Organosodium and Organopotassium Compounds. Part II
Total Page:16
File Type:pdf, Size:1020Kb
Organosodium and Organopotassium Compounds Part 11: Preparation and Synthetic Applications [I1 BY DR. M. SCHLOSSER UNION CARBIDE EUROPEAN RESEARCH ASSOCIATES, BRUSSELS (BELGIUM) AND ORGANISCH-CHEMISCHES INSTITUT DER UNIVERSITAT HEIDELBERG (GERMANY) 1 *I A selection of well established procedures for the preparation of’ the most common organo- sodium and organopotassium compounds is given. The wide synthetic applicability of organoalkali-metal compounds is shown by means of examples. Unlike Part I, Part II deals not only with “true” organoalkali compounds, but also with salt-like conzpounds such as sodium acetylides and sodiocarboxylic esters, since these possess considerable preparative value. A. Preparative Methods c) Halogen-metal exchange 1. From metal derivatives d) Cleavage of ethers a) Transmetalation e) Cleavage of carbon-carbon bonds b) Metalation with alkali amides f) Addition of metals to multiple bonds c) Other methods , B. Experimental procedures 2. Reactions with metals 1 1. Alkali metals a) Metal-metal exchangc I 2. Organoalkali-metal compounds b) Direct metalation i 3. Syntheses using organoalkali-metal compounds A. Preparative Methods Table I. Metalation of hydrocarbons ~ Metal- Hydrocarbon Yield ating Ref. Neu, conipound to be metalated [%I [bl A distinction is to be drawn between methods which lead to -agent [a the creation of new organometallic bonds by the action of Ethylene (31 Vinylsodium Icl elemental alkali metals, and those which merely effect trans- Propene Allylsodiuin 691dl fer of the organometallic bond from one organic residue to 131 I-Butene another. We shall first consider the latter type, in which a ’31 Crotylsodiuin 61[d] 2-Butene 1 readily accessible organometallic compound, or occasionally 131 2-Methylallylpotassiuni 63 an alkali metal amide or alkoxide, is used for the preparation Is0 butene i4i 78 of an organometallic reagent. Benzene 131 I Phenylsodium Benzene i.71 I [cl 45 Benzene 161 Phenylpotassium I 83 1. From Metal Derivatives Renzene 1 71 I Cyclohexene (31 l2-Cyclohexenylsodiun; 38- 84 40 Toluene 131 1 Benzylsodiuin a) Transmetalation Toluene 12) 99 44 Toluene i 71 I Benzylpotassium Toluene 41 I 70 By analogy with an acid-base reaction, the weaker lndene 181 12-lndenylsodium 50 organometallic base may be obtained from the corre- Acenaphthene (31 I ,5-Acenaphthenylenedisodium 50 sponding hydrocarbon and a more strongly basic or- 100 Fluorene (31 I 9-Fluorenylsodium ganometallic compound. The first transmetalation of Fluorene (81 I 40--70 this type was observed by Schorigin [2] [(I) + (2)]. Diphenylmethane ‘31 Diphenylmethylsodiuni 92 I 70 Tables 1 and 2 list examples of such transmetalations. I.?-Diphenylethanf 131 .2-Diphenylethylenedisodium Triphenylniethane 131 Tr;phenylmethylsodium 93 i-H&--Na J H6C6 - HrCs-Na i-HlUC4 Triphenylmethane 141 Triphenylmethylpotassiuni ICI i 1) Pi Tri-o-tolylmethane (4 1 Tris-(a-potassio-o-tolyl)met hane 40 [I] Part I : Properties and Reactions: M. Sclilosser, Angew. Chern. ial (31 : n-Amylsodium (6) : Ethylpotassium 76, 124 (1964); Angew. Chem. internat. Edit. 3, 287 (1964). (4) : Phenylisopropylpotassium (7) : n-Butylpotassium [*I Present address. (5i : n-Butylsodium (8) : Triphenylmethylsodiuni [2] P. Schorigin, Ber. dtsch. chem. Ges. 41. 2711, 2717, 2723 [b] The yields given should be regarded as minimum vdues, since they (1908). almost all refer to the carboxylic acids propared for characterization [3] A. A. Morton, F. D. Marsh, R. D. Coombs, A. L. Lyons, S. E. purposes. Penner, H. E. Ramsden, V. B. Baker, E. L. Little, and R. L. Let- [c] Exact values not given singer, J. Amer. chem. SOC.72, 3785 (1950). [d] The products isolated from the carboxylation were the isomeric 141 A. A. Morton, M. L. Brown, M. E.T. Holden, R. L. Letsingur, cnrboxylic acids and E. E. Magat, J. Amer. chem. SOC.67, 2224 (1945). R -CH=CH-CHZ-COOH and HzC=CH-CHR-COOH, together [5] A. A. Morton and M. E.T. Hotdun, J. Amer. chern. SOC.69, with small amounts of the a,P-unsaturated acid 1675 (1947). R-CHz-CH-CH-COOH and dicarboxylic acids. 362 Angew. Cheni. internat. Edit. 1 VoI. 3 (1964) No. 5 Fel-rocene readily undergoes double metalation by b) Metalation with Alkali Amides reaction with (2) or (3) to give (13) in yields of 41 and 68 "4,respectively [30a]. True organometallic compounds are not required for the anionization of ketones, nitriles, esters, sulfoxides, and other compounds containing activated hydrogens. The exchange of hydrogen for metal may be accom- plished with even relatively weak proton acceptors such as sodium dispersions, potassium hydroxide, sodium Table 7. Metalation of ethers and thioethers __ Ether or Metalating Ref. New compound thioether agent [el Furan 2-Furylsodium 58 Thiophene 2-Thienylsodium 89 Thiophene 2,5-Thienylenedisodiuni 50 ?,3-Dihydrofuran 2,3-Dihydro-5-furylsodium 58 Anisole o-Anisylsodi uin 64 Anisole a-Anisylsodium and -lithium 71 Anisole o-Anisylpotassiurn 60 80 Dibenzofuran 4,6-Dibenzofurylenedisodium I 88 Dibenzothiophene 4-Dibenrothienylenesodiuin 37 Diphenyl ether a-Phenoxyphenylsodi um 10 Diphenyl ether o-Phenoxyphenylsodium 50 and -lithium (together with 0.0'-dimetalated derivative) Diphenyl sulfide o-Thiophenoxyphenylsodium 56 :a] S-e footnote [a] of Tabk 1. In addition: (91 : Benzylsodiuni (11): Phenylpotassium hydride, sodium ethoxide, or potassium t-butoxide. ilOi : Diphenyl-lithium-sodium f 12) : p-Tolylsodium Sodamide or potassamide in liquid ammonia are even [b] See footnote [b] of Table I. more effective. However, these amides are too weakly ~~ basic to metalate purely aliphatic or monophenylated 161 K. Ziegler and H. Dislich, Chem. Ber. 90, 1107 (1957). 171 A. A. Morton and I. Hechenbleiknrr, J. Amcr. chem. Sor. 58, hydrocarbons [31]. On the other hand, alkali-metal 2599 ( 1936). benzyls, e.g. (9), are rapidly ammonolyzed with de- IS] If. Gil:nnn and J. C. Roilie, J. org. Chemistry 2, 84 (1937). colorization by liquid ammonia. [9] H.Gilm7n and R.H.Kirby, J. Amer. chem. SOC.58, 2574 (1936). HcC6-CH2-Na -.. NH, + H5C6-CH, i. NaNHz [lo] H. Gilimn, .4. L. Jocohv, and If. Ludenrnir, J. Amer. chem. SOC.60. 2336 (1938). ( 9) [I I] D. 8rlTe-SIflifhand E. E. Turner, J. chem. SOC. (London) 1953, 861. The rcsctive hydrogens in acetylene [3 la] or fluorene 112) A. A. Mortonand R. A.Finnegan, J. Polymer Sci.38, 19 (1959). [32] are readily metalated by alkali-metal amides. As a [In] J. F. Nobis and L. I;. Moormei?v, Ind. Engng. Chem.. an3lyt. rule, alkali-metal benzyls such as (15) and (26) are Edit. 46. 539 (1954). obtained smoothly with these amides if at least one [I?] H. Giltnan, H. A. Pacevitz, and 0. Eairie, J. Amer. chem. SOC. additional activating group is present besides one aryl 6.2, I5 I4 ( 1940). [ 151 J. B. Counnt and G. W. Wlielond, J. Amer. chcm. SOC. 54, I2 I2 HjC6-CHr-COOH L 2 NaNH2 (1932) (13) [16J A. 4. Morton and E. L. Lirtle, J. Amcr. chcm. Sor. 71, 487 H5Cs--CHNa-COONa 2 NH, ( 1949). 1141 [I71 A. A. Mortori, J. B. Davidron, T. R. P. Gibb, E. L. Little, E. (H~C~)~CHZr NaNH? ~~ ' (HsC&CH--Na 7~NHJ W. Clarke, and A. G. Green, J. Amer. chem. SOC.64, 2250 (1942). (151 [IS] A.A.Morton and F.FoNwell.J.Amer. chem. SOC.60,1924(1938). [I91 K. Zieglrr, Angew. Chem. 49,459 (1936). (HsCti),CH .!. KNH. , ' (HsCti)3C-K -t~NH, 1201 P. D. Bortlef+and J. E. Jones, J. Amer. chem. SOC.64, 1837 f 161 (1942). ~~ - [29] A. LiirfrinRhaus und G. v. Saat; Angew. Chem. 52, 578 (1939); [2 I ] H. Gilinan and F. Rrerrer, J. Amer. chem. SOC.56, 1 I23 (I 934). Liebigs Ann. Chem. 542, 241 (1939); 557, 25 (1947). [22] J. W. Schick and H. D. Hartorrgh, J. Amer. ihem. SOC.70, 1301 G. Wirtig and L. Pohmer, Chem. Ber. 89, 1334 (1956). 286 (I 948). [3Oa] A. N. Nesineyanov and E. G. Perevolova, Dokl. Akad. Nauk [23] A. A. Morton and C. E. Claff; Amer. chem. Soc. 76, 4935 1. SSSR 112, 439 (1957); ibid. 120, 1263 (1958); S. I. Goldberg, D. ( 1954). W'. Mayo, M. Vogel, H. Rosenberg, and M. Rausch, J. org. [24] R. Paul and S. Tchelitcheff,C. R. hebd. S&ancesAcad. Sci. Chemistry 24, 824 (1959); E. 0. Fischer and H. Brunner, Z.Natur- 235, 1226 (1952). forsch. 166, 406 (1961). [25] H. Gilnian and R. L. Eebb, J. Amer. chem. SOC.6/, 109 (!939). [31] C. B. Wooster and J. F. R.vnir, J. Amer. chem. SOC. 54, 2419 [261 G. IViffig and E. Renz, Chcm. Ber. 9/, 874 (1958). (1932). [27] A. A. Morron and E. J. Lotipher, J. org. Chemistry 23, 1639 [31a] R. A. Raphael: Acetylenic Compounds in Organic Syn- (1958). thesis. Butterworths, London 1955, pp. 192 -196. [28] H. Gilinaii, F. W. Moore, and 0. Baine. J. Amer. chem. SOC. [32] R. S. Yost and C. R. Hnuser, .1. Amer. chem. SOC. 69, 2325 63, 2479 (1941). (1 947). Angew. Cliern. internot. Edit. 1 Vol. 3 (1964) No. 5 363 residue. This is illustrated by the preparation of sodium cc-sodio-cc-phenylacetate (14) [33], diphenylmethylso- dium (15) [3 11, and triphenylmethylpotassium (16) WI. These transformations are equilibrium reactions. In the case of di-p-anisylmethane (17) [35], the equilibrium lies more to the left. (H?CO-C~H&CHZ + NaNH; <.-& (17) (H,CCO--aH&CH-Na 4-NH3 With diphenyl- and triphenylmethane, it is only in the ammonia solution that the equilibrium seems to be 2. Reactions with Metals [ *] shifted completely towards the organometallic com- pound. Even on careful (vacuum) removal of the a) Metal-Metal Exchange ammonia from a solution of triphenylmethylsodium, the residue is simply a mixture of triphenylmethane and sodamide. Addition of an organic solvent before the The first organoalkali-metal compounds were prepared removal of the ammonia does not prevent the aminoly- from organomercury compounds [(23) and Table 31 sis [36a, 36bl.