Food and Drugs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent 19 11 Patent Number: 5,648,064 Gaffar Et Al
US005648064A United States Patent 19 11 Patent Number: 5,648,064 Gaffar et al. 45 Date of Patent: Jul. 15, 1997 (54) ORAL COMPOSITIONS HAVING 5,279,816 1/1994 Church et al. ............................ 424/53 ACCELERATED TOOTH WHTENING 5,302,374 4/1994 Wagner ..................................... 424/52 EFFECT 5,302,375 4/1994 Viscio ....................................... 424/53 5,356,554 10/1994 Delwel et al. ........................... 252/94 I76) Inventors: Abdul Gaffar, 89 Carter Rd., Princeton, 5,536,441 7/1996 Chapple et al. ................... 252A186.33 N.J. 08902; Sahar Fakhry-Smith. 7 FOREIGN PATENT DOCUMENTS Ryans Ct. Bordentown, N.J. 08505 0237111 9/1987 European Pat. Off. ......... C11D 3/39 (21) Appl. No.: 499,532 Primary Examiner-Shep K. Rose Attorney, Agent, or Firm-Paul Shapiro (22 Filed: Jul. 7, 1995 57 ABSTRACT (51] Int. Cl. .................. A61K 7/16; A61K7/20 52 U.S. Cl. ............................................... 424/53; 424/49 A two component whitening dentifrice composition is dis 58) Field of Search ................................... 424/53. 49-58 closed which comprises a first component containing a peroxygen compound such as hydrogen peroxide and a (56) References Cited second dentifrice component containing a manganese coor dination complex compound such as manganese gluconate, U.S. PATENT DOCUMENTS which activates the peroxygen compound and accelerates 4,728,455 3/1988 Rerek ........................................ 25299 the release of active oxygen for rapid whitening action, the 4,759,956 7/1988 Amer et al. ... 427/213 first and second components being maintained separate from 5,032,178 7/1991 Cornell ..................................... 106/35 the other until dispensed for application to teeth. 5, 194416 3/1993 Jureller et al. -
Octyl Alcohol F Oxo Alcohols
Octyl alcohol F Oxo alcohols Trade name: Octyl alcohol F Chemical name: Distillation residue, by-products from the production of 2-ethylhexan-1-ol. CN: 3824 90 97 CAS: 68609-68-7 Properties Use Octyl alcohol F is a liquid whose colour varies from yellow, Octyl alcohol F is used as a flotation agent. through brown-yellow to greenish, with a characteristic odour. Product classification Octyl alcohol F is not classified as a hazardous material according to RID/ADR. Physical and chemical properties Parameter Business unit Value Test methods 2-ethylhexanol, not more than % m/m 30 ZAK’s internal rmethod High-molecular compounds >C8, not less than % m/m 70 ZAK’s internal rmethod oxoplast.pl Manufacturer: Grupa Azoty Zakłady Azotowe Kędzierzyn S.A. Isobutyraldehyde Trade name: Isobutyraldehyde Chemical name: 2-methylpropanal, isobutyraldehyde, isobutanal CN: 2912 19 00 CAS: 78-84-2 Chemical formula: (CH3)2CHCHO Properties Use Isobutyraldehyde is a transparent, colourless liquid with a char- Isobutyraldehyde is used as a raw material for producing acteristic odour. alcohols, acids, amines, and esters. It is used in processes of manufacturing plasticizers, pharmaceutical products, plant Product classification protection agents, synthetic resins, fragrances, solvents and all sorts of additives used in many branches of industry Isobutyraldehyde is classified as a hazardous material (antioxidants, wetting agents, perfume ingredients, improvers). according to RID/ADR. - RID KI. 3, packing group II - ADR KI. 3, packing group II Physical and chemical properties Parameter Business unit Value Test methods Colour, not more than Pt-Co 15 ISO 6271 Acid number, not more than mg KOH/g 2 ZAK’s internal rmethod N-butyraldehyde, not more than % m/m 0,2* ZAK’s internal rmethod Water, not more than % m/m 1,5 ISO 760 Isobutyraldehyde, not less than % m/m 99,5* ZAK’s internal rmethod * the values do not take into account water content in the product oxoplast.pl Manufacturer: Grupa Azoty Zakłady Azotowe Kędzierzyn S.A. -
Review Article Di-2-Ethylhexylphthalate May Be a Natural Product, Rather Than a Pollutant
Hindawi Journal of Chemistry Volume 2018, Article ID 6040814, 7 pages https://doi.org/10.1155/2018/6040814 Review Article Di-2-ethylhexylphthalate May Be a Natural Product, Rather than a Pollutant Aurelio Ortiz and Estibaliz Sansinenea Facultad de Ciencias Qu´ımicas, Beneme´rita Universidad Auto´noma de Puebla, C.P. 72570, Puebla, PUE, Mexico Correspondence should be addressed to Estibaliz Sansinenea; [email protected] Received 28 June 2018; Revised 22 August 2018; Accepted 3 September 2018; Published 26 September 2018 Academic Editor: Qizhen Du Copyright © 2018 Aurelio Ortiz and Estibaliz Sansinenea. )is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Di-2-ethylhexylphtalate is an ester of phthalic acid that has been used as plasticizer in many materials. Due to the extended use, it has been persistently found in different environments being classified as a pollutant with some risks for human health. However, in the last years, it has been found that this compound is produced by plants or microorganisms like bacteria or fungi. )is finding opened a serious debate about the origin of this compound and questioned if it is a real pollutant or a natural metabolite with some biological activities that could help us in several ways. )is review tries to give some data of the different points of view about this question. 1. Introduction presence of these compounds in the environment, many reactions have been reported to degrade and transform these Phthalate compounds are colorless liquid chemicals that compounds. -
Surface Morphology Alterations in Bovine Dentin Exposed to Different Bleaching Agents
Braz J Oral Sci. Original Article January/March 2009 - Volume 8, Number 1 Surface morphology alterations in bovine dentin exposed to different bleaching agents Juliana Nascimento Santos1, Daniel Pinto de Oliveira1, Fábio Roberto Dametto1, Brenda Paula Figueiredo de Almeida Gomes2, Alexandre Augusto Zaia2, José Flávio Affonso de Almeida2, Caio Cezar Randi Ferraz2 1 DDS, MSc, PhD, Department of Restorative Dentistry and Endodontics, Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas (Unicamp), Piracicaba (SP), Brazil 2 DDS, MSc, PhD, Professor, Department of Restorative Dentistry, Endodontics, Faculdade de Odontologia de Piracicaba, Unicamp, Piracicaba (SP), Brazil Abstract Aim: This study evaluated the morphological changes caused by internal bleaching agents on dentin surface. Methods: Twenty crowns of bovine incisors were cut into slabs that were randomly distributed in six experimental groups (n = 5), according to the bleaching agent used: G1 – sodium perborate + water, G2 – sodium perborate + 2% chlorhexidine gel, G3 – sodium perborate + 30% hydrogen peroxide, G4 – 30% hydrogen peroxide, G5 – 37% carbamide peroxide and G6 – gel base without carbamide. Two Control Groups were used: C1 with distilled water and C2 with 2% chlorhexidine gel. The specimens were immersed in the respective test bleaching agent and incubated at 37 °C for seven days. Following, they were prepared for scanning electron microscopy and five images from each tooth segment were recorded and analyzed for surface morphological alterations, by three previously calibrated examiners. Inter-examiner agreement was verified using the Kappa test. The rank averages obtained for the groups were subjected to Kruskal-Wallis analysis of variance at 5% significance level. Results: The analysis of the scores obtained indicated that all tested materials caused some morphological alteration on dentin, except for sodium perborate + water (G1) and Control Groups 1 and 2. -
Ammonium-Persulphate.Pdf
ADVANCE An Exclusive Chemical Range CHEMICAL SALES CORPORATION CHEMICAL SUPPLIES SIMPLIFIED ABOUT US ADVANCE CHEMICAL SALES CORPORATION Advance Chemical Sales Corporation is an industrial distributor of Fine & Speciality Chemicals. It boasts of its technology-driven innovative ways in suppling products to its customers. ADVANCE CHEMICAL SALES CORPORATION (ACSC) has been a trusted supplier of chemicals since 1968. We like to work alongside customers and solve their challenges with efficiency, progressive solutions and quality products. Whether the order is for chemical commodities or speciality chemicals, no matter if the volume is large or small, we can handle it. We are committed to bring the best quality products at competitive prices from reputed manufacturers to our customers. Our goal is to make sure that our customers find their needs of chemicals in one place. We work to develop the customers' trust An Exclusive Chemical Range EXEMPLAR DELHI is in Trade and Import of ACIDS, INORGANIC CHEMICALS, METAL ORGANIC COMPOUNDS, ORGANIC CHEMICALS & SOLVENTS. EXEMPLAR NOIDA produces chemicals like ACETATES, CHELATED EDTA, CITRATES, EDTA SALTS, GLUCONATES, HEDP SALTS, OXALATES, PHOSPHATES, TARTRATES, FINE & PERFORMANCE CHEMICALS INDUSTRIES SERVED AGRO CHEMICALS DAIRY PAINTS & INKS CERAMIC & GLASS DETERGENTS PESTICIDES CHEMICAL INDUSTRIES FOOD PROCESSING PHARMACEUTICALS CONSTRUCTION LUBRICANTS POULTRY FEED COSMETICS METAL TREATMENT WATER TREATMENT CHEMICAL SUPPLIES SIMPLIFIED ACETATES AGRO CHEMICALS Ammonium acetate Amino acid (Protein hydrolysate) Calcium acetate Boron-20 Potassium acetate Disodium octaborate tetrahydrate Sodium acetate 3 hyd. Fulvic acid Sodium acetate anhy. Potassium humate Sodium diacetate Potassium humate fulvate Zinc acetate 2 hy. Seaweed extract ACIDS ALKALIES Acetic acid glacial Alumina trihydrate Adipic acid Aluminium oxide (Calcined) Ascorbic acid Ammonia solution Benzoic acid Ammonium carbonate Boric acid Calcium carbonate Citric acid mono/ anhy. -
Purification and Properties of the Inducible Coenzyme A-Linked Butyraldehyde Dehydrogenase from Clostridium Acetobutylicum NEIL R
JOURNAL OF BACTERIOLOGY, JUlY 1988, p. 2971-2976 Vol. 170, No. 7 0021-9193/88/072971-06$02.00/0 Copyright © 1988, American Society for Microbiology Purification and Properties of the Inducible Coenzyme A-Linked Butyraldehyde Dehydrogenase from Clostridium acetobutylicum NEIL R. PALOSAARI* AND PALMER ROGERS Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455 Received 13 November 1987/Accepted 25 March 1988 The coenzyme A (CoA)-linked butyraldehyde dehydrogenase (BAD) from Clostridium acetobutylicum was characterized and purified to homogeneity. The enzyme was induced over 200-fold, coincident with a shift from an acidogenic to a solventogenic fermentation, during batch culture growth. The increase in enzyme activity was found to require new protein synthesis since induction was blocked by the addition of rifampin and antibody against the purified enzyme showed the appearance of enzyme antigen beginning at the shift of the fermentation and increasing coordinately with the increase in enzyme specific activity. The CoA-linked acetaldehyde dehydrogenase was copurified with BAD during an 89-fold purification, indicating that one enzyme accounts for the synthesis of the two aldehyde intermediates for both butanol and ethanol production. Butanol dehydrogenase activity was clearly separate from the BAD enzyme activity on TEAE cellulose. A molecular weight of 115,000 was determined for the native enzyme, and the enzyme subunit had a molecular weight of 56,000 indicating that the active form is a homodimer. Kinetic constants were determined in both the forward and reverse directions. In the reverse direction both the V,ax and the apparent affinity for butyraldehyde and caproaldehyde were significantly greater than they were for acetaldehyde, while in the forward direction, the Vmax for butyryl-CoA was fivefold that for acetyl-CoA. -
Gasket Chemical Services Guide
Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials. -
Sids Initial Assessment Profile
SIAM 31, 20-22 October 2010 BIAC/ICCA SIDS INITIAL ASSESSMENT PROFILE CAS No. 123-05-7 Chemical Name 2-Ethylhexaldehyde Structural Formula O=CH-CH(CH2-CH3)-CH2-CH2-CH2-CH3 SUMMARY CONCLUSIONS OF THE SIAR Analogue Rationale Several of the health endpoints for 2-ethylhexaldehyde make use of data from 2-ethylhexanol and 2-ethylhexanoic acid experiments. The logic for this “metabolic series” approach includes the metabolism of alcohols (2-ethylhexanol) proceeding via a readily reversible reaction with alcohol dehydrogenase(s) to rapidly form the respective aldehydes (2-ethylhexaldehyde). The aldehydes are short-lived due to the enzymatic activity of aldehyde dehydrogenase that forms the respective organic acids (2-ethylhexanoic acid). Assuming 2-ethylhexaldehyde behaves as other aldehydes, direct exposure to 2-ethylhexaldehyde will result in the rapid formation of both 2 -ethylhexanol and 2-ethylhexanoic acid. The metabolic processes of these two chemicals are well characterized. Toxicity data from studies conducted with 2-ethylhexanol and 2-ethylhexanoic acid have been used to identify the hazards associated with systemic exposure to 2 -ethylhexaldehyde and therefore are useful in identifying hazards associated with 2-ethylhexaldehyde systemic exposures. Structural analogues are used to address several Environmental Hazard endpoints: 2-methyl propionaldehyde (CAS No.78-84-2), 2-ethyl butyraldehyde (CAS No.97-96-1), 2-methyl valeraldehyde (CAS No. 123-15-9), valeraldehyde (CAS No. 110-62-3), hexaldehyde (CAS No.66-25-1), and octylaldehyde (CAS No. 124-13-0). Physical-Chemical Properties 2-Ethylhexaldehyde is a liquid at standard temperature and pressure, with a boiling point of 163 ºC and a melting (freezing) point of <–100 ºC. -
Kinetics of Oxidation of Formaldehyde, Acetaldehyde, Propionaldehyde & Butyraldehyde by Ditelluratocuprate(III) in Alkaline Medium
r Jndlan Journal of Chemistry Vol. 17A, January 1979,pp. 48·51 Kinetics of Oxidation of Formaldehyde, Acetaldehyde, Propionaldehyde & Butyraldehyde by Ditelluratocuprate(III) in Alkaline Medium C. P. MURTHY, B. SETHURAM & T. NAVANEETH RAO· Department of Chemistry, Osmania University, Hyderabad 500007 Received 8 June 1978; accepted 25 July 1978 Kinetics of oxidation oJ formaldehyde, acetaldehyde, proplonaldehyde and n-butyraldehyde by potasstum ditelluratocuprate(III) has been studied in alkaline medium spectrophoto- :metrically. The order in [aldeh;de] and [Cu(III)) are found to be one each and rates decreased with increase in [tellurate] and increase in [OH-]. There is no effect of addition of salts like Na, SO. and KNOa• The products of oxidation are identified as corresponding carboxylic acids. Under the experimental conditions the :monotelluratocuprate(III) species is assu:med as the active species. The ther:modynamic para:meters are also reported and a plausible mechanism has been suggested. SE of Cu(III) as an oxidizing agent is well corrections made for any self-decomposition of known in analytical chemistry in the estimation Cu (III) during the reaction. U of sugars-, glycerols-, amino acids", proteinss, carboxylic acids", carbonyl compounds" and alcohols? Results The presence of Cu(III) as intermediate was also Under the conditions [Cu(III)] ~ [aldehyde] the reported in some Cu(II)-catalysed oxidation reactions plots of log (absorbance) versus time were linear by peroxydisulphate" and vanadium (V)9. The kine- (Fig. lA), indicating the order in [Cu(III)J to be tics of decomposition and formation of Cu(III) unity. From the slopes of the above plots the diperiodate and ditellurate complexes were also pseudo-first order rate constants (k') were evaluated. -
The Treatment of Acute Neerotizing Ulcerative Gingivitis Anne C
Penodontics The treatment of acute neerotizing ulcerative gingivitis Anne C. Hartnett* / Jacob Shiloah** The destruction of tbe interdental papillae and formation of permanent gingiva! craierx are common sequelae of acute neerotizing uleerative gingivitis. These craters ean be disfiguring, especially in the anterior gingiva, and ean act as a nidus for recurrent epi- sodes. Traditional therapy has emphasized a stirgieal approach for elimination of Ihese defects, often increasing the esthelie problems. The pwpose of this paper is to review the treatment modalities of acitte neerotizing itlcerative gingivitis and ¡Ilústrate an al- ternative treatment approach of periodic sealing, root planing, and antimicrohiai rinses with 0.12% chlorhexidine. With this therapeutic regimen, the disease proeess ean be reversed and damaged papillae may regenérale. (Quintessence Int 1991:22:95-100.) Introduction chetes, fusifonn bacteria, and species of Bacteroides are the organisms most frequently cultivated from Acute neerotizing ulcerative gingivitis (ANUG) is a these lesions,' a definitive periodontal pathogen has rapidly destructive, noncommunicable, gingival infec- yet to be tmplicated in the onset or progression of tion of complex etiology. It is characterized by necrosis ANUG. A susceptible animal model in which to study of the crest of the gingival papillae, spontaneous ANUG has not been found. bleeding, pain, and halitosis. If left untreated, it may Previous studies have speculated on the importance spread laterally and apically to involve the entire -
Entodinternational.Com ENTOD HOUSE, W-50(B), M.I.D.C, T.T.C
Since 1977... Ocular Care & Wellness Since 1977 OUR OPHTHALMIC • Over 40 Years of Pharmaceutical & Nutraceutical Expertise RANGE AT A GLANCE • International Formulation R&D Centres • Technology-Driven Ophthalmics • WHO GMP & US FDA Accredited Manufacturing • Global Exports CONTACT US Head Office: Entod Pharmaceuticals Ltd., OPHTHALMIC FORMULATIONS R & D OPHTHALMIC SPECIALTY EXCIPIENTS Ashirwad Building, S.V. Road, Opp. Badi Masjid, Bandra(W), Mumbai-400050, INDIA Email: [email protected] Additional Office: 15 Tottenham Lane, London N8 9DJ, UK. E-mail: [email protected] A Global Research-Based Speciality Website: ophthalmicsuk.com Formulation R&D: Pharmaceutical Enterprise Medisearch Laboratory entodinternational.com ENTOD HOUSE, W-50(B), M.I.D.C, T.T.C. Indl. Estate, Rabale, Thane-Belapur Road, Follow us on: Navi Mumbai-400701, INDIA Email: [email protected] @entodinternational @entodpharma Entod Pharmaceuticals Medisearch Laboratories Entod Research 2018073 Ltd. (India) (Bombay) Pvt. Ltd. (India) Cell Ltd. (UK) entodinternational.com entodinternational.com Complete Ophthalmic Finished Products Range PRESS-DT TABLET OMEFLOX-BM EYE DROPS EYETAMIN CAPSULES MYOPIA CONTROL Acetazolamide IP 250mg Ofloxacin IP 0.3% w/w Lycopene, Lutein Zeaxanthin, Betamethasone Sodium Phosphate 0.1% w/w Vitamins & Minerals MYATRO EYE DROPS ENDOR EYE DROPS FLUCOCID EYE DROPS Fluconazole USP 0.3% w/v Atropine Sulphate USP 0.01% w/v Dorzolamide HCl USP 2% w/v TOBRACID-F EYE DROPS I-DEW MEGA CAPSULES Stabilized Oxychloro Complex 0.005% w/v Benzalkonium Chloride Solution IP 0.0075%w/v NATACIN EYE DROPS Tobramycin Sulphate USP Omega 3 fatty acid (deodourised) eqv. To ENDOR PLUS EYE DROPS Natamycin USP 5.0%w/v equi. -
Butyraldehyde Casrn: 123-72-8 Unii: H21352682a
BUTYRALDEHYDE CASRN: 123-72-8 UNII: H21352682A FULL RECORD DISPLAY Displays all fields in the record. For other data, click on the Table of Contents Human Health Effects: Human Toxicity Excerpts: /HUMAN EXPOSURE STUDIES/ Three Asian subjects who reported experiencing severe facial flushing in response to ethanol ingestion were subjects of patch testing to aliphatic alcohols and aldehydes. An aqueous suspension of 75% (v/v) of each alcohol and aldehyde was prepared and 25 uL was used to saturate ashless grade filter paper squares which were then placed on the forearm of each subject. Patches were covered with Parafilm and left in place for 5 minutes when the patches were removed and the area gently blotted. Sites showing erythema during the next 60 minutes were considered positive. All three subjects displayed positive responses to ethyl, propyl, butyl, and pentyl alcohols. Intense positive reactions, with variable amounts of edema, were observed for all the aldehydes tested (valeraldehyde as well as acetaldehyde, propionaldehyde, and butyraldehyde). [United Nations Environment Programme: Screening Information Data Sheets on n-Valeraldehyde (110-62-3) (October 2005) Available from, as of January 15, 2009: http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html] **PEER REVIEWED** [United Nations Environment Programme: Screening Information Data Sheets on nValeraldehyde (110623) (October 2005) Available from, as of January 15, 2009: http://www.chem.unep.ch/irptc/sids/OECDSIDS/sidspub.html] **PEER REVIEWED** /SIGNS AND SYMPTOMS/ May act as irritant, /SRP: CNS depressant/ ...[Budavari, S. (ed.). The Merck Index - Encyclopedia of Chemicals, Drugs and Biologicals. Rahway, NJ: Merck and Co., Inc., 1989., p.