Mycena Sect. Galactopoda: Two New Species, a Key to the Known Species and a Note on the Circumscription of the Section
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
SOMA News March 2011
VOLUME 23 ISSUE 7 March 2011 SOMA IS AN EDUCATIONAL ORGANIZATION DEDICATED TO MYCOLOGY. WE ENCOURAGE ENVIRONMENTAL AWARENESS BY SHARING OUR ENTHUSIASM THROUGH PUBLIC PARTICIPATION AND GUIDED FORAYS. WINTER/SPRING 2011 SPEAKER OF THE MONTH SEASON CALENDAR March Connie and Patrick March 17th » Meeting—7pm —“A Show and Tell”— Sonoma County Farm Bureau Speaker: Connie Green & Patrick March 17th—7pm Hamilton Foray March. 19th » Salt Point April April 21st » Meeting—7pm Sonoma County Farm Bureau Speaker: Langdon Cook Foray April 23rd » Salt Point May May 19th » Meeting—7pm Sonoma County Farm Bureau Speaker: Bob Cummings Foray May: Possible Morel Camping! eparated at birth but from the same litter Connie Green and Patrick Hamilton have S traveled (endured?) mushroom journeys together for almost two decades. They’ve been to the humid and hot jaguar jungles of Chiapas chasing tropical mushrooms and to EMERGENCY the cloud forests of the Sierra Madre for boletes and Indigo milky caps. In the cold and wet wilds of Alaska they hiked a spruce and hemlock forest trail to watch grizzly bears MUSHROOM tearing salmon bellies just a few yards away. POISONING IDENTIFICATION In the remote Queen Charlotte Islands their bush plane flew over “fields of golden chanterelles,” landed on the ocean, and then off into a zany Zodiac for a ride over a cold After seeking medical attention, contact and roiling sea alongside some low flying puffins to the World Heritage Site of Ninstints. Darvin DeShazer for identification at The two of them have gazed at glaciers and berry picked on muskeg bogs. More than a (707) 829-0596. -
Fungal Diversity in the Mediterranean Area
Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I. -
Sporocarp Ontogeny in Panus (Basidiomycotina): Evolution and Classification
Sporocarp Ontogeny in Panus (Basidiomycotina): Evolution and Classification David S. Hibbett; Shigeyuki Murakami; Akihiko Tsuneda American Journal of Botany, Vol. 80, No. 11. (Nov., 1993), pp. 1336-1348. Stable URL: http://links.jstor.org/sici?sici=0002-9122%28199311%2980%3A11%3C1336%3ASOIP%28E%3E2.0.CO%3B2-M American Journal of Botany is currently published by Botanical Society of America. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/botsam.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected]. http://www.jstor.org Tue Jan 8 09:54:21 2008 American Journal of Botany 80(11): 1336-1348. -
Bot 316 Mycology and Fungal Physiology
BOT 316 MYCOLOGY AND FUNGAL PHYSIOLOGY Dr Osondu Akoma 2011 BOT 316 MYCOLOGY AND FUNGAL PHYSIOLOGY INTRODUCTION HISTORICAL BACKGROUND Mycology is a classical translation of the Greek word Mykes logos which means mushroom discussion, thus mycology is the study of fungi. In the past this area of science was limited to the study of mushrooms but as science developed, the scope of the subject widened far beyond the objects seen with the naked eyes with the discovery of microscopes. The development of mycology cannot be isolated from that of science. The ancestry of fungi is ancient, dating back to the Devonian and Precambrian eras. The history is also influenced by calamities and man has always kept record from time and as such the first record of fungi was not that of observing fungi directly but that of their harmful effects. The Romans and Greeks have a lot in their records. Even in the Holy Bible there are many references of the fungi and their effects; Leviticus 14: 4-48, 1Kings 8:37, Deuteronomy 28:22. The first indication that man saw fungi as food was a report of death at Icarius. The first book devoted to fungi is the Van Sterbeek’s “Theatrum Fungerium” in 1675 and this work distinguished the edible from the poisonous mushrooms. The discovery of the microscope led to the systematic study of the fungi. Robert Hooke was credited with the first illustration of micro fungi in 1667 in his work titled Micrographa . The Greeks and Romans regarded fungi as mysterious things. They were regarded as the “evil formats of the earth originating from the mouth of vipers”. -
Naturstoffe Im Chemieunterricht: Chemie Mit Pilzen
Neue experimentelle Designs zum Thema Naturstoffe im Chemieunterricht: Chemie mit Pilzen DISS,RTATI.N 0ur ,rlangung des akademischen Grades doctor rerum naturalium 1Dr. rer. nat.2 vorgelegt dem Rat der Chemisch -Geowissenschaftlichen Fakultt der Friedrich-Schiller-Universitt Jena von Jan-Markus Teuscher ge oren am 11.08.1972 in (arl-Mar)-Stadt Gutachter: 1: Prof. Dr. Volker Woest, Arbeitsgruppe Chemiedidaktik 2: Dr. Dieter Weiß, Institut für Organische und Makromolekulare Chemie Tag der öffentlichen Verteidigung: 25.05.2011 Inhaltsverzeichnis S e i t e 3 Inhaltsverzeichnis Abbildungsverzeichnis ............................................................................................................. 5 Tabellenverzeichnis .................................................................................................................. 5 1 Einleitung und Zielsetzung ................................................................................................. 7 2 Biologische Grundlage ....................................................................................................... 9 2.1 Betrachtung der Pilze im Wandel der Zeit .................................................................. 9 2.1.1 Vorgeschichtliche Zeit ......................................................................................... 9 2.1.2 Europäisches Altertum – Anfänge der Naturwissenschaft ................................... 9 2.1.3 Mittelalterliche Scholastik ................................................................................. -
Two New Species of Dermoloma from India
Phytotaxa 177 (4): 239–243 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.177.4.5 Two new species of Dermoloma from India K. N. ANIL RAJ, K. P. DEEPNA LATHA, RAIHANA PARAMBAN & PATINJAREVEETTIL MANIMOHAN* Department of Botany, University of Calicut, Kerala, 673 635, India *Corresponding author: [email protected] Abstract Two new species of Dermoloma, Dermoloma indicum and Dermoloma keralense, are documented from Kerala State, India, based on morphology. Comprehensive descriptions, photographs, and comparison with phenetically similar species are provided. Key words: Agaricales, Basidiomycota, biodiversity, taxonomy Introduction Dermoloma J. E. Lange (1933: 12) ex Herink (1958: 62) (Agaricales, Basidiomycota) is a small genus of worldwide distribution with around 24 species names (excluding synonyms) listed in Species Fungorum (www.speciesfungorum. org). The genus is characterized primarily by the structure of the pileipellis, which is a pluristratous hymeniderm made up of densely packed, subglobose or broadly clavate cells (Arnolds 1992, 1993, 1995). Although Dermoloma is traditionally considered as belonging to the Tricholomataceae, Kropp (2008) found that D. inconspicuum Dennis (1961: 78), based on molecular data, had phylogenetic affinities to the Agaricaceae. Most of the known species are recorded from the temperate regions. So far, only a single species of Dermoloma has been reported from India (Manimohan & Arnolds 1998). During our studies on the agarics of Kerala State, India, we came across two remarkable species of Dermoloma that were found to be distinct from all other previously reported species of the genus. They are herein formally described as new. -
Fungi of the Baldwin Woods Forest Preserve - Rice Tract Based on Surveys Conducted in 2020 by Sherry Kay and Ben Sikes
Fungi of the Baldwin Woods Forest Preserve - Rice Tract Based on surveys conducted in 2020 by Sherry Kay and Ben Sikes Scientific name Common name Comments Agaricus silvicola Wood Mushroom Allodus podophylli Mayapple Rust Amanita flavoconia group Yellow Patches Amanita vaginata group 4 different taxa Arcyria cinerea Myxomycete (Slime mold) Arcyria sp. Myxomycete (Slime mold) Arcyria denudata Myxomycete (Slime mold) Armillaria mellea group Honey Mushroom Auricularia americana Cloud Ear Biscogniauxia atropunctata Bisporella citrina Yellow Fairy Cups Bjerkandera adusta Smoky Bracket Camarops petersii Dog's Nose Fungus Cantharellus "cibarius" Chanterelle Ceratiomyxa fruticulosa Honeycomb Coral Slime Mold Myxomycete (Slime mold) Cerioporus squamosus Dryad's Saddle Cheimonophyllum candidissimum Class Agaricomycetes Coprinellus radians Orange-mat Coprinus Coprinopsis variegata Scaly Ink Cap Cortinarius alboviolaceus Cortinarius coloratus Crepidotus herbarum Crepidotus mollis Peeling Oysterling Crucibulum laeve Common Bird's Nest Dacryopinax spathularia Fan-shaped Jelly-fungus Daedaleopsis confragosa Thin-walled Maze Polypore Diatrype stigma Common Tarcrust Ductifera pululahuana Jelly Fungus Exidia glandulosa Black Jelly Roll Fuligo septica Dog Vomit Myxomycete (Slime mold) Fuscoporia gilva Mustard Yellow Polypore Galiella rufa Peanut Butter Cup Gymnopus dryophilus Oak-loving Gymnopus Gymnopus spongiosus Gyromitra brunnea Carolina False Morel; Big Red Hapalopilus nidulans Tender Nesting Polypore Hydnochaete olivacea Brown-toothed Crust Hymenochaete -
Bulk Isolation of Basidiospores from Wild Mushrooms by Electrostatic Attraction with Low Risk of Microbial Contaminations Kiran Lakkireddy1,2 and Ursula Kües1,2*
Lakkireddy and Kües AMB Expr (2017) 7:28 DOI 10.1186/s13568-017-0326-0 ORIGINAL ARTICLE Open Access Bulk isolation of basidiospores from wild mushrooms by electrostatic attraction with low risk of microbial contaminations Kiran Lakkireddy1,2 and Ursula Kües1,2* Abstract The basidiospores of most Agaricomycetes are ballistospores. They are propelled off from their basidia at maturity when Buller’s drop develops at high humidity at the hilar spore appendix and fuses with a liquid film formed on the adaxial side of the spore. Spores are catapulted into the free air space between hymenia and fall then out of the mushroom’s cap by gravity. Here we show for 66 different species that ballistospores from mushrooms can be attracted against gravity to electrostatic charged plastic surfaces. Charges on basidiospores can influence this effect. We used this feature to selectively collect basidiospores in sterile plastic Petri-dish lids from mushrooms which were positioned upside-down onto wet paper tissues for spore release into the air. Bulks of 104 to >107 spores were obtained overnight in the plastic lids above the reversed fruiting bodies, between 104 and 106 spores already after 2–4 h incubation. In plating tests on agar medium, we rarely observed in the harvested spore solutions contamina- tions by other fungi (mostly none to up to in 10% of samples in different test series) and infrequently by bacteria (in between 0 and 22% of samples of test series) which could mostly be suppressed by bactericides. We thus show that it is possible to obtain clean basidiospore samples from wild mushrooms. -
989946 1302 1170751 1057 After
ITS1 ITS2 Seqs OTUs Seqs OTUs Fungi (0.95) 992852 1911 1173834 1691 Raw in OTU 989946 1302 1170751 1057 table (n≥10) After decontam 915747 1206 1016235 1044 Final(97% 889290 1193 992890 1032 coverage) Table S1. Total sequence count + OTUs for ITS1 + ITS2 datasets at each OTU table trimming step.1Non-target samples discarded. ITS1 ITS2 Seqs zOTUs Seqs zOTUs All zotus1 1061048 3135 2689730 1880 Fungi 1024007 3094 1210397 1705 (0.95) After 997077 3012 1107636 1685 decontam Final(97% 967316 2772 1083789 1559 coverage) Table S2. Total sequence count + zotus (n=8) for ITS1 + ITS2 datasets at each zotu table trimming step. 1Non-target samples and "zotus"/ASVs with <8 copies discarded. Bistorta vivipara Dryas octopetala Salix polaris (n=519)1 (n=22) (n=20)2 Fungi (0.95) 917667 41314 33871 Raw in OTU 914888 41272 33786 table (n≥10) After 843137 39880 32730 decontam Final (97% 803649 39880 30069 coverage) Sequences min=251, min=382, min=449, per avg=1523.6, avg=1812.7, avg=1551.2, sample max=7680 max=3735 max=3516 Table S3. ITS1 data quality filtering steps (OTUs). For Bistorta vivipara, 80 samples of the original 599 that had too few sequences to meet the coverage threshold of 97% in both the OTU and zotu datasets were discarded. 21 Salix polaris sample was discarded for the same reason. Bistorta vivipara Dryas octopetala Salix polaris (n=519)1 (n=22) (n=20) 2 Fungi (0.95) 984812 44702 36145 After 919672 43286 34119 decontam Final (97% 908621 43286 33141 coverage) Sequences min=251, min=382, min=449, per avg=1519.4, avg=1812.7, avg=1546.7, sample max=7680 max=3730 max=3516 Table S4. -
A Review of Microbial Deterioration Found in Archaeological Wood from Di Erent Environments Robert A
International Biodeterioration & Biodegradation 46 (2000) 189–204 www.elsevier.com/locate/ibiod A review of microbial deterioration found in archaeological wood from di erent environments Robert A. Blanchette∗ Department of Plant Pathology, University of Minnesota, 1991 Upper Buford Circle, 495 Borlaug Hall, St. Paul, MN 55108-6030, USA Received 15 February 2000; received in revised form 23 March 2000; accepted 13 April 2000 Abstract Wooden cultural properties are degraded by microorganisms when moisture, oxygen and other environmental factors are favorable for microbial growth. Archaeological woods recovered from most environments, even those that are extreme su er from some form of biodeterioration. This review provides a summary of wood degradation caused by fungi and bacteria and also describes speciÿc degradation found in archaeological wood from a variety of di erent terrestrial and aquatic environments. These include woods from several ancient Egyptian tombs (4000 BC to 200 AD); an 8th century BC tomb found in Tumulus MM at Gordion, Turkey; Anasazi great houses (1000 AD) from the southwestern United States, waterlogged woods (100–200 BC) from the Goldcli intertidal site, Wales, United Kingdom; and the late Bronze Age Uluburun shipwreck found o the coast of Turkey. c 2000 Elsevier Science Ltd. All rights reserved. Keywords: Wood decay; Waterlogged wood; Ancient wood; White-rot; Brown-rot; Soft-rot 1. Introduction served. Since there are relatively few wooden objects sur- viving from past civilizations, they are extremely valu- Wood deterioration is an essential process in the envi- able resources that deserve careful attention. It is essential ronment that recycles complex organic matter and is an to improve our understanding of the microbes and pro- integral component of life. -
BASIDIOMYCETES: AGARICALES) from PUERTO Rlco
MYCOTAXON Volume LXXXII, pp. 269-279 April-June 2002 NEW SPECIES OF OUDEMANSIELLA AND POUZARELLA (BASIDIOMYCETES: AGARICALES) FROM PUERTO RlCO Timothy J. Baroni Department of Biological Sciences P. O. Box 2000 State University of New York - College at Cortland Cortand, NY 13045 USA [email protected] and Beatriz Ortiz Center for Forest Mycology Research Forest Products Laboratory, USDA-Forest Service P.O. Box 1377 Luquillo, P. R. 00733-1377 USA [email protected] ABSTRACT: Oudemansiella fibrillosa and Pouzarella caribaea are described as new from the Guilarte National Forest Preserve in Puerto Rico. KEY WORDS: Entolomataceae, Greater Antilles, Tricholomataceae INTRODUCTION Over the past decade several papers have been published on members of Agaricales from Puerto Rico (Baroni and Lodge, 1998; Baroni et al., 1999; Cantrell and Lodge, 2000 & 2001; Guzmán, et al., 1997; Lodge, 1988; Lodge et al.. 2001; Lodge and Pegler, 1990; Miller et al., 2000; Pegler, et al., 1998; Singer and Lodge, 1988. Much of the previous literature discussing publications on agarics for Puerto Rico can be found in Baroni and Lodge (1 998) and Lodge (1 996). A recent study by one of us (BO) on the agaric mycota in the Guilarte State Forest, a wet subtropical forest located in the Cordillera Central of southwestern Puerto Rico (18°07N, 66°27W), has turned up two new species of agarics. Previously Bor (1969) had reported only nine species total from the Guilarte State Forest in Puerto Rico. We now have documented an additional 14 species, which includes the two new taxa described below. However, many collections from the Guilarte State Forest have yet to be identified to species, and thus this number will continue to rise. -
November 2014
MushRumors The Newsletter of the Northwest Mushroomers Association Volume 25, Issue 4 December 2014 After Arid Start, 2014 Mushroom Season Flourishes It All Came Together By Chuck Nafziger It all came together for the 2014 Wild Mushroom Show; an October with the perfect amount of rain for abundant mushrooms, an enthusiastic volunteer base, a Photo by Vince Biciunas great show publicity team, a warm sunny show day, and an increased public interest in foraging. Nadine Lihach, who took care of the admissions, reports that we blew away last year's record attendance by about 140 people. Add to that all the volunteers who put the show together, and we had well over 900 people involved. That's a huge event for our club. Nadine said, "... this was a record year at the entry gate: 862 attendees (includes children). Our previous high was in 2013: 723 attendees. Success is more measured in the happiness index of those attending, and many people stopped by on their way out to thank us for the wonderful show. Kids—and there were many—were especially delighted, and I'm sure there were some future mycophiles and mycologists in Sunday's crowd. The mushroom display A stunning entry display greets visitors arriving at the show. by the door was effective, as always, at luring people in. You could actually see the kids' eyes getting bigger as they surveyed the weird mushrooms, and twice during the day kids ran back to our table to tell us that they had spotted the mushroom fairy. There were many repeat adult visitors, too, often bearing mushrooms for identification.