Ultrastructural Aspects of Wood Delignification by Phlebia (Mearulius) Tremellosust

Total Page:16

File Type:pdf, Size:1020Kb

Ultrastructural Aspects of Wood Delignification by Phlebia (Mearulius) Tremellosust APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Aug. 1986, p. 239-245 Vol. 52, No. 2 0099-2240/86/080239-07$02.00/0 Copyright © 1986, American Society for Microbiology Ultrastructural Aspects of Wood Delignification by Phlebia (MeArulius) tremellosust R. A. BLANCHETTE'* AND I. D. REID2t Department of Plant Pathology, University of Minnesota, St. Pauil, Minnesota 55108,1 a(id Plant Bioteclhnology Research Institute, National Research Council of Canada, Saskatoon, Saskatchewan, Canada S7N OW92 Received 3 March 1986/Accepted 30 April 1986 Wood from aspen and birch that had been decayed for 12 weeks by Phlebia tremellosus had averages of 30 and 31% weight loss, respectively, and 70% lignin loss. Digestibility increased from averages of 21 and 13% for sound aspen and birch to 54 and 51% for decayed aspen and birch. Individual wood sugar analyses of decayed birch blocks indicated an average loss of 10% glucose, 45% xylose, and 19% mannose. Micromorphological studies demonstrated the removal of middle lamellae and separation of cells. Vessels also separated at perforation plates. Electron microscopy with Os04-glutaraldehyde-fixed and KMnO4-fixed wood showed that lignin was progressively removed first from the secondary cell wall layers, beginning at the lumen surface, and later from the compound middle lamella. Extensive degradation of lignin was found throughout the secondary wall and middle lamella region between cells. In cells with advanced decay, the middle lamella between cells was completely degraded, but cell corner regions remained. Basidiomycetes that cause white rots can degrade wood understood. This investigation was done to examine the by simultaneously attacking lignin, cellulose, and hemicel- ultrastructural changes that occur during preferential lulose or by specifically removing individual cell wall com- delignification in vitro of aspen (P. tremiuloides) and birch ponents (3, 5, 21). Preferential lignin degradation has been (Betiila papyrifera) by P. tremellosius. documented for several white-rot fungi (1, 4, 10, 20, 25, 32, 34, 36) and for mutants that lack cellulase activity (9). Fungi that selectively remove lignin generally also degrade a MATERIALS AND METHODS substantial amount of hemicellulose but only small amounts of cellulose (3, 5, 11). Distinct micromorphological differ- Sapwood blocks with greater radial surface (0.7 by 2.0 by ences between simultaneously white-rotted and selectively 1.5 cm; height by width by length) were cut from freshly delignified wood have been demonstrated (3, 5). Ultrastruc- harvested birch (B. papyrifera Marsh.) and aspen (P. tural observations of advanced stages of white rot, decayed tremiuloides Michx.). Additional aspen blocks with greater in the forest under natural conditions, have been published tangential surface (2.0 by 0.7 by 0.7 cm) and birchwood (3-5). The selectively delignified wood contained cells with- wafers (0.7 by 0.1 by 2.0 cm) were also used. Wood was out middle lamellae; the cellulose-rich S2 layer of the sec- dried to a constant weight at 60°C. The wood was then ondary wall was the primary tissue remaining. Controlled prepared for decay by P. tremellosius (Schrad.:Fr.) Nakas. laboratory studies have demonstrated that selective lignin and Burds. (Syn. Meriuliius tremellosius Schrad.:Fr.) with degradation can also be obtained in chambers designed to isolate PRL 2845 by previously described techniques (25). accelerate decay of wood blocks (25). Recently, delignifica- After 12 weeks, wood blocks and wafers were dried at tion by Phlebia tremellosus, used in solid-state fermentation loss or for electron ofPopulus tremuloides, was shown to be technically feasible 60°C to determine weight prepared (31). This fungus removed 52% of the lignin with only a 12% microscopy. Dried samples were used to determine lignin, weight loss of wood. The in vitro digestibility of the wood, wood sugar content, and cellulase digestibility by previously with a cellulase preparation, increased from 18 to 53%. described techniques (8, 30-32). The highest concentration of lignin within the woody cell Wood blocks used for transmission electron microscopy wall is in the middle lamella region and cell corners (15, 29, were either (i) fixed in 2.5% glutaraldehyde in 0.05 M 35). However, in birch this area may contain less than 19% phosphate buffer (pH 7.2) for 24 h at 4°C followed by a of the total cell wall lignin (14). Fungi that preferentially phosphate buffer wash and fixation in 2.0% OS04 in 0.05 M remove large amounts of lignin from wood must have the phosphate buffer for an additional 24 h at 4°C, or (ii) fixed in capability of degrading lignified areas throughout the cell 2.0% KMnO4 in distilled water for 3 h at 4°C. Samples were wall without extensive loss of cellulose. How a fungus can placed under low vacuum during fixation. After fixation, cause such a specific attack on wood is not completely samples were dehydrated with a graded acetone series and embedded in Spurr (hard consistency formulation) embed- ding medium (37). Polymerization was done at 70°C. Sec- * Corresponding author. tions were cut with a diamond knife, and sections from t Paper 14,803 of the scientific journal series of the Minnesota glutaraldehyde-Os04-fixed wood were stained with 0.5% Agricultural Experiment Station. for t Present address: Biotechnology Research Institute, A/S Hospi- uranyl acetate. Sections of wood were also prepared tal, Royal Victoria, Pavillon Hersey, Montreal, Quebec, Canada scanning electron microscopy by methods previously de- H3A lAl. scribed (3). 239 240 BLANCHETTE AND REID APPL. ENVIRON. MICROBIOL. TABLE 1. Selective loss of lignin and increased accessibility of (Fig. 2d). This electron-dense region of the secondary wall wood carbohydrates after decay by P. trernellosius became more extensive in areas of advanced decomposition (Fig. 2e and f). In contrast, the middle lamella region became No. Lignin Cellulase Wood replicatesof Wt( losss loss digestibility less electron dense and less visible as compared with sound wood. The first observable loss of middle lamella was in the Birch, expt 1 region between cells (Fig. 2e, arrowheads). The cell corners Undecayed 5 0± O O ± 3 15 ± 1 persisted and were still evident in advanced stages of decay. Decayed blocks 5 23 + 3 59 ± 6 51 ± 2 In most cells, the secondary wall did not change significantly Decayed wafers 5 35 3 73 ± 1 51 ± 1 in size or shape. The only difference was a tendency to Birch, expt 2 become more intensively stained. However, in some cells Undecayed 5 1±0 0 ± 0 12 0 from areas with advanced stages of decay, the secondary Decayed blocks 5 39 2 81 ± 1 50 1 wall appeared thin, and small depressions were seen (Fig. 2f, Aspen arrows). Undecayed 5 0±0 0 1 21 0 Sections from decayed aspen wood had a similar pattern Decayed blocks of degradation. The middle lamella region between cells was Radial 10 31 1 71 ± 1 54 1 degraded, and secondary wall layers became more electron Tangential 10 28 2 68 ± 4 54 1 dense (Fig. 2g). Cells from wood with advanced decay had extensively degraded middle lamellae and cells separated aMean ± standard error. All values are percentage of original weight. (Fig. 2h and i). The cell corners remained least affected. The secondary wall layers were densely stained but otherwise RESULTS remained relatively unaltered. Lignin within the woody cell wall becomes electron dense At 3 months after inoculation, aspen and birch blocks had after KMnO4 fixation (6). The micrographs of sound wood lost an average of 30 and 31%, respectively, of their dry presented here (Fig. 3a to c) showed good definition of the weight and 70% of their lignin. Birch wafers had an average lignified areas of the cell wall. The most intensely stained weight loss of 35% and an average lignin loss of 73% (Table zone was the middle lamella and cell corner region. The SI, 1). The selective degradation of lignin increased the acces- S2, and S3 layers of the secondary wall have a less electron- sibility of wood polysaccharides to enzymatic hydrolysis, as dense appearance and a diffuse lignin distribution (Fig. 3a to shown by their increased solubilization by a crude cellulase c). Thin sections of birch (Fig. 3d to f) and aspen (Fig. 3g to preparation. i) that were decayed for 12 weeks had little contrast, The extent of decay varied substantially between repli- resulting from appreciably less staining than sound wood cates and between experiments (Table 1). However, all (Fig. 3d to i). Hyphae were observed in the lumina of cells, samples appeared to follow the same trend of lignin loss but the surrounding hyphal sheath or slime layer (Fig. 3d, e, versus weight loss. Therefore, we can assume that all the and g to i) was not as evident as in sections fixed with samples represent different stages in a common decay proc- Os04-glutaraldehyde. Secondary wall layers were not as ess. There were no clear differences between aspen and easily distinguished as in sound wood. The middle lamella birch, between wafers and blocks, or between radial and was extensively degraded throughout the wood (Fig. 3d and tangential blocks. g). In cells less severely degraded, the middle lamella Wood sugar analyses of decayed birch blocks indicated contained small individual granules between cells instead of that only small amounts of glucose (4 to 17%) were lost when a continuous electron-dense region as observed in sound 74 to 83% of the lignin was degraded (Table 2). Substantially wood (Fig. 3e, h, and i). The cell corners remained and were more xylose was lost than any other wood sugar. Only trace the most intensively stained zones within the sections (Fig. amounts of arabinose and galactose were present in sound 3d to i). Remnants of the middle lamella and cell corner and decayed wood.
Recommended publications
  • Mycena Sect. Galactopoda: Two New Species, a Key to the Known Species and a Note on the Circumscription of the Section
    Mycosphere 4 (4): 653–659 (2013) ISSN 2077 7019 www.mycosphere.org Article Mycosphere Copyright © 2013 Online Edition Doi 10.5943/mycosphere/4/4/1 Mycena sect. Galactopoda: two new species, a key to the known species and a note on the circumscription of the section Aravindakshan DM and Manimohan P* Department of Botany, University of Calicut, Kerala, 673 635, India Aravindakshan DM, Manimohan P 2013 – Mycena sect. Galactopoda: two new species, a key to the known species and a note on the circumscription of the section. Mycosphere 4(4), 653–659, Doi 10.5943/mycosphere/4/4/1 Abstract Mycena lohitha sp. nov. and M. babruka sp. nov. are described from Kerala State, India and are assigned to sect. Galactopoda. Comprehensive descriptions, photographs, and comparisons with phenetically similar species are provided. A key is provided that differentiates all known species of the sect. Galactopoda. The circumscription of the section needs to be expanded to include some of the species presently assigned to it including the new species described here and a provisional, expanded circumscription of the section is followed in this paper. Key words – Agaricales – Basidiomycota – biodiversity – Mycenaceae – taxonomy Introduction Section Galactopoda (Earle) Maas Geest. of the genus Mycena (Pers.) Roussel (Mycenaceae, Agaricales, Basidiomycota) comprises species with medium-sized basidiomata with stipes that often exude a fluid when cut, exhibit coarse whitish fibrils at the base, and turn blackish when dried. Additionally they have ellipsoid and amyloid basidiospores, cheilocystidia that are generally fusiform and often with coloured contents, and hyphae of the pileipellis and stipitipellis covered with excrescences and diverticulate side branches.
    [Show full text]
  • Sporocarp Ontogeny in Panus (Basidiomycotina): Evolution and Classification
    Sporocarp Ontogeny in Panus (Basidiomycotina): Evolution and Classification David S. Hibbett; Shigeyuki Murakami; Akihiko Tsuneda American Journal of Botany, Vol. 80, No. 11. (Nov., 1993), pp. 1336-1348. Stable URL: http://links.jstor.org/sici?sici=0002-9122%28199311%2980%3A11%3C1336%3ASOIP%28E%3E2.0.CO%3B2-M American Journal of Botany is currently published by Botanical Society of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/botsam.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Jan 8 09:54:21 2008 American Journal of Botany 80(11): 1336-1348.
    [Show full text]
  • Bot 316 Mycology and Fungal Physiology
    BOT 316 MYCOLOGY AND FUNGAL PHYSIOLOGY Dr Osondu Akoma 2011 BOT 316 MYCOLOGY AND FUNGAL PHYSIOLOGY INTRODUCTION HISTORICAL BACKGROUND Mycology is a classical translation of the Greek word Mykes logos which means mushroom discussion, thus mycology is the study of fungi. In the past this area of science was limited to the study of mushrooms but as science developed, the scope of the subject widened far beyond the objects seen with the naked eyes with the discovery of microscopes. The development of mycology cannot be isolated from that of science. The ancestry of fungi is ancient, dating back to the Devonian and Precambrian eras. The history is also influenced by calamities and man has always kept record from time and as such the first record of fungi was not that of observing fungi directly but that of their harmful effects. The Romans and Greeks have a lot in their records. Even in the Holy Bible there are many references of the fungi and their effects; Leviticus 14: 4-48, 1Kings 8:37, Deuteronomy 28:22. The first indication that man saw fungi as food was a report of death at Icarius. The first book devoted to fungi is the Van Sterbeek’s “Theatrum Fungerium” in 1675 and this work distinguished the edible from the poisonous mushrooms. The discovery of the microscope led to the systematic study of the fungi. Robert Hooke was credited with the first illustration of micro fungi in 1667 in his work titled Micrographa . The Greeks and Romans regarded fungi as mysterious things. They were regarded as the “evil formats of the earth originating from the mouth of vipers”.
    [Show full text]
  • Two New Species of Dermoloma from India
    Phytotaxa 177 (4): 239–243 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.177.4.5 Two new species of Dermoloma from India K. N. ANIL RAJ, K. P. DEEPNA LATHA, RAIHANA PARAMBAN & PATINJAREVEETTIL MANIMOHAN* Department of Botany, University of Calicut, Kerala, 673 635, India *Corresponding author: [email protected] Abstract Two new species of Dermoloma, Dermoloma indicum and Dermoloma keralense, are documented from Kerala State, India, based on morphology. Comprehensive descriptions, photographs, and comparison with phenetically similar species are provided. Key words: Agaricales, Basidiomycota, biodiversity, taxonomy Introduction Dermoloma J. E. Lange (1933: 12) ex Herink (1958: 62) (Agaricales, Basidiomycota) is a small genus of worldwide distribution with around 24 species names (excluding synonyms) listed in Species Fungorum (www.speciesfungorum. org). The genus is characterized primarily by the structure of the pileipellis, which is a pluristratous hymeniderm made up of densely packed, subglobose or broadly clavate cells (Arnolds 1992, 1993, 1995). Although Dermoloma is traditionally considered as belonging to the Tricholomataceae, Kropp (2008) found that D. inconspicuum Dennis (1961: 78), based on molecular data, had phylogenetic affinities to the Agaricaceae. Most of the known species are recorded from the temperate regions. So far, only a single species of Dermoloma has been reported from India (Manimohan & Arnolds 1998). During our studies on the agarics of Kerala State, India, we came across two remarkable species of Dermoloma that were found to be distinct from all other previously reported species of the genus. They are herein formally described as new.
    [Show full text]
  • Bulk Isolation of Basidiospores from Wild Mushrooms by Electrostatic Attraction with Low Risk of Microbial Contaminations Kiran Lakkireddy1,2 and Ursula Kües1,2*
    Lakkireddy and Kües AMB Expr (2017) 7:28 DOI 10.1186/s13568-017-0326-0 ORIGINAL ARTICLE Open Access Bulk isolation of basidiospores from wild mushrooms by electrostatic attraction with low risk of microbial contaminations Kiran Lakkireddy1,2 and Ursula Kües1,2* Abstract The basidiospores of most Agaricomycetes are ballistospores. They are propelled off from their basidia at maturity when Buller’s drop develops at high humidity at the hilar spore appendix and fuses with a liquid film formed on the adaxial side of the spore. Spores are catapulted into the free air space between hymenia and fall then out of the mushroom’s cap by gravity. Here we show for 66 different species that ballistospores from mushrooms can be attracted against gravity to electrostatic charged plastic surfaces. Charges on basidiospores can influence this effect. We used this feature to selectively collect basidiospores in sterile plastic Petri-dish lids from mushrooms which were positioned upside-down onto wet paper tissues for spore release into the air. Bulks of 104 to >107 spores were obtained overnight in the plastic lids above the reversed fruiting bodies, between 104 and 106 spores already after 2–4 h incubation. In plating tests on agar medium, we rarely observed in the harvested spore solutions contamina- tions by other fungi (mostly none to up to in 10% of samples in different test series) and infrequently by bacteria (in between 0 and 22% of samples of test series) which could mostly be suppressed by bactericides. We thus show that it is possible to obtain clean basidiospore samples from wild mushrooms.
    [Show full text]
  • A Review of Microbial Deterioration Found in Archaeological Wood from Di Erent Environments Robert A
    International Biodeterioration & Biodegradation 46 (2000) 189–204 www.elsevier.com/locate/ibiod A review of microbial deterioration found in archaeological wood from di erent environments Robert A. Blanchette∗ Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, 495 Borlaug Hall, St. Paul, MN 55108-6030, USA Received 15 February 2000; received in revised form 23 March 2000; accepted 13 April 2000 Abstract Wooden cultural properties are degraded by microorganisms when moisture, oxygen and other environmental factors are favorable for microbial growth. Archaeological woods recovered from most environments, even those that are extreme su er from some form of biodeterioration. This review provides a summary of wood degradation caused by fungi and bacteria and also describes speciÿc degradation found in archaeological wood from a variety of di erent terrestrial and aquatic environments. These include woods from several ancient Egyptian tombs (4000 BC to 200 AD); an 8th century BC tomb found in Tumulus MM at Gordion, Turkey; Anasazi great houses (1000 AD) from the southwestern United States, waterlogged woods (100–200 BC) from the Goldcli intertidal site, Wales, United Kingdom; and the late Bronze Age Uluburun shipwreck found o the coast of Turkey. c 2000 Elsevier Science Ltd. All rights reserved. Keywords: Wood decay; Waterlogged wood; Ancient wood; White-rot; Brown-rot; Soft-rot 1. Introduction served. Since there are relatively few wooden objects sur- viving from past civilizations, they are extremely valu- Wood deterioration is an essential process in the envi- able resources that deserve careful attention. It is essential ronment that recycles complex organic matter and is an to improve our understanding of the microbes and pro- integral component of life.
    [Show full text]
  • BASIDIOMYCETES: AGARICALES) from PUERTO Rlco
    MYCOTAXON Volume LXXXII, pp. 269-279 April-June 2002 NEW SPECIES OF OUDEMANSIELLA AND POUZARELLA (BASIDIOMYCETES: AGARICALES) FROM PUERTO RlCO Timothy J. Baroni Department of Biological Sciences P. O. Box 2000 State University of New York - College at Cortland Cortand, NY 13045 USA [email protected] and Beatriz Ortiz Center for Forest Mycology Research Forest Products Laboratory, USDA-Forest Service P.O. Box 1377 Luquillo, P. R. 00733-1377 USA [email protected] ABSTRACT: Oudemansiella fibrillosa and Pouzarella caribaea are described as new from the Guilarte National Forest Preserve in Puerto Rico. KEY WORDS: Entolomataceae, Greater Antilles, Tricholomataceae INTRODUCTION Over the past decade several papers have been published on members of Agaricales from Puerto Rico (Baroni and Lodge, 1998; Baroni et al., 1999; Cantrell and Lodge, 2000 & 2001; Guzmán, et al., 1997; Lodge, 1988; Lodge et al.. 2001; Lodge and Pegler, 1990; Miller et al., 2000; Pegler, et al., 1998; Singer and Lodge, 1988. Much of the previous literature discussing publications on agarics for Puerto Rico can be found in Baroni and Lodge (1 998) and Lodge (1 996). A recent study by one of us (BO) on the agaric mycota in the Guilarte State Forest, a wet subtropical forest located in the Cordillera Central of southwestern Puerto Rico (18°07N, 66°27W), has turned up two new species of agarics. Previously Bor (1969) had reported only nine species total from the Guilarte State Forest in Puerto Rico. We now have documented an additional 14 species, which includes the two new taxa described below. However, many collections from the Guilarte State Forest have yet to be identified to species, and thus this number will continue to rise.
    [Show full text]
  • Microbiological Spoilage of Fruits and Vegetables
    Microbiological Spoilage of Fruits and Vegetables Margaret Barth, Thomas R. Hankinson, Hong Zhuang, and Frederick Breidt Introduction Consumption of fruit and vegetable products has dramatically increased in the United States by more than 30% during the past few decades. It is also estimated that about 20% of all fruits and vegetables produced is lost each year due to spoilage. The focus of this chapter is to provide a general background on microbiological spoilage of fruit and vegetable products that are organized in three categories: fresh whole fruits and vegetables, fresh-cut fruits and vegetables, and fermented or acidified veg- etable products. This chapter will address characteristics of spoilage microorgan- isms associated with each of these fruit and vegetable categories including spoilage mechanisms, spoilage defects, prevention and control of spoilage, and methods for detecting spoilage microorganisms. Microbiological Spoilage of Fresh Whole Fruits and Vegetables Introduction During the period 1970–2004, US per capita consumption of fruits and vegetables increased by 19.9%, to 694.3 pounds per capita per year (ERS, 2007). Fresh fruit and vegetable consumption increased by 25.8 and 32.6%, respectively, and far exceeded the increases observed for processed fruit and vegetable products. If US consump- tion patterns continue in this direction, total per capita consumption of fresh fruits and vegetables would surpass consumption of processed fruits and vegetables within the next decade. This shift toward overall increased produce consumption can be attributed, at least in part, to increased awareness in healthy eating habits as revealed by a broad field of research addressing food consumption and health and promoted by the M.
    [Show full text]
  • Cytochemical Aspects of Cellulose Breakdown During the Infection Process "1 of Rubber Tree Roots Byxigidoporus Lignosus -1 Michel R
    -. I l~~~ll~~~~~~~~~~l~ll~llo 10022202 and 1: I' Cytochemical Aspects of Cellulose Breakdown During the Infection Process "1 of Rubber Tree Roots byxigidoporus lignosus -1 Michel R. Nicole and Nicole Benhamou Orstom-Forêts Canada, 1055 Rue du Peps, GIV 4C7 Sainte-Foy, Québec, Canada, and Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, CI K 7P4 Sainte-Foy, Québec, respectively. We thank M. Sylvain Noel and C. Moffet for skillful technical assistance, and G. B. Ouellette (Forêts Canada, Sainte-Foy, Québec) and R. A. Blanchette (University of Minnesota, St. Paul) for revising the manuscript. Accepted for publication 26 June 1991. ABSTRACT Nicole, M. R., and Benhamou, N. 1991. Cytochemical aspects of cellulose breakdown during the infection process of rubber tree roots by Rigidoporus lignosus. Phytopathology 81: 1412-1 420. An exoglucanase purified from a cellulase produced by the fungus Tri- Few gold particles or absence of labeling were observed in degraded phel- choderma harziunuin was bound to colloidal gold and used for ultra- lem and phloem cell walls. In xylem vessel elements, labeling did not structural detection of cellulosic /3-(1-4)-D-glucans in root tissues of rubber occur over incompletely digested areas of the Szlayer of secondary walls. trees (Hevea brusiliensis) infected by the white rot root pathogen, Rigido- During,pit penetration by hyphae, degraded primary walls and the SI porus lignosus. Large amounts of ß-1,4-glucans were found in cell walls layer of secondary walls were devoid of gold particles. The present cyto- 'of healthy roots, except in suberized walls that were not labeled.
    [Show full text]
  • Pathological Histology of Strawberries Af- Fected by Species of Botrytis and Rhizopus
    PATHOLOGICAL HISTOLOGY OF STRAWBERRIES AF- FECTED BY SPECIES OF BOTRYTIS AND RHIZOPUS By NEIL E. STEVENS, Pathologist, Fruit Disease Investigations, Bureau of Plant Industry INTRODUCTION The fungi causing rots of strawberries (Fragaria spp.) in transit from the Southern States have been under investigation by Dr. C. L. Shear, Mr. R. B. Wilcox, and the writer for the past two years. From the first it has been apparent that two species were chiefly responsible for their decay during shipment and on the market. These were Botrytis {cinérea}) and Rhizopus (nigricans?).1 The effect of these two fungi on ripe straw- berries is strikingly different. Berries injured by Botrytis sp. show a characteristic dryrot—that is, they retain their shape, shrivel somewhat, and no leaking of juice is evident; whereas berries rotted by Rhizopus sp. quickly flatten out, with the loss of a large amount of juice. Such berries are characterized as 'leaks'' by growers and dealers. F. L. Stevens2 has already recognized a species of Rhizopus as the probable cause of leak. He, however, considers (p. 950) that Botrytis sp. "is the primary cause of the molding, that the Botrytis initiates the decay, opening the way to such other saprophytes as may be present; of such saprophytes, Rhizopus is by far the most prominent and most abundant/* In order to determine if possible the relations of these fungi in rotting strawberries and in particular what differences exist in their method of attack on the fruit, a study of strawberries affected by these fungi was undertaken. EXPERIMENTAL METHODS The strawberries examined were chiefly of the Klondike variety grown in Louisiana during the season of 1915.
    [Show full text]
  • Some Critically Endangered Species from Turkey
    Fungal Conservation issue 4: February 2014 Fungal Conservation Note from the Editor This issue of Fungal Conservation is being put together in the glow of achievement associated with the Third International Congress on Fungal Conservation, held in Muğla, Turkey in November 2013. The meeting brought together people committed to fungal conservation from all corners of the Earth, providing information, stimulation, encouragement and general happiness that our work is starting to bear fruit. Especial thanks to our hosts at the University of Muğla who did so much behind the scenes to make the conference a success. This issue of Fungal Conservation includes an account of the meeting, and several papers based on presentations therein. A major development in the world of fungal conservation happened late last year with the launch of a new website (http://iucn.ekoo.se/en/iucn/welcome) for the Global Fungal Red Data List Initiative. This is supported by the Mohamed bin Zayed Species Conservation Fund, which also made a most generous donation to support participants from less-developed nations at our conference. The website provides a user-friendly interface to carry out IUCN-compliant conservation assessments, and should be a tool that all of us use. There is more information further on in this issue of Fungal Conservation. Deadlines are looming for the 10th International Mycological Congress in Thailand in August 2014 (see http://imc10.com/2014/home.html). Conservation issues will be featured in several of the symposia, with one of particular relevance entitled "Conservation of fungi: essential components of the global ecosystem”. There will be room for a limited number of contributed papers and posters will be very welcome also: the deadline for submitting abstracts is 31 March.
    [Show full text]
  • The 100 Years of the Fungus Collection Mucl 1894-1994
    THE 100 YEARS OF THE FUNGUS COLLECTION MUCL 1894-1994 Fungal Taxonomy and Tropical Mycology: Quo vadis ? Taxonomy and Nomenclature of the Fungi Grégoire L. Hennebert Catholic University of Louvain, Belgium Notice of the editor This document is now published as an archive It is available on www.Mycotaxon.com It is also produced on CD and in few paperback copies G. L. Hennebert ed. Published by Mycotaxon, Ltd. Ithaca, New York, USA December 2010 ISBN 978-0-930845-18-6 (www pdf version) ISBN 978-0-930845-17-9 (paperback version) DOI 10.5248/2010MUCL.pdf 1894-1994 MUCL Centenary CONTENTS Lists of participants 8 Forword John Webser 13 PLENARY SESSION The 100 Year Fungus Culture Collection MUCL, June 29th, 1994 G.L. Hennebert, UCL Mycothèque de l'Université Catholique de Louvain (MUCL) 17 D. Hawksworth, IMI, U.K. Fungal genetic resource collections and biodiversity. 27 D. van der Mei, CBS, MINE, Netherlands The fungus culture collections in Europe. 34 J. De Brabandere, BCCM, Belgium The Belgian Coordinated Collections of Microorganisms. 40 Fungal Taxonomy and tropical Mycology G.L. Hennebert, UCL Introduction. Fungal taxonomy and tropical mycology: Quo vadis ? 41 C.P. Kurtzman, NRRL, USA Molecular taxonomy in the yeast fungi: present and future. 42 M. Blackwell, Louisiana State University, USA Phylogeny of filamentous fungi deduced from analysis of molecular characters: present and future. 52 J. Rammeloo, National Botanical Garden, Belgium Importance of morphological and anatomical characters in fungal taxonomy. 57 M.F. Roquebert, Natural History Museum, France Possible progress of modern morphological analysis in fungal taxonomy. 63 A.J.
    [Show full text]