Ethyleneamines Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
162 Part 175—Indirect Food Addi
§ 174.6 21 CFR Ch. I (4–1–19 Edition) (c) The existence in this subchapter B Subpart B—Substances for Use Only as of a regulation prescribing safe condi- Components of Adhesives tions for the use of a substance as an Sec. article or component of articles that 175.105 Adhesives. contact food shall not be construed as 175.125 Pressure-sensitive adhesives. implying that such substance may be safely used as a direct additive in food. Subpart C—Substances for Use as (d) Substances that under conditions Components of Coatings of good manufacturing practice may be 175.210 Acrylate ester copolymer coating. safely used as components of articles 175.230 Hot-melt strippable food coatings. that contact food include the fol- 175.250 Paraffin (synthetic). lowing, subject to any prescribed limi- 175.260 Partial phosphoric acid esters of pol- yester resins. tations: 175.270 Poly(vinyl fluoride) resins. (1) Substances generally recognized 175.300 Resinous and polymeric coatings. as safe in or on food. 175.320 Resinous and polymeric coatings for (2) Substances generally recognized polyolefin films. as safe for their intended use in food 175.350 Vinyl acetate/crotonic acid copoly- mer. packaging. 175.360 Vinylidene chloride copolymer coat- (3) Substances used in accordance ings for nylon film. with a prior sanction or approval. 175.365 Vinylidene chloride copolymer coat- (4) Substances permitted for use by ings for polycarbonate film. 175.380 Xylene-formaldehyde resins con- regulations in this part and parts 175, densed with 4,4′-isopropylidenediphenol- 176, 177, 178 and § 179.45 of this chapter. -
Reduction of Organic Functional Groups Using Hypophosphites Rim Mouselmani
Reduction of Organic Functional Groups Using Hypophosphites Rim Mouselmani To cite this version: Rim Mouselmani. Reduction of Organic Functional Groups Using Hypophosphites. Other. Univer- sité de Lyon; École Doctorale des Sciences et de Technologie (Beyrouth), 2018. English. NNT : 2018LYSE1241. tel-02147583v2 HAL Id: tel-02147583 https://tel.archives-ouvertes.fr/tel-02147583v2 Submitted on 5 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE de DOCTORAT DE L’UNIVERSITE DE LYON EN COTUTELLE AVEC L'UNIVERSITÉ LIBANAISE opérée au sein de l’Université Claude Bernard Lyon 1 École Doctorale de Chimie-École Doctorale des Sciences et Technologies Discipline : Chimie Soutenue publiquement le 07/11/2018, par Rim MOUSELMANI Reduction of Organic Functional Groups Using Hypophosphites Devant le jury composé de Mme. Micheline DRAYE Université Savoie Mont Blanc Rapporteure M. Mohammad ELDAKDOUKI Université Arabe de Beyrouth Rapporteur Mme. Emmanuelle SCHULZ Université Paris 11 examinatrice M. Abderrahmane AMGOUNE Université Lyon 1 Président M. Mahmoud FARAJ Université Internationale Libanaise examinateur Mme. Estelle MÉTAY Université Lyon 1 Directrice de thèse M. Ali HACHEM Université Libanaise Directeur de thèse M. Marc LEMAIRE Université Lyon 1 Membre invité M. -
Gasket Chemical Services Guide
Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials. -
EPA/Diethylenetriamine
Thursday May 23~1~S5 Part~ Environmental. Protection Agency 40 CFR Part 79S Dlsthyl.ne1flamine identification ~ Specific chemical Substance and MkU~e testhig Requirements; Final Rule Dl.thyfert.trlamlne; Proposed Teat Rule; — Rule JI~ 21398 Federal Register f Vol. 50. No. 100 1 Thursday, May 23. 1985 / Rules and Regulations ENVIRONMENTAL PROTECTION chemical fate testing (underaerobic relevant to assessing the risks to health AGENCY conditions only) for DETA. and the environment posed by exposure 1. Introduction to particular chemical substances or 40 CER Pal 799 This notice is part of the overall mixtures. implementation of section 4 of the Toxic Under section 4(a)(1) of TSCA. EPA (OPTS-420129 19*4-FRI. 2815-Sal Substances Control Act(TSCA, Pub. L. must require testing of a chemical 94.-469, 90 Stat 2003 etseq.. 15 US.C. substance to develop health or Idantificatlon of Specific Chsnilcal environmentaldata if the Administrator Substance and Mixture Testing 2801 et seq.) whichcontains authority R.qulrem.ntLD4.thylen.thamln. for EPA to require development of data finds that: AOSNCY Environmental Protection (A)(i) th. manufacture, distribution in commerce, proc. Agency (EPA). eonng, use, or disposal of a chemical substanceor mixture, or that .*CT*Osc Final rule. any combination of such activities, may present an unreasonable riakof injuryto health or the environment, (n) there are insu~cientdata and.aqerience upon which the ai~anv:This rule establishes testing effects of such manufacture, distribution in commerce, processing, requirements under section 4(a) of the ma,or disposal.of such substance or iI~iThweor of any combine- Toxic Substances Control Act(TSCA) tion of such activities on health or thf.Invironment can reason- for manufacturers and processorsof ably be determined or predicted, and diethylenetriamine (DETA~CAS No. -
Possible Applications of Diethylenetriamine (Deta) in Co2 Capturing- a Mini - Review
___________________ POSSIBLE APPLICATIONS OF DIETHYLENETRIAMINE (DETA) IN CO2 CAPTURING- A MINI - REVIEW Rawat N1,*, Iglič A1,2, Gimsa J3 1Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia 2Laboratory of Clinical Biophysics, Chair, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia 3University of Rostock, Chair for Biophysics, Gertrudenstr. 11A, 18057 Rostock, Germany *[email protected] Abstract In the past decades, reduction of carbon dioxide (CO2) emissions into the atmosphere has become a challenging goal. Capturing the CO2 directly before storage is becoming a thriving alternative approach. Septavaux et al. (1) have proposed a CO2 fixation method using diethylenetriamine (DETA) to produce a range of carbamation species that can be used for metal separation and recovery. They could show that lanthanum and nickel can be separated from the exhaust gases of vehicle engines by successive CO2-induced selective precipitations. Individual metal components of La2Ni9Co alloys used to manufacture batteries for electric vehicles can also be separated. Here we suggest to use DETA as a mediator for an attractive interaction between like-charged macroions. ___________________ 79 1. Introduction Carbon dioxide (CO2) emission into the atmosphere has increased at an alarming rate. In order to reduce CO2 emissions, adequate measures for CO2 capture and storage (CCS) or utilization (CCU) need to be taken (2). Since CCS is expensive therefore more attention is directed towards CCU because it has other economic advantages. CCU would significantly reduce the cost of storage due to recycling of CO2 for further usage. In this context, Septavaux et al. (1) recently showed that the cost of CO2 capturing with the industrial polyamine DETA can be reduced even further with another environmentally beneficial process (3). -
SYNTHESIS and IMMOBILIZATION on SILICA GEL by ZUANG-CONG
MACROCYCLIC MULTIDENTATE LIGANDS: SYNTHESIS AND IMMOBILIZATION ON SILICA GEL by ZUANG-CONG LU, B.S. in Ch.E., M.S. in Ch.E. A THESIS IN CHEMISTRY Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Accepted December, 1990 N) ni />._ <? ACKNOWLEDGEMENI^ .AJ f z My family and I will always be indebted to Professor Richard A, Bartsch for his guidance, support and understanding. I would like to thank my friends and coworkers for their enthusiasm, encourage ment and friendship. Finally, I need to thank Mr. Robert Alldredge, president of Serpentix Incorporated, for the support of my research. 11 Ill TABLE OF CONTENTS Page ACKNOWLEDGEMENTS ii LIST OF TABLES vii LIST OF FIGURES viii I. INTRODUCTION 1 General 1 Crown ether background 1 Factors affecting cation complexation 3 Immobilization of Azacrown Ethers on Silica Gel 7 The mechanism of silylation 1 5 Statement of Research Goals 2 1 n. RESULTS AND DISCUSSION 2 3 Synthesis of Structurally Modified Dibenzo-16-crown-5 Compounds 2 3 Synthesis of sym-ketodibenzo-16-crown-5 (14) 2 3 Synthesis of sym-(decyl)hydroxydibenzo- 16-crown-5 (H) 2 5 Synthesis of 3-[sym-(decyl)dibenzo- 16-crown-5-oxy]propanesulfonic acid (17) 2 6 Synthesis of Structurally Modified Dibenzo-14-crown-4 Compounds 2 6 IV Synthesis of l,3-bis(2-hydroxyphenoxy) propane (18) 2 8 Synthesis of sym-vinylidenedibenzo- 14-crown-4 (21). 2 9 Synthesis of sym-hydroxydibenzo- 14-crown-4 (19.) 3 0 Synthesis of sym-(phenyl)hydroxydibenzo- 14-crown-4 (21) (Route 1). -
Best Practices Manual for Ethylene Amines
Ethyleneamines Technical Manual Ethyleneamines Product Stewardship Discussion Group EPSDG 2019 © (2019) BASF SE, Delamine, B.V., The Dow Chemical Company, Huntsman, Nouryon, Tosoh Corporation. Table of Contents Materials of Construction .................................... 17 Introduction ................................................... 1 Storage and Handling Systems Materials ........ 17 Responsible Care® ........................................ 2 Elastomers ....................................................... 19 Product Stewardship ................................... 2 Gaskets ............................................................ 19 Customer Notice ........................................... 2 Thermal Insulation Materials ............................ 20 Legal Notice .................................................. 2 Storage System Design ....................................... 21 Physical Properties ...................................... 3 Typical Arrangement ........................................ 21 Reactivity ....................................................... 3 Storage Tanks .................................................. 21 Flammability/Combustibility ....................... 4 Heating/Freeze Protection ............................... 23 Decomposition Products ............................. 4 Tank Mixing ...................................................... 23 Static Electricity............................................ 5 Grounding ........................................................ 23 Health Effects............................................... -
Chapter 18 Amines in Order for a Drug to Be Effective Orally, It Generally
Chapter 18 Amines In order for a drug to be effective orally, it generally has to be reasonable soluble in water so that it can be transported through the blood. Since amines are weak bases, they are often converted to salts with some acid and therefore may oral drugs have amine salts as part of their structure. One reason for their presence is that they confer some water solubility to the drug. The three-dimensional models show the shapes of amine molecules; notice the lone pair of electrons on nitrogen is not shown but affects the geometry about the nitrogen Primary, secondary and tertiary amines have 1, 2 or 3 alkyl groups attached to nitrogen. In these cases the alkyl group is the methyl In the IUPAC system, STEP 1 Name the longest carbon chain bonded to the N atoms as alkanamines by replacing e of the alkane name with amine. STEP 2 Number the carbon chain to locate the amine group and any substituents. N,N-Dimethylethanamine aminoethane 2-aminopropane 2-(N,N-dimethylamino)ethane 1-(N-methylamino)propane 2-(N-methylamino)butane Amines can also be names as groups attached to a hydrocarbon Aminobenzene is called aniline NH2 C H H C C C C H H C H NH2 NH2 NH CH3 Cl aniline 3-chloroaniline N-methylaniline aminobenzene 3-chloroaminobenzene N-methylaminobenzene Properties of amines The boiling points of amines are higher than alkanes of similar mass lower than alcohols of similar mass Amines are soluble in water if they have 1 to 5 carbon atoms; the N atom forms hydrogen bonds with the polar O—H bond in water An amine salt forms when an amine -
In This Handout, All of Our Functional Groups Are Presented As Condensed Line Formulas, 2D and 3D Formulas and with Nomenclature Prefixes and Suffixes (If Present)
In this handout, all of our functional groups are presented as condensed line formulas, 2D and 3D formulas and with nomenclature prefixes and suffixes (if present). Organic names are built on a foundation of alkanes, alkenes and alkynes. Those examples are presented first and you need to know those rules. The strategies can be found in Chapter 4 of our textbook (alkanes: pages 93-98, cycloalkanes 102-104, alkenes: pages 104-110, alkynes: pages 112-113 and combinations of all of them 113-115). After introducing examples of alkanes, alkenes, alkynes and combinations of them, the functional groups are presented in order of priority. A few nomenclature examples are provided for each of the functional groups. Examples of the various functional groups are presented on pages 115-135 in the textbook. Two overview pages are on pages 136-137. Some functional groups have a suffix name when they are the highest priority functional group and a prefix name when they are not the highest priority group, and these are added to the skeletal names with identifying numbers and stereochemistry terms (E and Z for alkenes, R and S for chiral centers and cis and trans for rings). Several low priority functional groups only have a prefix name. A few additional special patterns are shown on pages 98-102. The only way to learn this topic is practice (over and over). The best practice approach is to actually write out the names (on an extra piece of paper or on a white board, and then do it again). The same functional groups are used throughout the entire course. -
Food and Drugs
21 Part 170 to 199 Revised as of April 1, 2001 Food and Drugs Containing a codification of documents of general applicability and future effect As of April 1, 2001 With Ancillaries Published by Office of the Federal Register National Archives and Records Administration A Special Edition of the Federal Register VerDate 11<MAY>2000 11:38 Apr 16, 2001 Jkt 194064 PO 00000 Frm 00001 Fmt 8091 Sfmt 8091 Y:\SGML\194064F.XXX pfrm02 PsN: 194064F U.S. GOVERNMENT PRINTING OFFICE WASHINGTON : 2001 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: (202) 512-1800 Tax: (202) 512-2250 Mail Stop: SSOP, Washington, DC 20402–0001 VerDate 11<MAY>2000 11:38 Apr 16, 2001 Jkt 194064 PO 00000 Frm 00002 Fmt 8092 Sfmt 8092 Y:\SGML\194064F.XXX pfrm02 PsN: 194064F Table of Contents Page Explanation ................................................................................................ v Title 21: Chapter I—Food and Drug Administration, Department of Health and Human Services (Continued) ................................................. 3 Finding Aids: Material Approved for Incorporation by Reference ............................ 573 Table of CFR Titles and Chapters ....................................................... 587 Alphabetical List of Agencies Appearing in the CFR ......................... 605 Redesignation Table ............................................................................ 615 List of CFR Sections Affected ............................................................. 617 -
Tetraethylenepentamine
Tetraethylenepentamine sc-237036 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Tetraethylenepentamine STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY1 HEALTH3 HAZARD INSTABILITY0 SUPPLIER Santa Cruz Biotechnology, Inc. 2145 Delaware Avenue Santa Cruz, California 95060 800.457.3801 or 831.457.3800 EMERGENCY ChemWatch Within the US & Canada: 877-715-9305 Outside the US & Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 SYNONYMS C8-H23-N5, NH2(CH2-CH2-NH)3-CH2-CH2-NH2, H2-N-CH2-(CH2-NH-CH2)3-CH2-NH2, H2-N-(C2-H4-NH)4-H, "tetraethylene pentamine", "N-(2-aminoethyl)-N-(2-((2-aminoethyl)amino)ethyl)-1, 2-ethanediamine", "1, 2-ethanediamine, N-(2-amino((2-aminoethyl)amino)ethyl)-", "1, 4, 7, 10, 13-pentaazatridecane", "1, 11-diamino-3, 6, 9-, triazaundecane", TEPA, "D.E.H. 26", ethyleneamine, "polyethylene-1, 2-ethanediamine" Section 2 - HAZARDS IDENTIFICATION CHEMWATCH HAZARD RATINGS Min Max Flammability 1 Toxicity 2 Min/Nil=0 Low=1 Body Contact 3 Moderate=2 Reactivity 2 High=3 Extreme=4 1 of 14 Chronic 3 CANADIAN WHMIS SYMBOLS EMERGENCY OVERVIEW RISK Causes burns. Risk of serious damage to eyes. May cause SENSITISATION by skin contact. May cause harm to the unborn child. Harmful in contact with skin and if swallowed. Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. -
Efficient Synthesis of Novel Pyridine-Based Derivatives Via
molecules Article Efficient Synthesis of Novel Pyridine-Based Derivatives via Suzuki Cross-Coupling Reaction of Commercially Available 5-Bromo-2-methylpyridin-3-amine: Quantum Mechanical Investigations and Biological Activities Gulraiz Ahmad 1, Nasir Rasool 1,*, Hafiz Mansoor Ikram 1, Samreen Gul Khan 1, Tariq Mahmood 2, Khurshid Ayub 2, Muhammad Zubair 1, Eman Al-Zahrani 3, Usman Ali Rana 4, Muhammad Nadeem Akhtar 5 and Noorjahan Banu Alitheen 6,* 1 Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan; [email protected] (G.A.); [email protected] (H.M.I.); [email protected] (S.G.K.); [email protected] (M.Z.) 2 Department of Chemistry, COMSATS Institute of Information Technology, University Road, Tobe Camp, 22060 Abbottabad, Pakistan; [email protected] (T.M.); [email protected] (K.A.) 3 Chemistry Department, Faculty of Science, Taif University, 888-Taif, Saudi Arabia; [email protected] 4 Sustainable Energy Technologies Center, College of Engineering, P.O. Box 800, King Saud University, Riyadh 11421, Saudi Arabia; [email protected] 5 Faculty of Industrial Sciences & Technology, University Malaysia Pahang, Lebuhraya Tun, Razak 26300, Kuantan Pahang, Malaysia; [email protected] 6 Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor Darul Ehsan 43400, Malaysia * Correspondence: [email protected] (N.R.); [email protected] (N.B.A.); Tel.: +92-332-7491790 (N.R.); +60-3-8946-7471 (N.B.A.); Fax: +92-41-9201032 (N.R.); +60-3-8946-7510 (N.B.A.) Academic Editor: Diego Muñoz-Torrero Received: 20 November 2016; Accepted: 6 January 2017; Published: 27 January 2017 Abstract: The present study describes palladium-catalyzed one pot Suzuki cross-coupling reaction to synthesize a series of novel pyridine derivatives 2a–2i, 4a–4i.