Missense Mutations in the Human Nanophthalmos Gene TMEM98
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of the Binding Partners for Hspb2 and Cryab Reveals
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity. -
Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle
Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle Slim Ben-Jemaa, Gabriele Senczuk, Elena Ciani, Roberta Ciampolini, Gennaro Catillo, Mekki Boussaha, Fabio Pilla, Baldassare Portolano, Salvatore Mastrangelo To cite this version: Slim Ben-Jemaa, Gabriele Senczuk, Elena Ciani, Roberta Ciampolini, Gennaro Catillo, et al.. Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle. Frontiers in Genetics, Frontiers, 2021, 10.3389/fgene.2021.675569. hal-03210766 HAL Id: hal-03210766 https://hal.inrae.fr/hal-03210766 Submitted on 28 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ORIGINAL RESEARCH published: 28 April 2021 doi: 10.3389/fgene.2021.675569 Genome-Wide Analysis Reveals Selection Signatures Involved in Meat Traits and Local Adaptation in Semi-Feral Maremmana Cattle Slim Ben-Jemaa 1, Gabriele Senczuk 2, Elena Ciani 3, Roberta -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Views of the NIH
CLINICAL EPIDEMIOLOGY www.jasn.org Genetic Variants Associated with Circulating Fibroblast Growth Factor 23 Cassianne Robinson-Cohen ,1 Traci M. Bartz,2 Dongbing Lai,3 T. Alp Ikizler,1 Munro Peacock,4 Erik A. Imel,4 Erin D. Michos,5 Tatiana M. Foroud,3 Kristina Akesson,6,7 Kent D. Taylor,8 Linnea Malmgren,6,7 Kunihiro Matsushita,5,9,10 Maria Nethander,11 Joel Eriksson,12 Claes Ohlsson,12 Daniel Mellström,12 Myles Wolf,13 Osten Ljunggren,14 Fiona McGuigan,6,7 Jerome I. Rotter,8 Magnus Karlsson,6,7 Michael J. Econs,3,4 Joachim H. Ix,15,16 Pamela L. Lutsey,17 Bruce M. Psaty,18,19 Ian H. de Boer ,20 and Bryan R. Kestenbaum 20 Due to the number of contributing authors, the affiliations are listed at the end of this article. ABSTRACT Background Fibroblast growth factor 23 (FGF23), a bone-derived hormone that regulates phosphorus and vitamin D metabolism, contributes to the pathogenesis of mineral and bone disorders in CKD and is an emerging cardiovascular risk factor. Central elements of FGF23 regulation remain incompletely under- stood; genetic variation may help explain interindividual differences. Methods We performed a meta-analysis of genome-wide association studies of circulating FGF23 con- centrations among 16,624 participants of European ancestry from seven cohort studies, excluding par- ticipants with eGFR,30 ml/min per 1.73 m2 to focus on FGF23 under normal conditions. We evaluated the association of single-nucleotide polymorphisms (SNPs) with natural log–transformed FGF23 concentra- tion, adjusted for age, sex, study site, and principal components of ancestry. -
Supplemental Information
Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig. -
Comprehensive Array CGH of Normal Karyotype Myelodysplastic
Leukemia (2011) 25, 387–399 & 2011 Macmillan Publishers Limited All rights reserved 0887-6924/11 www.nature.com/leu LEADING ARTICLE Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance A Thiel1, M Beier1, D Ingenhag1, K Servan1, M Hein1, V Moeller1, B Betz1, B Hildebrandt1, C Evers1,3, U Germing2 and B Royer-Pokora1 1Institute of Human Genetics and Anthropology, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany and 2Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Duesseldorf, Germany About 40% of patients with myelodysplastic syndromes (MDSs) 40–50% of MDS cases have a normal karyotype. MDS patients present with a normal karyotype, and they are facing different with a normal karyotype and low-risk clinical parameters are courses of disease. To advance the biological understanding often assigned into the IPSS low and intermediate-1 risk groups. and to find molecular prognostic markers, we performed a high- resolution oligonucleotide array study of 107 MDS patients In the absence of genetic or biological markers, prognostic (French American British) with a normal karyotype and clinical stratification of these patients is difficult. To better prognosticate follow-up through the Duesseldorf MDS registry. Recurrent these patients, new parameters to identify patients at higher risk hidden deletions overlapping with known cytogenetic aberra- are urgently needed. With the more recently introduced modern tions or sites of known tumor-associated genes were identi- technologies of whole-genome-wide surveys of genetic aberra- fied in 4q24 (TET2, 2x), 5q31.2 (2x), 7q22.1 (3x) and 21q22.12 tions, it is hoped that more insights into the biology of disease (RUNX1, 2x). -
Product Datasheet Qprest
Product Datasheet QPrEST PRODUCT SPECIFICATION Product Name QPrEST TMM98 Mass Spectrometry Protein Standard Product Number QPrEST39234 Protein Name Transmembrane protein 98 Uniprot ID Q9Y2Y6 Gene TMEM98 Product Description Stable isotope-labeled standard for absolute protein quantification of Transmembrane protein 98. Lys (13C and 15N) and Arg (13C and 15N) metabolically labeled recombinant human protein fragment. Application Absolute protein quantification using mass spectrometry Sequence (excluding CRQRYCRPRDLLQRYDSKPIVDLIGAMETQSEPSELELDDVVITNPHIEA fusion tag) ILENEDWIEDASGLMSHCIAILKICHTLTEKLVAMTMGSGAKMKTSASVS Theoretical MW 28997 Da including N-terminal His6ABP fusion tag Fusion Tag A purification and quantification tag (QTag) consisting of a hexahistidine sequence followed by an Albumin Binding Protein (ABP) domain derived from Streptococcal Protein G. Expression Host Escherichia coli LysA ArgA BL21(DE3) Purification IMAC purification Purity >90% as determined by Bioanalyzer Protein 230 Purity Assay Isotopic Incorporation >99% Concentration >5 μM after reconstitution in 100 μl H20 Concentration Concentration determined by LC-MS/MS using a highly pure amino acid analyzed internal Determination reference (QTag), CV ≤10%. Amount >0.5 nmol per vial, two vials supplied. Formulation Lyophilized in 100 mM Tris-HCl 5% Trehalose, pH 8.0 Instructions for Spin vial before opening. Add 100 μL ultrapure H2O to the vial. Vortex thoroughly and spin Reconstitution down. For further dilution, see Application Protocol. Shipping Shipped at ambient temperature Storage Lyophilized product shall be stored at -20°C. See COA for expiry date. Reconstituted product can be stored at -20°C for up to 4 weeks. Avoid repeated freeze-thaw cycles. Notes For research use only Product of Sweden. For research use only. Not intended for pharmaceutical development, diagnostic, therapeutic or any in vivo use. -
Supplemental Figure 1
Supplemental Figure 1 Developmentally regulated gene expression in WT NOD and B6 thymocytes. (A) Gene expression of tyrosine receptor kinase Epha2 is higher in NOD than B6 at all developmental stages. (B) Expression of Dapk1 is lower in NOD than B6 at all developmental stages, and off in NOD DN2a cells. Relative developmentally regulated expression in B6 subsets was confirmed using publicly available data from immgen.org. Supplemental Table 1. Genes differentially expressed >3X between NOD.Rag and B6.Rag CD25+DN thymocytes QTL or Log2 RPKM3 Gene Description congenic Chr Start Bp2 1 region B44 B7 N4 N7 Gm5828 predicted gene 5828 1 16,757,095 0.74 0.72 2.45 2.15 Efhc1 EF-hand domain (C-terminal) containing 1 1 20,941,707 0.94 1.01 0.13 0.13 Gm4956 predicted gene 4956 1 21,275,327 0.12 0.32 0.02 0.01 Khdc1a KH domain containing 1A 1 21,339,722 80.46 166.88 3.18 0.95 Khdc1c KH domain containing 1C 1 21,358,412 18.91 40.51 2.67 1.03 Khdc1b KH domain containing 1B 1 21,373,637 2.09 5.08 0.15 0.11 Gm8210 predicted pseudogene 8210 1 43,246,001 0.69 0.83 24.86 27.78 Gm8251 predicted gene 8251 1 44,112,797 0.12 0.24 0.06 0.03 Gm5527 predicted gene 5527 1 52,638,932 0.10 0.14 1.18 1.15 Ctla4 cytotoxic T-lymphocyte-associated protein 4 1 60,943,844 27.56 44.78 8.13 4.05 Obsl1 obscurin-like 1 1 75,475,885 0.21 0.01 0.76 0.58 Agfg1 ArfGAP with FG repeats 1 1 82,836,058 45.51 38.88 14.72 12.69 Gm7582 predicted gene 7582 1 85,024,529 0.08 0.12 0.89 1.42 A530032D15Rik RIKEN cDNA A530032D15Rik gene 1 85,084,714 0.50 0.91 2.66 3.2 Gm7609 predicted pseudogene -
Leukocyte-Specific Adaptor Protein Grap2 Interacts with Hematopoietic
Oncogene (2001) 20, 1703 ± 1714 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Leukocyte-speci®c adaptor protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to activate JNK signaling pathway in T lymphocytes Wenbin Ma1, Chunzhi Xia1, Pin Ling2, Mengsheng Qiu3, Ying Luo4, Tse-Hua Tan2 and Mingyao Liu*,1 1Department of Medical Biochemistry and Genetics, Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas, TX 77030, USA; 2Department of Immunology, Baylor College of Medicine, Houston, Texas, TX 77030, USA; 3Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, KY 40202, USA; 4Shanghai Genomics, Inc., Zhangjiang Hi-Tech Park, Pudong, Shangai 201204, P.R.C. Immune cell-speci®c adaptor proteins create various Introduction combinations of multiprotein complexes and integrate signals from cell surface receptors to the nucleus, Activation of resting T cells through the T-cell antigen modulating the speci®city and selectivity of intracellular receptor triggers a cascade of intracellular signaling signal transduction. Grap2 is a newly identi®ed adaptor events that lead to enhanced gene transcription, protein speci®cally expressed in lymphoid tissues. This cellular dierentiation and proliferation (Cantrell, protein shares 40 ± 50% sequence homology in the SH3 1996; Weiss and Littman, 1994; Chan and Shaw, and the SH2 domain with Grb2 and Grap. However, the 1996; Crabtree and Clipstone, 1994; Wange and Grap2 protein has a unique 120-amino acid glutamine- Samelson, 1996). Although components of the T-cell and proline-rich domain between the SH2 and C- receptor complex have no intrinsic kinase activity, the terminal SH3 domains. -
Mouse Epb42 Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Epb42 Knockout Project (CRISPR/Cas9) Objective: To create a Epb42 knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Epb42 gene (NCBI Reference Sequence: NM_013513 ; Ensembl: ENSMUSG00000023216 ) is located on Mouse chromosome 2. 13 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 13 (Transcript: ENSMUST00000102490). Exon 2~5 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygotes for a targeted null mutation exhibit erythrocytic abnormalities including mild spherocytosis, altered ion transport, and dehydration. Exon 2 starts from about 0.53% of the coding region. Exon 2~5 covers 31.07% of the coding region. The size of effective KO region: ~5547 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 2 3 4 5 13 Legends Exon of mouse Epb42 Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1985 bp section upstream of Exon 2 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 1230 bp section downstream of Exon 5 is aligned with itself to determine if there are tandem repeats. -
Autosomal Dominant Nanophthalmos and High Hyperopia Associated with a C-Terminal Frameshift Variant in MYRF
Molecular Vision 2019; 25:527-534 <http://www.molvis.org/molvis/v25/527> © 2019 Molecular Vision Received 23 June 2019 | Accepted 19 September 2019 | Published 21 September 2019 Autosomal dominant nanophthalmos and high hyperopia associated with a C-terminal frameshift variant in MYRF Owen M. Siggs,1 Emmanuelle Souzeau,1 James Breen,2 Ayub Qassim,1 Tiger Zhou,1 Andrew Dubowsky,3 Jonathan B. Ruddle,4 Jamie E. Craig1 1Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia; 2South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; 3SA Pathology, Flinders Medical Centre, Adelaide, Australia; 4Department of Ophthalmology, University of Melbourne, Melbourne, Victoria, Australia Purpose: Nanophthalmos is a rare subtype of microphthalmia associated with high hyperopia and an increased risk of angle-closure glaucoma. We investigated the genetic cause of nanophthalmos and high hyperopia in an autosomal dominant kindred. Methods: A proband with short axial length, high hyperopia, and dextrocardia was subjected to exome sequencing. Human and rodent gene expression data sets were used to investigate the expression of relevant genes. Results: We identified a segregating heterozygous frameshift variant at the 3′ end of the penultimate exon of MYRF. Using Myc-MYRF chromatin immunoprecipitation data from rat oligodendrocytes, MYRF was found to bind immedi- ately upstream of the transcriptional start site of Tmem98, a gene that itself has been implicated in autosomal dominant nanophthalmos. MYRF and TMEM98 were found to be expressed in the human retina, with a similar pattern of expression across several dissected human eye tissues. Conclusions: C-terminal variants in MYRF, which are expected to escape nonsense-mediated decay, represent a rare cause of autosomal dominant nanophthalmos with or without dextrocardia or congenital diaphragmatic hernia. -
CD28 Costimulation in Jurkat Cells Signaling Networks Triggered By
Quantitative Analysis of Phosphotyrosine Signaling Networks Triggered by CD3 and CD28 Costimulation in Jurkat Cells This information is current as Ji-Eun Kim and Forest M. White of September 26, 2021. J Immunol 2006; 176:2833-2843; ; doi: 10.4049/jimmunol.176.5.2833 http://www.jimmunol.org/content/176/5/2833 Downloaded from References This article cites 47 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/176/5/2833.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 26, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Quantitative Analysis of Phosphotyrosine Signaling Networks Triggered by CD3 and CD28 Costimulation in Jurkat Cells1 Ji-Eun Kim and Forest M. White2 The mechanism by which stimulation of coreceptors such as CD28 contributes to full activation of TCR signaling pathways has been intensively studied, yet quantitative measurement of costimulation effects on functional TCR signaling networks has been lacking.