Levosimendan Is Superior to Enoximone in Refractory Cardiogenic Shock Complicating Acute Myocardial Infarction*

Total Page:16

File Type:pdf, Size:1020Kb

Levosimendan Is Superior to Enoximone in Refractory Cardiogenic Shock Complicating Acute Myocardial Infarction* Clinical Investigations Levosimendan is superior to enoximone in refractory cardiogenic shock complicating acute myocardial infarction* Joerg T. Fuhrmann, MD; Alexander Schmeisser, MD; Matthias R. Schulze, MD; Carsten Wunderlich, MD; Steffen P. Schoen, MD; Thomas Rauwolf, PhD; Christof Weinbrenner, MD; Ruth H. Strasser, MD Objective: Cardiogenic shock is the leading cause of death in Measurements and main results: Survival rate at 30 days was patients hospitalized for acute myocardial infarction. The objec- significantly higher in the levosimendan-treated group (69%, 11 of ؍ tives were to investigate the effects of levosimendan, a novel 16) compared with the enoximone group (37%, 6 of 16, p inodilator, compared with the phosphodiesterase-III inhibitor 0.023). Invasive hemodynamic parameters during the first 48 hrs enoximone in refractory cardiogenic shock complicating acute were comparable in both groups. Levosimendan induced a trend myocardial infarction, on top of current therapy. toward higher cardiac index, cardiac power index, left ventricular Design: Prospective, randomized, controlled single-center clin- stroke work index, and mixed venous oxygen saturation. In ad- ical trial. dition, lower cumulative values for catecholamines at 72 hrs and Setting: Medical and coronary intensive care unit in a univer- for clinical signs of inflammation were seen in the levosimendan- sity hospital. treated patients. Multiple organ failure leading to death occurred Patients: Thirty-two patients with refractory cardiogenic shock exclusively in the enoximone group (4 of 16 patients). for at least 2 hrs requiring additional therapy. Conclusions: In severe and refractory cardiogenic shock com- Interventions: Infusion of either levosimendan (12 ␮g/kg over plicating acute myocardial infarction, levosimendan, added to 10 min, followed by 0.1 ␮g/kg/min over 50 min, and of 0.2 current therapy, may contribute to improved survival compared ␮g/kg/min for the next 23 hrs) or enoximone (fractional loading with enoximone. (Crit Care Med 2008; 36:2257–2266) dose of 0.5 mg/kg, followed by 2–10 ␮g/kg/min continuously) after KEY WORDS: cardiogenic shock; acute myocardial infarction; initiation of current therapy, always including revascularization, in- levosimendan; calcium sensitizer; enoximone; phosphodiesterase tra-aortic balloon pump counterpulsation, and inotropes. inhibitor ardiogenic shock (CS) is the meet resting metabolic demands (4). The tropic effects at therapeutic doses with- leading cause of death in pa- diagnosis is indicated by the combination out an increase in cyclic adenosine tients hospitalized for acute of low mean arterial blood pressure, low monophosphate (cAMP) or intracellular C myocardial infarction (AMI) cardiac index (CI), elevated pulmonary calcium and, consequently, no increase with mortality rates of up to 60% (1). capillary occlusion pressure (PCOP), and in myocardial oxygen demand (13, 14). Despite recent therapeutic advances, pre- an increase in systemic vascular resis- An improvement in myocardial perfusion dominantly associated with early reperfu- tance index (5). New evidence suggests as a result of vasodilatation, mediated by sion strategies, CS continues to be asso- that a systemic inflammatory response be- the opening of adenosine triphosphate- ciated with a dismal prognosis (2, 3). The cause of the release of inflammatory cyto- dependent potassium channels is avail- syndrome of CS has been defined as the kines, the expression of inducible nitric ox- able (15, 16). Moreover, persistent bene- inability of the heart, as a result of im- ide synthase, and inappropriate vaso- ficial hemodynamic effects are due to the pairment of its pumping function, to de- dilation may play an important role (6, 7). presence of a pharmacologically active liver sufficient blood flow to the tissues to Intra-aortic balloon pump counterpul- metabolite with a prolonged elimination sation and adjunctive medical therapy, half-life (17). Levosimendan has been using inotropic amines, are recom- shown to improve hemodynamic func- *See also p. 2450. mended in CS complicating AMI (5, tion in patients with decompensated From the Department of Internal Medicine and 8–10). In the case of insufficient re- heart failure (18), even in addition to Cardiology, Heart Center Dresden-University Hospital, sponse, reflecting a refractory situation, other inotropes (19), and seems to be safe University of Technology, Dresden, Germany. phosphodiesterase-III inhibitors (PDEIs) in AMI (20). The purpose of the present Presented, in part, at the American Heart Associ- study was to directly compare levosimen- ation scientific sessions, New Orleans, LA, November may be advantageous (11). A different 7–10, 2004 [abstract form (# 2253)]. inotropic mode of action and additional dan with PDEIs on top of established The authors have not disclosed any potential con- vasodilating effects are mediated by therapy in patients with refractory CS flicts of interest. PDEIs (12). Moreover, PDEIs have been complicating AMI. For information regarding this article, E-mail: shown to improve myocardial relaxation [email protected] METHODS Copyright © 2008 by the Society of Critical Care and coronary perfusion (12). Medicine and Lippincott Williams & Wilkins Levosimendan, a novel calcium-sensi- Patients. From April 2003 to July 2005 all DOI: 10.1097/CCM.0b013e3181809846 tizer and inodilator, affords positive ino- patients admitted with AMI accompanied by Crit Care Med 2008 Vol. 36, No. 8 2257 hypotension and peripheral hypoperfusion jor bleeding, severe hepatic failure, severe sys- were routinely performed before administra- were screened. AMI was defined by the pres- temic illness, or sepsis syndrome at the time of tion of the study drug and at 2, 12, 24, and 48 ence of typical chest pain lasting 30 mins and admission were excluded. All patients who had hrs after starting the infusion. Arterial blood an increase in troponin-T value or creatine duration of CS longer than 24 hrs before ar- pressure measurements were performed con- kinase and CK-MB levels. An ST-segment ele- rival were excluded. tinuously using an indwelling arterial cannula vation myocardial infarction needs typical cri- Treatment. All patients were treated in a (Model Leader-Cath., VYGON, Norristown, PA) teria on 12-lead echocardiography (ST eleva- cardiologic intensive care unit. Inotropes and inserted into the radial artery. A pulmonary tion Ͼ2 mm, Q-wave infarction, or a new left vasopressors were titrated according to goal- artery catheter (Model 774HF75, Edwards bundle-branch block). ST-segment elevation directed therapy (for mean arterial blood pres- Lifesciences, Irvine, CA) was used to measure myocardial infarction and also non ST- sure of at least 60 mm Hg and CI of at least 2.5 mean pulmonary artery pressure (MPAP), segment elevation myocardial infarction were L/min/m2). Dosages at the time of randomiza- PCOP, and mixed venous oxygen saturation considered to be included. In all patients re- tion are given in Table 4. Intermittent intra- (Svo2). Pressure values were read from the ferred for percutaneous coronary intervention, venous fluid challenges were provided, if bedside patient monitoring system (Model So- an intra-aortic ballon pump (IABP) (Model 0684- requested, to achieve appropriate filling pres- lar 8000, Marquette-Hellige Medical Systems, 00-0431-01, CS100, Datascope, Fairfield, NY or sures (PCOP). Patients meeting the inclusion Milwaukee, WI) at end-expiration. Cardiac Model 05-840-LWS, AutoCat2Wave, Arrow In- criteria were randomly allocated to receive output measurements were performed using a ternational, Everett, MA) was inserted before- either levosimendan (Abbott Laboratories, Ab- continuous cardiac output monitoring set hand. Successful revascularization was deter- bott Park, IL) or enoximone (Myogen GmbH, (Model VGS2V Vigilance, Edwards Life- mined as residual stenosis of Ͻ30% present in Bonn, Germany) using permuted block alloca- sciences, Irvine, CA). Heart rate, heart-rhythm the artery responsible for infarction. To eval- tion with a block size of four (Fig. 1). Se- and oxygen saturation were also continuously uate the left ventricular ejection fraction quence generation for randomization was recorded. We applied standard formulas for (LVEF) and any mechanical complications, a achieved using a sequence of random numbers calculation of the CI, left ventricular stroke standard 2D-echocardiography (Sonos 5500 from a computerized random-number gener- work index, systemic vascular resistance in- ultrasound system, Agilent Technologies, An- ator. These blocks having equal numbers are dex, and pulmonary vascular resistance index. dover, MA) was performed. The LVEF was cal- used for the treatment groups, with the order Cardiac power index (CPI) was determined by culated by Simpson’s biplane method, as pre- of treatments within the block being randomly the following equation (26): viously described (21). permuted. A random-number sequence was mean arterial pressure ϫ CO The study protocol for this randomized, used to choose a particular block, which sets CPI ϭ prospective, single-center open-label trial the allocation order for the subjects. Each ͫ 451 ͬ comparing levosimendan with enoximone on possible permuted block is assigned a number. ϫ body surface areaϪ1 top of current therapy followed the principles Using each number in the random number of the Declaration of Helsinki of the World sequence in turn selects the next block, deter- Medical Assembly and was approved by the mining the next participant
Recommended publications
  • Pharmaceutical Services Division and the Clinical Research Centre Ministry of Health Malaysia
    A publication of the PHARMACEUTICAL SERVICES DIVISION AND THE CLINICAL RESEARCH CENTRE MINISTRY OF HEALTH MALAYSIA MALAYSIAN STATISTICS ON MEDICINES 2008 Edited by: Lian L.M., Kamarudin A., Siti Fauziah A., Nik Nor Aklima N.O., Norazida A.R. With contributions from: Hafizh A.A., Lim J.Y., Hoo L.P., Faridah Aryani M.Y., Sheamini S., Rosliza L., Fatimah A.R., Nour Hanah O., Rosaida M.S., Muhammad Radzi A.H., Raman M., Tee H.P., Ooi B.P., Shamsiah S., Tan H.P.M., Jayaram M., Masni M., Sri Wahyu T., Muhammad Yazid J., Norafidah I., Nurkhodrulnada M.L., Letchumanan G.R.R., Mastura I., Yong S.L., Mohamed Noor R., Daphne G., Kamarudin A., Chang K.M., Goh A.S., Sinari S., Bee P.C., Lim Y.S., Wong S.P., Chang K.M., Goh A.S., Sinari S., Bee P.C., Lim Y.S., Wong S.P., Omar I., Zoriah A., Fong Y.Y.A., Nusaibah A.R., Feisul Idzwan M., Ghazali A.K., Hooi L.S., Khoo E.M., Sunita B., Nurul Suhaida B.,Wan Azman W.A., Liew H.B., Kong S.H., Haarathi C., Nirmala J., Sim K.H., Azura M.A., Asmah J., Chan L.C., Choon S.E., Chang S.Y., Roshidah B., Ravindran J., Nik Mohd Nasri N.I., Ghazali I., Wan Abu Bakar Y., Wan Hamilton W.H., Ravichandran J., Zaridah S., Wan Zahanim W.Y., Kannappan P., Intan Shafina S., Tan A.L., Rohan Malek J., Selvalingam S., Lei C.M.C., Ching S.L., Zanariah H., Lim P.C., Hong Y.H.J., Tan T.B.A., Sim L.H.B, Long K.N., Sameerah S.A.R., Lai M.L.J., Rahela A.K., Azura D., Ibtisam M.N., Voon F.K., Nor Saleha I.T., Tajunisah M.E., Wan Nazuha W.R., Wong H.S., Rosnawati Y., Ong S.G., Syazzana D., Puteri Juanita Z., Mohd.
    [Show full text]
  • Estonian Statistics on Medicines 2016 1/41
    Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • Simdax® Gives You Time in Acute Heart Failure
    SIMDAX ® GIVES YOU TIME IN ACUTE HEART FAILURE 1 SIMDAX® RELIEVES Improvement in clinical status Improved SYMPTOMS 20 p=0.015 19.4% 14.6% Levosimendan + SOC (n=299) IN AHF 10 Placebo + SOC (n=301) p=0.015 SIMDAX® improves symptoms of dyspnoea 0 and fatigue in acute heart failure. In the The primary endpoint result in the -10 REVIVE trial1, composite consisting Phase III regulatory study REVIVE, symptoms of patients’ subjective symptom -19.4% assessments (at 6 hours, 24 hours, over the 5-day assessment period improved -20 and 5 days) and signs of worsening -27.2% symptoms (including death) during significantly more with SIMDAX® than with Patients improved or worsened (%) the 5 days after starting drug -30 Worsened infusion. placebo when administered on top of the standard of care.1 Improvement in dyspnea 100 Generalized linear model p=0.018 Levosimendan + SOC (n=299) 90 Placebo + SOC (n=301) 80 Effects of levosimendan vs 70 placebo on top of standard of care on dyspnea in patients with AHF.4 60 Patients improved (%)* 6 hrs 24 hrs 48 hrs Day 3 Day 5 Reference: 1. Packer M. et al. JCHF. 2013;1(2): 103-11. *Includes mild, moderate and marked improvement on a 7-point scale 2 …WITH SUSTAINED HEMODYNAMIC AND Levosimendan + SOC (n=299) NEUROHORMONAL EFFECTS Placebo + SOC (n=301) The hemodynamic effects of SIMDAX® Sustained hemodynamic effects on cardiac output (CO) and pulmonary 1 CO (L/min) Max capillary wedge pressure (PCWP) have been End PCWP (mmHg) 0 1-3 24-hr infusion Figure 1: Duration of action of shown in several clinical trials.
    [Show full text]
  • Estonian Statistics on Medicines 2013 1/44
    Estonian Statistics on Medicines 2013 DDD/1000/ ATC code ATC group / INN (rout of admin.) Quantity sold Unit DDD Unit day A ALIMENTARY TRACT AND METABOLISM 146,8152 A01 STOMATOLOGICAL PREPARATIONS 0,0760 A01A STOMATOLOGICAL PREPARATIONS 0,0760 A01AB Antiinfectives and antiseptics for local oral treatment 0,0760 A01AB09 Miconazole(O) 7139,2 g 0,2 g 0,0760 A01AB12 Hexetidine(O) 1541120 ml A01AB81 Neomycin+Benzocaine(C) 23900 pieces A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+Thymol(dental) 2639 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+Cetylpyridinium chloride(gingival) 179340 g A01AD81 Lidocaine+Cetrimide(O) 23565 g A01AD82 Choline salicylate(O) 824240 pieces A01AD83 Lidocaine+Chamomille extract(O) 317140 g A01AD86 Lidocaine+Eugenol(gingival) 1128 g A02 DRUGS FOR ACID RELATED DISORDERS 35,6598 A02A ANTACIDS 0,9596 Combinations and complexes of aluminium, calcium and A02AD 0,9596 magnesium compounds A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 591680 pieces 10 pieces 0,1261 A02AD81 Aluminium hydroxide+Magnesium hydroxide(O) 1998558 ml 50 ml 0,0852 A02AD82 Aluminium aminoacetate+Magnesium oxide(O) 463540 pieces 10 pieces 0,0988 A02AD83 Calcium carbonate+Magnesium carbonate(O) 3049560 pieces 10 pieces 0,6497 A02AF Antacids with antiflatulents Aluminium hydroxide+Magnesium A02AF80 1000790 ml hydroxide+Simeticone(O) DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 34,7001 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 3,5364 A02BA02 Ranitidine(O) 494352,3 g 0,3 g 3,5106 A02BA02 Ranitidine(P)
    [Show full text]
  • Vasopressors and Inotropes in Acute Myocardial Infarction Related Cardiogenic Shock: a Systematic Review and Meta-Analysis
    Journal of Clinical Medicine Review Vasopressors and Inotropes in Acute Myocardial Infarction Related Cardiogenic Shock: A Systematic Review and Meta-Analysis 1, 2, 1 3 Mina Karami y , Veemal V. Hemradj y, Dagmar M. Ouweneel , Corstiaan A. den Uil , Jacqueline Limpens 4, Luuk C. Otterspoor 5, Alexander P. Vlaar 6 , Wim K. Lagrand 6 and José P. S. Henriques 1,* 1 Heart Center, Department of Interventional Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; [email protected] (M.K.); [email protected] (D.M.O.) 2 Department of Cardiology, Isala, 8025 AB Zwolle, The Netherlands; [email protected] 3 Departments of Cardiology and Intensive Care Medicine, Erasmus MC, University Medical Center, 3015 GD Rotterdam, The Netherlands; [email protected] 4 Medical Library, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; [email protected] 5 Heart Center Catharina Hospital, 5623 EJ Eindhoven, The Netherlands; [email protected] 6 Department of Intensive Care, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; [email protected] (A.P.V.); [email protected] (W.K.L.) * Correspondence: [email protected] These two authors contributed equally. y Received: 5 May 2020; Accepted: 25 June 2020; Published: 30 June 2020 Abstract: Vasopressors and inotropes are routinely used in acute myocardial infarction (AMI) related cardiogenic shock (CS) to improve hemodynamics. We aimed to investigate the effect of routinely used vasopressor and inotropes on mortality in AMI related CS. A systematic search of MEDLINE, EMBASE and CENTRAL was performed up to 20 February 2019.
    [Show full text]
  • Study Protocol
    Product: Omecamtiv Mecarbil (AMG 423) Protocol Number: 20110203 Date: 13 November 2018 Page 1 of 85 Title: A Double-blind, Randomized, Placebo-controlled, Multicenter Study to Assess the Efficacy and Safety of Omecamtiv Mecarbil on Mortality and Morbidity in Subjects With Chronic Heart Failure With Reduced Ejection Fraction Amgen Protocol Number (Omecamtiv Mecarbil [AMG 423]) 20110203 EudraCT number 2016-002299-28 NCT Number NCT02929329 GALACTIC-HF Global Approach to Lowering Adverse Cardiac Outcomes Through Improving Contractility in Heart Failure Clinical Study Sponsor: Amgen Inc. One Amgen Center Drive Thousand Oaks, CA 91320-1799 Telephone: 1-805-447-1000 Key Sponsor Contact(s): One Amgen Center Drive Thousand Oaks, CA 91320-1799 Phone: Email: Date: 31 August 2016 Amendment 1 07 September 2017 Amendment 2 13 November 2018 Confidentiality Notice This document contains confidential information of Amgen Inc. Approved This document must not be disclosed to anyone other than the site study staff and members of the institutional review board/independent ethics committee/institutional scientific review board or equivalent. The information in this document cannot be used for any purpose other than the evaluation or conduct of the clinical investigation without the prior written consent of Amgen Inc. If you have questions regarding how this document may be used or shared, call the Amgen Medical Information number: US sites, 1-800-77-AMGEN, Canadian sites, 1-866-50-AMGEN; all other countries call 1-800-772-6436. Amgen’s general number in the US (1-805-447-1000). CONFIDENTIAL Product: Omecamtiv Mecarbil (AMG 423) Protocol Number: 20110203 Date: 13 November 2018 Page 2 of 85 Investigator’s Agreement I have read the attached protocol entitled A Double-blind, Randomized, Placebo-controlled, Multicenter Study to Assess the Efficacy and Safety of Omecamtiv Mecarbil on Mortality and Morbidity in Subjects with Chronic Heart Failure with Reduced Ejection Fraction, dated 13 November 2018, and agree to abide by all provisions set forth therein.
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • The Calcium Sensitizer Levosimendan Improves Human Diaphragm Function
    Page 1 of 41 The calcium sensitizer levosimendan improves human diaphragm function Jonne Doorduin MSc 1, Christer A Sinderby PhD 5,7 , Jennifer Beck PhD 6,7 , Dick F Stegeman PhD 2,4 , Hieronymus WH van Hees PhD 3, Johannes G van der Hoeven MD 1, and Leo MA Heunks MD 1 1Department of Critical Care Medicine, 2Department of Neurology and 3Department of Pulmonary Diseases, Radboud University Nijmegen Medical Centre, The Netherlands; 4Faculty of Human Movement Sciences, Research Institute MOVE, VU University, Amsterdam, The Netherlands; 5Department of Medicine, Division of Critical Care Medicine, 6Department of Pediatrics, St. Michael’s Hospital, University of Toronto, Canada; 7Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, University of Toronto, Canada. Address for correspondents and requests: Leo Heunks, MD, PhD Radboud University Nijmegen Medical Centre Department of Critical Care Medicine Geert Grooteplein zuid 10 6525 GA Nijmegen The Netherlands tel. : +31 24 36 17273 fax. : +31 24 35 41612 [email protected] Page 2 of 41 Author’s contributions Literature search: JD, LH; Study design: JD, CS, JB, DS, LH; Data collection: JD, LH; Data analysis: JD, LH; Data interpretation: JD, CS, JB, DS, HH, JH, LH; Writing: JD, CS, JB, DS, HH, JH, LH. Source of funding This study was investigator initiated and financed by institutional resources. This study was designed and conducted by the authors without involvement of Orion Pharma, or any other commercial party. Data analysis and writing the manuscript was performed by the authors without involvement of a commercial party. Levosimendan and placebo were an unrestricted gift from Orion Pharma (Espoo Finland).
    [Show full text]
  • Tecoland API Product List Sr No Name
    Tecoland API Product List Sr No Name 1 Meropenem 2 Vancomycin HCl 3 Dexrazoxane HCl 4 Levosimendan 5 Enfuvirtide 6 Clindamycin Phosphate 7 Vecuronium Bromide 8 Irinotecan HCl 9 Caspofungin 10 Methotrexate Sodium 11 Paclitaxel 12 Piperacillin + Tazobactam 13 Neomycin Sulfate 14 Ampicillin/sulbactam sodium 15 Atazanavir Sulfate 16 Cisatracurium Besylate 17 Docetaxel Anhydrous 18 Teicoplanin 19 Dexmedetomidine HCl 20 L-Carnitine Base 21 Rocuronium Bromide 22 Efinaconazole 23 Lamivudine 24 Amifostine 25 Cisplatin 26 Enoxaparin Sodium 27 Dexmedetomidine Base 28 Cephradine 29 Ampicillin sodium Tecoland API Product List Sr No Name 30 Sodium Nitroprusside 31 Ertapenem sodium 32 Loratadine 33 Docetaxel Trihydrate 34 Mitoxantrone Hcl 35 Linezolid 36 Esmolol HCl 37 Cefotaxime sodium 38 Bosentan monohydrate 39 Ezetimibe 40 Sevoflurane 41 Hydrocortisone base 42 Leflunomide 43 Fludarabine phosphate 44 Moxifloxacin HCl 45 Montelukast Sodium 46 Amphotericin B 47 Palonosetron Hcl 48 Ifosfamide 49 Ceftazidime 50 Nitrofurantoin 51 Lincomycin HCl 52 Cephapirin Benzathine 53 Lopinavir 54 Mesna 55 Erlotinib HCl 56 Granisetron HCl 57 Hyaluronate Sodium 58 Temozolomide Tecoland API Product List Sr No Name 59 Pyridoxine HCl 60 Suxamethonium Chloride 61 Tetracycline HCl 62 Hydralazine HCl 63 Glatiramer Acetate 64 Penciclovir 65 Cyclosporine 66 Irbesartan 67 Flumazenil 68 Calcium Folinate 69 Felodipine 70 Anidulafungin 71 cytarabine 72 Travoprost 73 Sugammadex Sodium 74 Oritavancin 75 Milrinone 76 Benzocaine 77 Simvastatin 78 Fosaprepitant dimeglumine 79 Oseltamivir
    [Show full text]
  • AHRQ Healthcare Horizon Scanning System – Status Update Horizon
    AHRQ Healthcare Horizon Scanning System – Status Update Horizon Scanning Status Update: July 2014 Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. HHSA290201000006C Prepared by: ECRI Institute 5200 Butler Pike Plymouth Meeting, PA 19462 July 2014 Statement of Funding and Purpose This report incorporates data collected during implementation of the Agency for Healthcare Research and Quality (AHRQ) Healthcare Horizon Scanning System by ECRI Institute under contract to AHRQ, Rockville, MD (Contract No. HHSA290201000006C). The findings and conclusions in this document are those of the authors, who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. A novel intervention may not appear in this report simply because the System has not yet detected it. The list of novel interventions in the Horizon Scanning Status Update Report will change over time as new information is collected. This should not be construed as either endorsements or rejections of specific interventions. As topics are entered into the System, individual target technology reports are developed for those that appear to be closer to diffusion into practice in the United States. A representative from AHRQ served as a Contracting Officer’s Technical Representative and provided input during the implementation of the horizon scanning system. AHRQ did not directly participate in the horizon scanning, assessing the leads or topics, or provide opinions regarding potential impact of interventions.
    [Show full text]
  • Levosimendan in Patients with Left Ventricular Dysfunction
    www.nature.com/scientificreports OPEN Levosimendan in patients with left ventricular dysfunction undergoing cardiac surgery: a meta-analysis Received: 8 February 2018 Accepted: 8 May 2018 and trial sequential analysis of Published: xx xx xxxx randomized trials Zhenhua Xing , Liang Tang, Pengfei Chen, Jiabing Huang, Xiaofan peng & Xinqun Hu Patients with left ventricular dysfunction (LVD) undergoing cardiac surgery have a high mortality rate. Levosimendan, a calcium sensitizer, improves myocardial contractility without increasing myocardial oxygen demand. It is not clear whether levosimendan can reduce mortality in cardiac surgery patients with LVD. The PubMed, Embase, and Cochrane Central databases were searched to identify randomized trials comparing levosimendan with conventional treatment in cardiac surgery patients with LVD. We derived pooled risk ratios (RRs) with random efects models. The primary endpoint was perioperative mortality. Secondary endpoints were renal replacement treatment, atrial fbrillation, myocardial infarction, ventricular arrhythmia, and hypotension. Fifteen studies enrolling 2606 patients were included. Levosimendan reduced the incidence of perioperative mortality (RR: 0.64, 95%CI: 0.45–0.91) and renal replacement treatment (RR:0.71, 95%CI:0.52–0.95). However, sensitivity analysis, subgroup analysis and Trial Sequential Analysis (TSA) indicated that more evidence was needed. Furthermore, levosimendan did not reduce the incidence of atrial fbrillation (RR:0.82, 95%CI:0.64–1.07), myocardial infarction (RR:0.56, 95%CI:0.26–1.23), or ventricular arrhythmia (RR:0.74, 95%CI:0.49–1.11), but it increased the incidence of hypotension (RR:1.11,95%CI:1.00–1.23). There was not enough high-quality evidence to either support or contraindicate the use of levosimendan in cardiac surgery patients with LVD.
    [Show full text]