Bibliographic References ......................................4 Checklist de Mamíferos- Checklist of Mammals ................................................5 Checklist de Aves- Checklist of Birds ..............................................................38 Checklist de Répteis- Checklist of Reptiles ....................................................102 Checklist de Anfíbios- Checklist of Amphibians............................................124 Checklist de Peixes- Checklist of Fish............................................................130 1 Abreviaturas - Abbreviations * espécie introduzida – introduced species ? ocorrência duvidosa – occurrence uncertain end. espécie endémica (só avaliada para mamíferos, aves e répteis) – endemic species (only
    [Show full text]
  • Unrestricted Species
    UNRESTRICTED SPECIES Actinopterygii (Ray-finned Fishes) Atheriniformes (Silversides) Scientific Name Common Name Bedotia geayi Madagascar Rainbowfish Melanotaenia boesemani Boeseman's Rainbowfish Melanotaenia maylandi Maryland's Rainbowfish Melanotaenia splendida Eastern Rainbow Fish Beloniformes (Needlefishes) Scientific Name Common Name Dermogenys pusilla Wrestling Halfbeak Characiformes (Piranhas, Leporins, Piranhas) Scientific Name Common Name Abramites hypselonotus Highbacked Headstander Acestrorhynchus falcatus Red Tail Freshwater Barracuda Acestrorhynchus falcirostris Yellow Tail Freshwater Barracuda Anostomus anostomus Striped Headstander Anostomus spiloclistron False Three Spotted Anostomus Anostomus ternetzi Ternetz's Anostomus Anostomus varius Checkerboard Anostomus Astyanax mexicanus Blind Cave Tetra Boulengerella maculata Spotted Pike Characin Carnegiella strigata Marbled Hatchetfish Chalceus macrolepidotus Pink-Tailed Chalceus Charax condei Small-scaled Glass Tetra Charax gibbosus Glass Headstander Chilodus punctatus Spotted Headstander Distichodus notospilus Red-finned Distichodus Distichodus sexfasciatus Six-banded Distichodus Exodon paradoxus Bucktoothed Tetra Gasteropelecus sternicla Common Hatchetfish Gymnocorymbus ternetzi Black Skirt Tetra Hasemania nana Silver-tipped Tetra Hemigrammus erythrozonus Glowlight Tetra Hemigrammus ocellifer Head and Tail Light Tetra Hemigrammus pulcher Pretty Tetra Hemigrammus rhodostomus Rummy Nose Tetra *Except if listed on: IUCN Red List (Endangered, Critically Endangered, or Extinct
    [Show full text]
  • Cryptobia Iubilans in Cichlids1
    VM104 Cryptobia iubilans in Cichlids1 Ruth Francis Floyd and Roy Yanong2 What is Cryptobia? stomach, but systemic infections that involve the organism in blood and organ systems (including liver, Cryptobia is a flagellated protozoan, closely gall bladder, kidney, ovary, brain, and eye) have been related to Hexamita and Spironucleus, but not nearly reported. It is not known how the organism is able to as well understood. Like Hexamita and Spironucleus, spread from the intestinal tract to other organs, or Cryptobia is a very tiny (single-celled) organism and, what causes the internal spread. Mortalities consequently, can be difficult to identify and study. associated with the systemic form may exceed 50% There have been 52 species of Cryptobia identified in of the infected population. fish; however, because of its small size and difficult taxonomy, these may not all be separate species. Of The gastrointestinal form of Cryptobia has been the 52 species that have been identified, five are reported in East African and Central American classified as ectoparasites that infect the gills and cichlids, including: Herichththys cyanoguttatus, skin; seven are classified as enteric parasites that Cichlasoma meeki, Cichlasoma nigrofasciatum, and infect the gastrointestinal system; and 40 are Cichlasoma octofasciatum. Our laboratories have classified as hemoflagellates which are found in the found it in some additional species, but most of the bloodstream. It has recently been proposed that the work has been done with Pseudotropheus zebra hemoflagellates be assigned to a subgenus called (Department of Fisheries and Aquatic Sciences, Trypanoplasma. The hemoflagellates have an indirect Gainesville, FL) and Symphysodon spp. (Tropical life cycle and are transmitted by leeches, whereas the Aquaculture Laboratory, Ruskin, FL).
    [Show full text]
  • Bayesian Node Dating Based on Probabilities of Fossil Sampling Supports Trans-Atlantic Dispersal of Cichlid Fishes
    Supporting Information Bayesian Node Dating based on Probabilities of Fossil Sampling Supports Trans-Atlantic Dispersal of Cichlid Fishes Michael Matschiner,1,2y Zuzana Musilov´a,2,3 Julia M. I. Barth,1 Zuzana Starostov´a,3 Walter Salzburger,1,2 Mike Steel,4 and Remco Bouckaert5,6y Addresses: 1Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway 2Zoological Institute, University of Basel, Basel, Switzerland 3Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic 4Department of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand 5Department of Computer Science, University of Auckland, Auckland, New Zealand 6Computational Evolution Group, University of Auckland, Auckland, New Zealand yCorresponding author: E-mail: [email protected], [email protected] 1 Supplementary Text 1 1 Supplementary Text Supplementary Text S1: Sequencing protocols. Mitochondrial genomes of 26 cichlid species were amplified by long-range PCR followed by the 454 pyrosequencing on a GS Roche Junior platform. The primers for long-range PCR were designed specifically in the mitogenomic regions with low interspecific variability. The whole mitogenome of most species was amplified as three fragments using the following primer sets: for the region between position 2 500 bp and 7 300 bp (of mitogenome starting with tRNA-Phe), we used forward primers ZM2500F (5'-ACG ACC TCG ATG TTG GAT CAG GAC ATC C-3'), L2508KAW (Kawaguchi et al. 2001) or S-LA-16SF (Miya & Nishida 2000) and reverse primer ZM7350R (5'-TTA AGG CGT GGT CGT GGA AGT GAA GAA G-3'). The region between 7 300 bp and 12 300 bp was amplified using primers ZM7300F (5'-GCA CAT CCC TCC CAA CTA GGW TTT CAA GAT GC-3') and ZM12300R (5'-TTG CAC CAA GAG TTT TTG GTT CCT AAG ACC-3').
    [Show full text]
  • Understanding Explosive Diversification Through Cichlid Fish Genomics
    REVIEWS Understanding explosive diversification through cichlid fish genomics Walter Salzburger Abstract | Owing to their taxonomic, phenotypic, ecological and behavioural diversity and propensity for explosive diversification, the assemblages of cichlid fish in the East African Great Lakes Victoria, Malawi and Tanganyika are important role models in evolutionary biology. With the release of five reference genomes and many additional genomic resources, as well as the establishment of functional genomic tools, the cichlid system has fully entered the genomic era. The in-depth genomic exploration of the East African cichlid fauna — in combination with the examination of their ecology , morphology and behaviour — permits novel insights into the way organisms diversify. Model organisms Why is species richness so unequally distributed across and morphological diversity as a consequence of adap- Non- human species studied in the tree of life? Why did some organismal lineages diver- tation to novel or hitherto underutilized ecological detail in the context of a sify into new forms in a seemingly explosive manner, niches14,15 — combine the advantages of laboratory and particular research question whereas others have lingered phenotypically unvaried natural model species in the context of the genesis of with the motivation to be able to make more general over millions of years? These questions have puzzled biodiversity. Therefore, iconic examples of adaptive radi- statements about the generations of biologists ever since Darwin and Wallace ation, such as Darwin’s finches on the Galapagos archi- functioning of organisms. jointly introduced their theory of evolution by natural pelago, anole lizards on the islands of the Caribbean, selection1. 160 years of scholarly study later, there is a rea- threespine stickleback fish in post- glacial rivers and Clades sonable understanding of how and under which circum- lakes, and cichlid fish in East Africa (BOx 1), have long Branches on an evolutionary 2–7 tree, consisting of a common stances new species can originate .
    [Show full text]