New Species of Cortinarius Sect. Austroamericani, Sect. Nov., from South American Nothofagaceae Forests

Total Page:16

File Type:pdf, Size:1020Kb

New Species of Cortinarius Sect. Austroamericani, Sect. Nov., from South American Nothofagaceae Forests Mycologia ISSN: 0027-5514 (Print) 1557-2536 (Online) Journal homepage: http://www.tandfonline.com/loi/umyc20 New species of Cortinarius sect. Austroamericani, sect. nov., from South American Nothofagaceae forests Beatriz San-Fabian, Tuula Niskanen, Kare Liimatainen, Pepijn W. Kooij, Alija B. Mujic, Camille Truong, Ursula Peintner, Philipp Dresch, Eduardo Nouhra, P. Brandon Matheny & Matthew E. Smith To cite this article: Beatriz San-Fabian, Tuula Niskanen, Kare Liimatainen, Pepijn W. Kooij, Alija B. Mujic, Camille Truong, Ursula Peintner, Philipp Dresch, Eduardo Nouhra, P. Brandon Matheny & Matthew E. Smith (2018): New species of Cortinarius sect. Austroamericani, sect. nov., from South American Nothofagaceae forests, Mycologia, DOI: 10.1080/00275514.2018.1515449 To link to this article: https://doi.org/10.1080/00275514.2018.1515449 Published online: 29 Nov 2018. Submit your article to this journal Article views: 61 View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=umyc20 MYCOLOGIA https://doi.org/10.1080/00275514.2018.1515449 New species of Cortinarius sect. Austroamericani, sect. nov., from South American Nothofagaceae forests Beatriz San-Fabian a, Tuula Niskanen a, Kare Liimatainen a, Pepijn W. Kooij a, Alija B. Mujic b,c, Camille Truongb,c, Ursula Peintnerd, Philipp Dreschd, Eduardo Nouhrae, P. Brandon Matheny f, and Matthew E. Smithc aJodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, United Kingdom; bInstituto de Biología, Universidad Nacional Autónoma de México, Tercer Circuito s/n, Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, Mexico City, Mexico; cDepartment of Plant Pathology, University of Florida, PO Box 110680, Gainesville, Florida 32611; dInstitute of Microbiology, University Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria; eInstituto Multidisciplinario de Biología Vegetal (CONICET), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Argentina; fDepartment of Ecology and Evolutionary Biology, University of Tennessee, 334 Hesler Biology Building, Knoxville, Tennessee 37996 ABSTRACT ARTICLE HISTORY In this study, we document and describe the new Cortinarius section Austroamericani. Our results Received 19 January 2018 reveal high species diversity within this clade, with a total of 12 recognized species. Of these, only Accepted 21 August 2018 C. rufus was previously documented. Seven species are described as new based on basidiomata KEYWORDS collections. The four remaining species are only known from environmental sequences. All Agaricales; diversity; DNA examined species form ectomycorrhizal associations with species of Nothofagaceae and are barcoding; ectomycorrhizal currently only known from Argentinean and Chilean Patagonia. The phylogenetic analysis based fungi; Patagonia; species on the nuc rDNA internal transcriber spacer (ITS1-5.8S-ITS2 = ITS) and partial 28S gene (28S) delimitation; southern sequences shows that this section is related to other taxa from the Southern Hemisphere. Species temperate forests; 8 new taxa in this group do not belong to subg. Telamonia, where C. rufus was initially placed. Cortinarius rufus and the newly described C. subrufus form a basal clade within sect. Austroamericani that has a weakly supported relationship with the core clade. Because the two species are morphologically similar to species from the core clade and share their distribution and Nothofagaceae associations, we include them here as part of sect. Austroamericani sensu lato (s.l.) until more material is available to refine the delimitation. INTRODUCTION (1887a, 1887b), whereas the largest contribution was made by Moser and Horak (1975) and Horak (1980) The genus Cortinarius (Pers.) Gray is one of the most from Andino-Patagonian forests. Singer and Moser species-rich ectomycorrhizal (ECM) genera of (1965), Garrido (1988), Valenzuela and Esteve- Agaricales. Cortinarius species are ecologically impor- Raventós (1994), and Garnica et al. (2002) were also tant and critical for nutrient cycling in forests, espe- involved in the discovery and description of Cortinarius cially at higher latitudes (Bödeker et al. 2014). They are species from South America. DNA sequencing of ECM also used as indicators of valuable forests (e.g., roots subsequently revealed that Cortinarius are also Vesterholt 1991). This genus is one of the most widely highly abundant and speciose on the roots of distributed ECM genera throughout the Northern and Nothofagaceae host trees (Nouhra et al. 2013). Southern Hemispheres (Kirk et al. 2008). However, Cortinarius diversity in the Southern Hemisphere In southern South America, temperate Nothofagaceae remains insufficiently studied compared with the diver- forests host a high diversity of previously unknown sity in the Northern Hemisphere (Peintner et al. 2004; Cortinarius species that have not been reported from Garnica et al. 2005). Cortinarius is the most species- other regions (Truong et al. 2017a). This suggests that rich genus in southern South American Nothofagaceae there are probably many species and lineages that are forests, with approximately 250 species described from endemic to the region but that these taxa have not been the region to date (Garnica et al. 2002, 2003; Romano formally recognized in the past. It is critical to name these and Lechner 2014). The earliest publications of South species and lineages so that the unique biodiversity of this American Cortinarius species are from Spegazzini region can be conserved. The extensive explorations and CONTACT Tuula Niskanen [email protected] © 2018 The Mycological Society of America Published online 29 Nov 2018 2 SAN-FABIAN ET AL.: SOUTH AMERICAN CORTINARII mycological collections made by the authors in and molecular data, we studied the species limits and Argentinean and Chilean Patagonia will contribute to a phylogenetic placement of Patagonian specimens col- better understanding of this hyperdiverse genus globally lected in 2016 and 2017. The purpose of this paper is to and in South America. In addition to potentially endemic (i) determine the number of species that belong to this lineages, the Cortinarius mycobiota of South America also group based on morphological and molecular data; (ii) has similarities to those of other Austral regions, i.e., describe the previously unknown species as new; (iii) Australia-Tasmania and New Zealand. For example, provide the taxonomic placement of the studied speci- Peintner et al. (2004) and Garnica et al. (2005) previously mens; and (iv) produce DNA barcodes for all of these showed that the Pseudotriumphantes clade is shared species for the RefSeq (Schoch et al. 2014) and UNITE between South America and Oceania (Australia- databases (Kõljalg et al. 2013). Tasmania and New Zealand) and is only found in the Southern Hemisphere. Such “southern Gondwana” con- MATERIALS AND METHODS nections are probably explained by the presence of spe- cific host plants in the Southern Hemisphere that are Material. —Sixteen collections made Mar–May 2016 absent in other regions and vice versa (Tedersoo et al. and 2017 (Southern Hemisphere autumn) from 2010; Kuhar et al. 2017;Truongetal.2017b). These Nothofagaceae forest sites in Patagonia (Argentina and Gondwanan hosts harbor unique ECM associations and Chile) were studied. Dried fungal material is deposited some lineages not found in the Northern Hemisphere in the Museum Botánico of Córdoba (CORD) or Museo (Truong et al. 2017a). Some lineages of Cortinarius have Nacional de Historia Natural de Chile (SGO), and the representative species in both the Northern and Southern duplicates in Royal Botanic Gardens, Kew (K). We also Hemispheres, including sections Anomali, Delibuti,and examined the type specimen of C. rufus M.M. Moser Obtusi, among others (Garnica et al. 2005). Generally, (IB19630369) preserved in the mycological collection of species from different geographic regions form distinct the herbarium Innsbruck (IB). Herbarium acronyms monophyletic subgroups within these sections (Garnica follow Index Herbariorum (Thiers [continuously et al. 2005). They are also associated with different host updated]). Collectors are represented by their initials: plants in the Southern Hemisphere (i.e., Nothofagus, Camille Truong (CT), Matthew E. Smith (MES), Eucalyptus) from those in the Northern Hemisphere Meinhard Moser (MM), and Tuula Niskanen (TN). (i.e., Fagaceae, Betulacea, Malvaceae, Salicaceae, or Collections indicated with MES numbers were made by Pinaceae) (Niskanen et al. 2008). numerous collaborators associated with the University The structure of ECM fungal communities depends of Florida and University of Tennessee research team as strongly on their host associations (Tedersoo et al. 2008, part of National Science Foundation grant DEB-1354802 2012). Nouhra et al. (2012) studied forests dominated by (see collection data for more details). the evergreen N. dombeyi and the deciduous N. pumilio, as well as how the community composition of hypo- geous fungi is affected by whether the host is evergreen Morphological studies.—Macroscopic descriptions or deciduous. They found that the evergreen forests (N. are based on observations of basidiomata at different dombeyi), occurring in warmer, wetter, more acidic, and stages of development when possible and made from lower altitude areas, showed a greater species richness notes and photographs of fresh material. The and biomass production. A later study by Nouhra et al.
Recommended publications
  • Phenolic Acids – Occurrence and Significance in the World of Higher Fungi
    29-a volumo MIR N-ro 2 (115) Decembro 2020 Phenolic acids – Occurrence and Significance in the World of Higher Fungi BALIK Monika1, SUŁKOWSKA– ZIAJA Katarzyna2*, ZIAJA Marek3, MUSZYŃSKA Bożena2 1Jagiellonian University Medical College, Faculty of Pharmacy, Chair and Department of Pharmaceu- tical Botany – Students’ Science Society, Medyczna 9, 30–688, Kraków, Poland 2Jagiellonian University Medical College, Faculty of Pharmacy, Chair and Department of Pharmaceu- tical Botany, Medyczna 9, 30–688, Kraków, Poland 3Jagiellonian University Medical College, Faculty of Medicine, Department of Histology, Kopernika 7, 31–034 Kraków, Poland Abstract Phenolic acids constitute a chemically diverse group of bioactive compounds. The activity of phenolic acids is related to the presence of hydroxycarboxylic groups and their position on the aromatic ring. These are compounds commonly found in nature – they are present in many spe- cies of plants and fungi. In the world of higher fungi, they constitute the most numerous group among phenolic compounds. The most common phenolic acids in the world of fungi are caffeic acid, gallic acid, gentisic acid, ferulic acid, p–coumaric acid, p–hydroxybenzoic acid, protocate- chuic acid, vanillic acid, and a compound with a structure similar to phe- nolic acids – t–cinnamic acid. Phenolic acids found in fruiting bodies of mushrooms show, among others, antioxidant, antimicrobial, and anti- cancer properties. Keywords: phenolic acids, higher fungi, biological activity *Corresponding Author: Katarzyna Sułkowska-Ziaja; [email protected] 72 29-a volumo MIR N-ro 2 (115) Decembro 2020 Definition, biosynthesis and chemical genic acid). Besides, complexes of phenolic acids structure with sterols and fa"y acids have been identified [1-3] Phenolic acids (phenolcarboxylic acids) Based on numerous analyses, proved that are substances containing an aromatic ring phenolic acids are the dominant quantitative substituted by at least one hydroxyl and a car- group of phenolic derivatives found in higher boxyl group.
    [Show full text]
  • Edible and Non-Edible Wild Mushrooms: Nutrition, Toxicity and Strategies for Recognition
    Ukwuru et al., J Clin Nutr Metab 2018, 2:2 Journal of Clinical Nutrition and Metabolism Research Article a SciTechnol journal exist in farms worldwide and with the advent of new technologies Edible and Non-Edible Wild involving mushroom production. Mushrooms and fungi in general are non-green organisms Mushrooms: Nutrition, Toxicity lacking chlorophyll. They cannot manufacture their own food from and Strategies for Recognition simple inorganic materials, such as water, carbon dioxide, and nitrates, using energy from the sun, as is the case with the green plants. They Ukwuru MU*, Muritala A and Eze LU derive their food from complex organic materials found in dead or living tissues of plants and animals. Those obtaining their nutrients from dead organic material, e.g., agricultural crop residues, wood of Abstract dead trees, animal dung, etc., are referred to as saprophytic fungi. Mushrooms can be found extensively in a variety of natural Those deriving their food substances from living plants and animals environments and visual identification of mushroom species and causing harm to the hosts are called parasitic fungi. Such fungi is well established. Some mushrooms are known because of are often of great concern to farmers because they cause enormous their nutritional and therapeutical properties. Some species are crop damage and even lead to severe food shortages. But there are also known all over the world because of their toxicity that causes fatal accidents every year mainly due to misidentification. Some of the some fungi whose members live in a close physiological association edible mushrooms are Ganoderma spp, Cantharellus spp, Agaricus spp, with their host plants and animals (e.g., those living inside nests of Pleurotus spp, Russula spp, Auricularia spp and Termitomyces spp; but termites or mushrooms living in association with roots of some the ornamentals are the beautifully ringed Microporous spp.
    [Show full text]
  • Toxic Fungi of Western North America
    Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms .....................................................................................
    [Show full text]
  • Mycology Praha
    ( ^ ™ 7 | ------ I VOLUM E 48 L ^ Z - L U r i A U G U S T 1 9 9 5 My c o l o g y 2 CZECH SCIENTIFIC SOCIETY FOR MYCOLOGY PRAHA JSAYCU nIar% ,0 O Mv J < ty/\YCX ISSN 0009-0476 N|š r % ° k ~ 1 \ I \ / I Vol. 48, No. 2, August 1995 CZECH MYCOLOGY formerly Česká mykologie published quarterly by the Czech Scientific Society for Mycology EDITORIAL BOARD Editor-in-Chief ZDENĚK POUZAR (Praha) Managing editor s JAROSLAV KLÁN (Praha) VLADIMÍR ANTONÍN (Brno) JIŘÍ KUNERT (Olomouc) OLGA FASSATIOVÁ (Praha) LUDMILA MARVANOVA (Brno) ROSTISLAV FELLNER (Praha) PETR PIKÁLEK (Praha) JOSEF HERINK (Mnichovo Hradiště) MIRKO SVRČEK (Praha) Czech Mycology is an international scientific journal publishing papers in all aspects of mycology. Publication in the journal is open to members of the Czech Scientific Society for Mycology and non-members. Contributions to: Czech Mycology, National Museum, Department of Mycology, Václavské nám. 68, 115 79 Praha 1, Czech Republic. Phone: 02/24230485 SUBSCRIPTION. Annual subscription is Kč 250,- (including postage). The annual sub­ scription for abroad is US $86,- or DM 136,- (including postage). The annual member­ ship fee of the Czech Scientific Society for Mycology (Kč 160,- or US $ 60,- for foreigners) includes the journal without any other additional payment. For subscriptions, address changes, payment and further information please contact The Czech Scientific Society for Mycology, P.O.Box 106, 111 21 Praha 1, Czech Republic. Copyright © The Czech Scientific Society for Mycology, Prague, 1995 No. 1 of the vol. 48 of Czech Mycology appeared in May 16, 1995 CZECH MYCOLOGY Publication of the Czech Scientific Society for Mycology Volume 48 August 1995 Number 2 Natural occurrence of entomopathogenic fungi on Aphids at an agricultural field site TOVE STEENBERG and J0RGEN E il e n b e r g Department of Ecology and Molecular Biology Royal Veterinary and Agricultural University Biilowsvej 13, 1870 Frb.
    [Show full text]
  • Obituary Prof
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Sydowia Jahr/Year: 2003 Band/Volume: 55 Autor(en)/Author(s): Anonymus Artikel/Article: Obituary Prof. Dr. M. M. Moser. 1-17 ©Verlag Ferdinand Berger & Söhne Ges.m.b.H., Horn, Austria, download unter www.biologiezentrum.at Obituary In memoriam Meinhard M. Moser (1924-2002): a pioneer in taxonomy and ecology of Agaricales (Basidiomycota) Meinhard M. Moser was born on 13 March 1924 in Innsbruck (Tyrol, Austria) where he also attended elementary school and grammar school (1930 to 1942). Already as a youngster, he developed a keen and broad interest in natural sciences, further spurred and supported by his maternal grandfather E. Heinricher, Professor of Botany at the University of Innsbruck. His fascination for fungi is proven by his first paintings of mushrooms, which date back to 1935 when he was still an eleven-year old boy. Based upon a solid huma- nistic education, he also soon discovered his linguistic talents and in subsequent years he became fluent in several major languages (including Swedish and Russian), which in later years helped him to correspond and interact with colleagues from all over the world. In 1942, M. Moser enrolled at the University of Innsbruck and attended classes in botany, zoology, geology, physics and chemistry. In this period during World War II, his particular interest and knowledge in botany and mycology gave him the opportunity to become an authorized mushroom controller and instructor. In con- nection with this public function and to widen his experience, he was also officially requested to attend seminars in mushroom iden- tification both in Germany and Austria.
    [Show full text]
  • Développement D'outils Et De Ressources Moléculaires Pour L'utilisation De L'espèce Hebeloma Cylindrosporum Comme Modèle D'étude De La Symbiose Ectomycorhizienne
    Développement d’outils et de ressources moléculaires pour l’utilisation de l’espèce Hebeloma cylindrosporum comme modèle d’étude de la symbiose ectomycorhizienne Raphaël Lambilliotte To cite this version: Raphaël Lambilliotte. Développement d’outils et de ressources moléculaires pour l’utilisation de l’espèce Hebeloma cylindrosporum comme modèle d’étude de la symbiose ectomycorhizienne. Biochimie, Biologie Moléculaire. Université de montpellier 2, 2004. Français. tel-02551724 HAL Id: tel-02551724 https://tel.archives-ouvertes.fr/tel-02551724 Submitted on 23 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE MONTPELLIER II SCIENCES ET TECHNIQUES DU LANGUEDOC THESE pour obtenir le grade de DOCTEUR DE L'UNIVERSITE MONTPELLIER II Discipline : Physiologie Formation doctorale : Développement et adaptation des plantes Ecole Doctorale : Biologie intégrative présentée et soutenue publiquement par Raphaël Lambilliotte Le 21 décembre 2004 Titre : Développement d'outils et de ressources moléculaires pour l'utilisation de l'espèce Hebeloma cylindrosporum comme modèle d'étude de la symbiose ectomycorhizienne Travail réalisé dans le laboratoire de Biochimie et Physiologie Moléculaire des Plantes UMR 5004 Agro-M/CNRS/INRA/Université Montpellier II 2, Place Viala 34060 Montpellier cedex 1 JURY : M.
    [Show full text]
  • A Note on the Claimed Toxicity of Cortinarius Gentilis
    Karstenia 43: 9-12, 2003 A note on the claimed toxicity of Cortinarius gentilis EEVA-LIISA HINTIKKA and MAURl KORHONEN Hintikka, E.-L. & Korhonen, M. 2003: A note on the claimed toxicity of Cortinarius gentilis.- Karstenia 43: 9-12. Helsinki ISSN 0453-3402. The toxicity of Cortinarius orellanus group of mushrooms became apparent in the 1950ies. C. gentilis was considered toxic in Finnish mycological publications. The opinion was primarily based on the study by Mottonen et al. (1975) and on a case study by Hulmi et al. (1975), which papers were then cited in later publications. When the specimens on which the first-named study was based were rechecked, it turned out that the original material used for the rat feeding test by Mottonen with his co-workers as not adequately documented. In order to examine the possible toxicity of Finnish C. gentilis mu shrooms, the present authors studied 28 samples of this species. An unspecific cell culture toxicity test and a feeding test on mice revealed no toxicity in C. gentilis. Key words: Cortinarius gentilis, toxicity Eeva-Liisa Hintikka, Finnish Institute of Occupational Health, Uusimaa Regional Institute, Arinatie 3 A, FIN-00370 Helsinki, Finland Mauri Korhonen, Botanical Museum (Mycology), PO. Box 7, FIN-00014 University of Helsinki, Finland Introduction The toxicity of the fleshy fungus Cortinarius main toxic compound in Cortinarius mushrooms. orellanus Fr. became apparent in 1952 when 102 In addition to C. orellanus, C. speciosissimus was people in Poland fell ill after consuming this fun­ soon found to contain orellanine as well. gus. In this outbreak eleven people died 4-16 Recent taxonomic and nomenclatural studies days after the meal due to the acute renal failure on Cortinarius have changed the name of C.
    [Show full text]
  • A Phylogenetic Approach to a Global Supraspecific Taxonomy of Cortinarius (Agaricales) with an Emphasis on the Southern Mycota
    Persoonia 42, 2019: 261–290 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2019.42.10 A phylogenetic approach to a global supraspecific taxonomy of Cortinarius (Agaricales) with an emphasis on the southern mycota K. Soop1*, B. Dima2,3*, J.A. Cooper 4, D. Park5, B. Oertel6 Key words Abstract A section-based taxonomy of Cortinarius, covering large parts of the temperate North and South Hemi- spheres, is presented. Thirty-seven previously described sections are reviewed, while another forty-two sections Basidiomycota are proposed as new or as new combinations. Twenty additional clades are recovered but not formally described. Maximum Likelihood Furthermore, six new or combined species names are introduced, and one species is neotypified. The structure is phylogeny supported by morphological characters and molecular evidence, based on two (nrITS and nrLSU) and four (nrITS, ribosomal and protein-coding genes nrLSU, rpb1 and rpb2) loci datasets and analysed by Maximum Likelihood methods (PhyML, RAxML). Altogether section rank 789 Cortinarius samples were included in the study. Southern Hemisphere Article info Received: 9 February 2018; Accepted: 10 February 2019; Published: 28 May 2019. INTRODUCTION structure of c. 900 species based on the internal transcribed spacer regions (nrITS) of the nuclear ribosomal DNA. Garnica It is self-evident that large fungal genera are in a special need et al. (2016: Fig. S2) also produced a phylogram of a limited for structuring into lower-rank taxa in order to assist the mycolo- sampling based on five loci, annotated with support figures. gist in navigating the genus and to provide an overview of its This showed that the genus contains two major lineages that taxonomy.
    [Show full text]
  • Cortinarius Jiaoheensis (Cortinariaceae), a New Species of Cortinarius Subgenus Telamonia Section Flexipedes, from Northeast China
    Phytotaxa 494 (1): 113–121 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2021 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.494.1.7 Cortinarius jiaoheensis (Cortinariaceae), a new species of Cortinarius subgenus Telamonia section Flexipedes, from northeast China YING LUO1,2 & TOLGOR BAU1,3* 1 Engineering Research Centre of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, P. R. China. 2 [email protected] 3 [email protected]; https://orcid.org/0000-0003-2461-9345 *Corresponding author: [email protected] Abstract A new Cortinarius species in subgenus Telamonia section Flexipedes, Cortinarius jiaoheensis, is described based on morphological characteristics and molecular data. It is characterized by small basidiomata, with the surface of the pileus completely covered by woolly squamules, and ellipsoid to obovoid ellipsoid basidiospores. This species produces basidiomata in the autumn and is currently known only from northeast China. Keywords: Agarics, ectomycorrhizal, ITS, SEM, taxonomy Introduction Cortinarius (Pers.) Gray. (1821: 627), the largest genus of Agaricales with about 2250 species distributed worldwide (He et al. 2019), is an important ectomycorrhizal genus in several ecosystems (Singer 1986). To date, over 5000 names and combinations have been published (Index Fungorum, http://www.indexfungorum.org, 15 November 2020 release). Over the past ca. 200 years, several scientists have attempted to describe and classify Cortinarius. Persoon (1801) first described Cortinarius as a section under Agaricus, which included 52 species. Gray (1821) separated it from Agaricus as an independent genus. Fries (1838) laid the foundation for classification of Cortinarius by reporting 216 species of Cortinarius in Europe and dividing them into six subgenera based on the characteristics of pileus, stipe, and universal veil viz., Myxacium, Phlegmacium, Inoloma, Dermocybe, Telamonia, and Hydrocybe.
    [Show full text]
  • Intercontinental Distributions of Species of Cortinarius, Subgenus Phlegmacium, Associated with Populus in Western North America
    Intercontinental distributions of species of Cortinarius, subgenus Phlegmacium, associated with Populus in western North America Authors : Cathy L. Cripps, Kare Liimatainen, Tuula Niskanen, Bálint Dima, Richard F. Bishop, & Joseph F. Ammarati This i s a postprint o f an articl e that originally appear ed i n Botany in October 2015 . Cripps, Cathy L., Kare Liimatainen, Tuula Niskanen, Balint Dima, Richard F. Bishop, and Joseph F. Ammarati. "Intercontinental distributions of species of Cortinarius, subgenus Phlegmacium, associated with Populus in western North America." Botany (October 2015). DOI: https://dx.doi.org/10.1139/cjb-2015-0089 . Made available throug h Montana State University’s ScholarWorks scholarw or ks.montana.edu Intercontinental distributions of species of Cortinarius, subgenus Phlegmacium, associated with Populus in western North America Cathy L. Cripps, Kare Liimatainen, Tuula Niskanen, Bálint Dima, Richard F. Bishop, and Joseph F. Ammirati Abstract: Three species of Cortinarius subg. Phlegmacium ,Cortinarius argutus Fr. and Cortinarius hedyaromaticus C. Cripps & O.K. Mill. (section Arguti stat. nov.) and Cortinarius talus Fr. (section Multiformes ), are compared from western North America and Europe. Phylogenetic analysis of the ITS region shows that C. argutus and C. hedyaromaticus are separate, closely related species with rooting stipes. Cortinarius talus is a pale species with a bulbous stipe and a sweet odor similar to that of C. hedyaromaticus ;C. argutus lacks this sweet odor. All three species have intercon- tinental distributions and are associated with deciduous trees, primarily Populus tremuloides Michx., Populus tremula L., but also Salix spp. This study highlights the importance of the study of type specimens and molecular analysis to stabilize the application of established names.
    [Show full text]
  • Florule Evolutive Des Basidiomycotina Du Finistere
    Alain GERAULT FLORULE EVOLUTIVE DES BASIDIOMYCOTINA DU FINISTERE HOMOBASIDIOMYCETES CORTINARIALES Octobre 2005 Version 2.0 2 AVERTISSEMENT Il ne s’agit pas à proprement parler d’une flore mais d’une liste commentée et descriptive des espèces d’AGARICOMYCETIDEAE trouvées dans le Finistère. Elle est destinée à servir de base à la réalisation de l’inventaire des champignons du Finistère dans le cadre de l’inventaire national. Si l’étude des champignons “ supérieurs ” du Finistère a commencé dés le 19 ème siècle avec les mycologues Morlaisiens et Brestois, leurs travaux sont cependant difficilement exploitables. En effet la mycologie était encore balbutiante à l’époque et il est souvent très difficile de se faire une idée des espèces dont il est fait mention. A l’heure actuelle, la mycologie évolue beaucoup et il est indispensable de fixer, au moins provisoirement, les interprétations retenues pour les espèces déterminées. C’est donc dans ce but, que nous avons réalisé ce relevé des espèces signalées dans le Finistère, selon la nomenclature moderne et selon notre interprétation, qu’il sera aisé de corriger si elle s’avère erronée ou si elle doit être modifiée. Cette florule est enregistrée de manière électronique ce qui lui permet d’être réellement évolutive en quelques instants. Ce relevé étant incomplet nous avons adopté le terme de “ Florule évolutive ” pour bien montrer que beaucoup reste à faire et qu’elle doit être complétée et corrigée en permanence. Cette florule est destinée à tous les mycologues du Finistère (et d’ailleurs) qui voudront bien la considérer seulement comme une base de travail commune pour tenter de se mettre d’accord sur les interprétations à donner à certaines espèces critiques (hélas nombreuses !).
    [Show full text]
  • Pacific Northwest Fungi
    Pacific Northwest Fungi Volume 1, Number 6, Pages 1-7 Published May 1, 2006 Cortinarius rubellus Cooke from British Columbia, Canada and Western Washington, USA Christie P. Robertson1, Leesa Wright2, Sharmin Gamiet3, Noelle Machnicki4, Joe Ammirati4, Joshua Birkebak5, Colin Meyer6, and Alissa Allen7 15349 S Creston St., Seattle, WA 98178, [email protected], 2837 NW 61st Street, Seattle, WA 98107, 3Life Sciences, Incentive Access Ltd., Suite 2007, 7495 132nd Street, Surrey, BC V3W1J8, 4Department of Biology, 355325, University of Washington, Seattle, WA 98195, 57937 10th Ave. SW Seattle, WA 98106, 610729 57 Ave. S, Seattle, WA 98178-2233, 73915 S Brandon St., Seattle, WA 98118. Robertson, C. P., L. Wright, S. Garniet, N. Machnicki, J. Ammirati, J. Birkebak, C. Meyer, and A. Allen. 2006. Cortinarius rubellus Cooke from British Columbia, Canada and Western Washington, USA. Pacific Northwest Fungi 1(6): 1-7. DOI: 10.2509/pnwf.2006.001.006. Corresponding author: C. P. Robertson, [email protected] Accepted for publication April 24, 2006. Copyright © 2006 Pacific Northwest Fungi Project. All rights reserved. Abstract: Cortinarius rubellus is reported from British Columbia and Western Washington. This is the first report of C. rubellus from western North American since it was published as C. rainierensis by A. H. Smith and D. E. Stuntz in 1950. Key words: ectomycorrhiza, orellanine, Sphagnum bog. Introduction: Cortinarius rubellus Cooke is R. Henry, C. speciosissmus Kuhner and well known in the literature through papers Romagnesi, and C. rainierensis A. H. Smith on its taxonomy, nomenclature, ecology, & D. E. Stuntz as separate species. C. toxicology and fluorescent pigments. Keller- rainierensis was described from Washington Dilitz et al.
    [Show full text]