CD28 Costimulation in Jurkat Cells Signaling Networks Triggered By

Total Page:16

File Type:pdf, Size:1020Kb

CD28 Costimulation in Jurkat Cells Signaling Networks Triggered By Quantitative Analysis of Phosphotyrosine Signaling Networks Triggered by CD3 and CD28 Costimulation in Jurkat Cells This information is current as Ji-Eun Kim and Forest M. White of September 26, 2021. J Immunol 2006; 176:2833-2843; ; doi: 10.4049/jimmunol.176.5.2833 http://www.jimmunol.org/content/176/5/2833 Downloaded from References This article cites 47 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/176/5/2833.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 26, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Quantitative Analysis of Phosphotyrosine Signaling Networks Triggered by CD3 and CD28 Costimulation in Jurkat Cells1 Ji-Eun Kim and Forest M. White2 The mechanism by which stimulation of coreceptors such as CD28 contributes to full activation of TCR signaling pathways has been intensively studied, yet quantitative measurement of costimulation effects on functional TCR signaling networks has been lacking. In this study, phosphotyrosine networks triggered by CD3, CD28, or CD3 and CD28 costimulation were analyzed by site-specific quantitative phosphoproteomics, resulting in identification of 101 tyrosine and 3 threonine phosphorylation sites and quantification of 87 sites across four cell states. As expected, CD3 stimulation induced phosphorylation of CD3 chains and upstream components of TCR pathways such as Zap70, while CD28 stimulation induced phosphorylation of CD28, Vav-1, and other adaptor proteins including downstream of tyrosine kinase 1, Grb2-associated protein 2 (Grap2), and Wiskott-Aldrich syndrome protein. CD3 and CD28 costimulation induced a complex response including decreased threonine phosphorylation in Downloaded from the ERK1 and ERK2 activation loops and increased phosphorylation of selected tyrosine sites on ERK1/2, p38, phospholipase C-␥, Src homology 2 domain-containing transforming protein 1, Grap2, and Vav-1, potentiating T cell activation. Hierarchical clus- tering and self-organizing maps were used to identify modules of coregulated phosphorylation sites within the network. Quanti- tative information in our study suggests quantitative and qualitative contribution by costimulation of CD28 on CD3-stimulated TCR signaling networks via enhanced phosphorylation of phospholipase C-␥/Src homology 2 domain-containing transforming protein 1/Grap2/Vav-1 and their effects on downstream components including MAPKs. The Journal of Immunology, 2006, 176: http://www.jimmunol.org/ 2833–2843. tudies on T cell activation leading to diverse cellular out- Zap70, in turn, phosphorylates phospholipase C-␥ (PLC-␥), which comes such as cytokine production have resulted in iden- is promoted after its binding to an adaptor protein, linker for ac- S tification of a number of cellular components involved in tivation of T cells (LAT), and Src homology 2 domain-containing T cell signaling pathways (reviewed in Refs. 1–4). Briefly, once leukocyte protein of 76 kDa (SLP-76). PLC-␥ can further activate the MHC molecule presents processed Ag to TCR ␣- and ␤-chains, protein kinase C (PKC), leading to NF-␬B transactivation, and CD4 binds to the MHC molecule, resulting in the proximity of calcium-dependent pathways, resulting in the transport of NF-AT lymphocyte-specific protein kinase (Lck),3 which exists in a com- into the nucleus for its transcription activation. During early phos- by guest on September 26, 2021 plex with CD4, to CD3-␨ and thereby phosphorylation of CD3 phorylation events in lipid raft clusters, Src homology 2 domain- chains in the preexisting molecular cluster within plasma mem- containing transforming protein 1 (Shc) also interacts with phos- brane microdomains. Each CD3 chain (CD3-␦,-⑀,-␥) contains two phorylated ITAM in the ␨-chain and LAT, which interacts with phosphotyrosine sites in the ITAM motif (ITAM; YxxI/L) with the other adaptor molecules such as Vav-1 or Ras via Grb2 and Grap2/ exception of the ␨-chain, which possesses six phosphotyrosine Grb2-associated protein downstream of Shc (Gads), leading to the sites. TCR Zap70 is then recruited, binds to phosphorylated CD3 activation of MAPKs such as JNK, p38, and ERK 1/2 for subse- chains, and becomes phosphorylated by Lck. Phosphorylated quent AP-1 transactivation. The two-signal theory suggests that T cell activation requires both Ag recognition via the TCR-CD3 complex and additional Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, costimulatory signals derived from CD28 and other receptors (5). MA 02139 Correspondingly, CD28-negative mice require repeated stimula- Received for publication September 26, 2005. Accepted for publication December tion to elicit T cell response and respond poorly to immunological 8, 2005. challenge (reviewed in Ref. 6). Studies on the mechanism by The costs of publication of this article were defrayed in part by the payment of page which costimulation of CD3 and other coreceptors, particularly charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. CD28, leads to complete activation of T cells have generated two hypotheses of T cell activation by CD3/CD28 costimulation, re- 1 This work was supported by National Institutes of Health Grants R21-AI065354-2, P50-GM68762, R01-AI065824, and P30-ES002109. ferred to as either the quantitative or qualitative mechanisms (6–8) 2 Address correspondence and reprint requests to Dr. Forest M. White, Biological The quantitative mechanism proposes cis-activation of the TCR Engineering Division, Massachusetts Institute of Technology, 77 Massachusetts Av- signaling network by CD28 stimulation, affecting the phosphory- enue, Room 56-787A, Cambridge, MA 02139. E-mail address: [email protected] lation level and activation of components downstream of the TCR 3 Abbreviations used in this paper: Lck, lymphocyte-specific protein kinase; IMAC, to overcome a threshold necessary for T cell activation. Promotion immobilized metal-affinity chromatography; MS, mass spectrometry; LC, liquid chro- matography; PLC-␥, phospholipase C-␥; LAT, linker for activation of T cell; SLP-76, of TCR localization with lipid rafts and reorganization of mem- Src homology 2 domain-containing leukocyte protein of 76 kDa; PKC, protein kinase brane microdomains have supported these quantitative effects of C; Grap2, Grb2-associated protein 2; Shc, Src homology 2 domain-containing trans- CD28 costimulation (6, 8–10). Additionally, the quantitative forming protein 1; Gads, Grb2-associated protein downstream of Shc; o.d., outside diameter; i.d., inside diameter; GEM, glycolipid-enriched membrane microdomain; mechanism emphasizes the role of Vav-1 as an important effector WASP, Wiskott-Aldrich syndrome protein; SOM, self-organizing map; PAG, phos- in the CD28 signaling pathway and proposes that the activation of phoprotein associated with GEM; Gsk, glycogen synthase kinase 3; Itk, IL-2-induc- ible T cell kinase; SLAP-130, SLP-76-associated protein 130; Dok-1, downstream of Vav-1 might differ from the CD3 signaling pathway, possibly tyrosine kinase 1. through prolonged Lck activation (8). The qualitative mechanism Copyright © 2006 by The American Association of Immunologists, Inc. 0022-1767/06/$02.00 2834 SIGNALING NETWORKS IN T CELL COSTIMULATION focuses more on trans-activation of the TCR signaling network, 2.5) for further immobilized metal affinity chromatography (IMAC)-based with CD28 stimulation resulting in distinct signaling pathways phosphopeptide enrichment. leading to cytoskeleton rearrangement and mediation by key pro- Phosphopeptide enrichment using IMAC teins such as PI3K, Vav-1, and SLP-76 (7). In fact, cytoskeletal scaffolding following T cell stimulation is indispensable for T cell IMAC columns were prepared as described elsewhere (13). Briefly, a 15-cm long (360 ␮m outside diameter (o.d.) ϫ 200 ␮m inside diameter activation (11). (i.d.)) microcapillary fused-silica column (Polymicro Technologies) was Studies to elucidate signaling pathways triggered by TCR stim- packed with POROS 20MC in water (Applied Biosystems) and washed ulation or TCR and coreceptor stimulation have identified many of with 100 mM EDTA (10 min at 10 ␮l/min). After rinsing with water to remove EDTA, the column was charged with 100 mM FeCl3 for 10 min at the components, their interactions, and protein phosphorylation ␮ 10 l/min. Excess FeCl3 was removed by rinsing with 0.1 M acetic acid, sites in the TCR signaling network under a variety of conditions. and the column was equilibrated with 0.1% trifluoroacetic acid. Immuno- These efforts have generated a fairly comprehensive map of the T precipitated peptides in 30% acetonitrile and 0.1% trifluoroacetic acid were cell signaling
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Determination of the Membrane Transport Properties of Jurkat Cells with a Microfluidic Device
    micromachines Article Determination of the Membrane Transport Properties of Jurkat Cells with a Microfluidic Device Tianhang Yang 1,2, Ji Peng 2, Zhiquan Shu 2,3, Praveen K. Sekar 2, Songjing Li 1,* and Dayong Gao 2,* 1 Department of Fluid Control and Automation, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; [email protected] 2 Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; [email protected] (J.P.); [email protected] (Z.S.); [email protected] (P.K.S.) 3 School of Mechanical and Materials Engineering, Washington State University, Everett, WA 98201, USA * Correspondence: [email protected] (S.L.); [email protected] (D.G.); Tel.: +86-451-86418318 (S.L.); +1-206-543-1411 (D.G.) Received: 25 October 2019; Accepted: 26 November 2019; Published: 29 November 2019 Abstract: The Jurkat cell is an immortalized line of human acute lymphocyte leukemia cells that is widely used in the study of adoptive cell therapy, a novel treatment of several advanced forms of cancer. The ability to transport water and solutes across the cell membrane under different temperatures is an important factor for deciding the specific protocol for cryopreservation of the Jurkat cell. In this study we propose a comprehensive process for determination of membrane transport properties of Jurkat cell. using a novel microfluidic controlled single cell-trapping system. The osmotic behavior of an individual Jurkat cell to water and dimethyl sulfoxide (DMSO), a commonly used cryoprotective agent (CPA), under constant temperature, was recorded under a microscope utilizing the modified microfluidic system. The images of the Jurkat cell under osmotic change were processed to obtain a relationship between cell volume change and time.
    [Show full text]
  • Leukocyte-Specific Adaptor Protein Grap2 Interacts with Hematopoietic
    Oncogene (2001) 20, 1703 ± 1714 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Leukocyte-speci®c adaptor protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to activate JNK signaling pathway in T lymphocytes Wenbin Ma1, Chunzhi Xia1, Pin Ling2, Mengsheng Qiu3, Ying Luo4, Tse-Hua Tan2 and Mingyao Liu*,1 1Department of Medical Biochemistry and Genetics, Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas, TX 77030, USA; 2Department of Immunology, Baylor College of Medicine, Houston, Texas, TX 77030, USA; 3Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, KY 40202, USA; 4Shanghai Genomics, Inc., Zhangjiang Hi-Tech Park, Pudong, Shangai 201204, P.R.C. Immune cell-speci®c adaptor proteins create various Introduction combinations of multiprotein complexes and integrate signals from cell surface receptors to the nucleus, Activation of resting T cells through the T-cell antigen modulating the speci®city and selectivity of intracellular receptor triggers a cascade of intracellular signaling signal transduction. Grap2 is a newly identi®ed adaptor events that lead to enhanced gene transcription, protein speci®cally expressed in lymphoid tissues. This cellular dierentiation and proliferation (Cantrell, protein shares 40 ± 50% sequence homology in the SH3 1996; Weiss and Littman, 1994; Chan and Shaw, and the SH2 domain with Grb2 and Grap. However, the 1996; Crabtree and Clipstone, 1994; Wange and Grap2 protein has a unique 120-amino acid glutamine- Samelson, 1996). Although components of the T-cell and proline-rich domain between the SH2 and C- receptor complex have no intrinsic kinase activity, the terminal SH3 domains.
    [Show full text]
  • Dipropylcyclopentylxanthine Triggers Apoptosis in Jurkat T Cells by a Receptor-Independent Mechanism
    Cell Death and Differentiation (1997) 4, 639 ± 646 1997 Stockton Press All rights reserved 13509047/97 $12.00 Dipropylcyclopentylxanthine triggers apoptosis in Jurkat T cells by a receptor-independent mechanism 1 1 1 2+ Maribel Mirabet , Josefa Mallol , Carmen Lluis and Rafael apoptosis follows an increase in [Ca ]i, requires protein Franco1,2 synthesis, and is manifested by endogenous nuclease activation which results in DNA fragmentation. At the optical 1 Departament de BioquõÂmica i Biologia Molecular, Facultat de QuõÂmica, microscopy level, apoptosis can be suspected in cells Universitat de Barcelona, Catalonia, Spain presenting a nucleus with condensed chromatin (reviewed 2 correspondence author: Rafael Franco, Departament de BioquõÂmica i Biologia in McConkey et al, 1990; Cohen, 1993). Molecular, Facultat de QuõÂmica, MartõÂ FranqueÁs 1, 08028 Barcelona, Spain. Purine compounds have been widely used in the therapy tel: 343-4021208; fax: 343-4021219; email: [email protected] of proliferative diseases. 6-mercaptopurine and 6-thiogua- Received 24.3.97; accepted 12.6.97 nine were among the first to be used (Hitchings, 1991). Edited by M.L. Gougeon These compounds are metobolized in the cell and some of the resulting products interfere with DNA synthesis. Thus, replication of DNA in cancer cells does not occur and tumor Abstract cell proliferation is blocked. Recent studies have demon- strated that several purine analogs used as anticancer drugs 1,3-Dipropyl-8-cyclopentylxanthine (DPCPX), a xanthine are cytotoxic because they induce apoptosis in proliferating analog used as selective antagonist of adenosine receptors, cells. Thus, 2-chloro-2'-deoxyadenosine and 9-b-D-arabino- caused apoptosis in a human leukemia T cell line.
    [Show full text]
  • Mining Microarray Data to Identify Transcription Factors Expressed in Naıve Resting but Not Activated T Lymphocytes
    Genes and Immunity (2004) 5, 16–25 & 2004 Nature Publishing Group All rights reserved 1466-4879/04 $25.00 www.nature.com/gene Mining microarray data to identify transcription factors expressed in naı¨ve resting but not activated T lymphocytes C Argyropoulos1,2, GC Nikiforidis2, M Theodoropoulou1, P Adamopoulos1, S Boubali3, TN Georgakopoulos4, F Paliogianni3, AG Papavassiliou4 and A Mouzaki1 1Laboratory of Hematology & Transfusion Medicine, University of Patras, Patras, Greece; 2Laboratory of Medical Physics, University of Patras, Patras, Greece; 3Laboratory of Microbiology, University of Patras, Patras, Greece; 4Laboratory of Biological Chemistry, Medical School, University of Patras, Patras, Greece Transcriptional repressors controlling the expression of cytokine genes have been implicated in a variety of physiological and pathological phenomena. An unknown repressor that binds to the distal NFAT element of the interleukin-2 (IL-2) gene promoter in naive T-helper lymphocytes has been implicated in autoimmune phenomena and has emerged as a potentially important factor controlling the latency of HIV-1. The aim of this paper was the identification of this repressor. We resorted to public microarray databases looking for DNA-binding proteins that are present in naı¨ve resting T cells but are downregulated when the cells are activated. A Bayesian data mining statistical analysis uncovered 25 candidate factors. Of the 25, NFAT4 and the oncogene ets-2 bind to the common motif AAGGAG found in the HIV-1 LTR and IL-2 probes. Ets-2 binding site contains the three G’s that have been shown to be important for binding of the unknown factor; hence, we considered it the likeliest candidate.
    [Show full text]
  • The Fate of the Nuclear Matrix-Associated-Region-Binding Protein SATB1 During Apoptosis
    Cell Death and Differentiation (2000) 7, 425 ± 438 ã 2000 Macmillan Publishers Ltd All rights reserved 1350-9047/00 $15.00 www.nature.com/cdd The fate of the nuclear matrix-associated-region-binding protein SATB1 during apoptosis J Gotzmann*,1, M Meissner1 and C Gerner1 of human diseases arise from abnormalities in apoptosis execution, resulting either in excessive removal of cells (e.g. 1 Institute of Tumor Biology ± Cancer Research, University of Vienna, A-1090 neurodegenerative diseases)5 or in inadequate accumulation Vienna, Austria of cells (e.g. cancer).6±8 Apoptosis functionally antagonizes * Corresponding author: J Gotzmann, Institute of Tumor Biology ± Cancer mitosis, as exemplified by a disturbance of a normal balance Research, University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria. between proliferation and cell death during neoplastic Tel: +43-1-4277-65234; Fax: +43-1-4277-9651; 9 E-mail: [email protected] progression, a crucial step in malignant conversion. Even in most advanced malignancies the cell death machinery Received 2.9.99; revised 22.12.99; accepted 28.12.99 remains intact, but cells lack or repress regulatory mechan- Edited by SJ Martin isms to activate the death program sufficiently to balance enhanced cell production.10 Necrosis, a different form of cell death, is caused by Abstract severe damage of cellular homeostasis.5,11 Necrotic cells Special AT-rich sequence-binding protein 1 (SATB1), pre- swell and lose the protective function of the plasma dominantly expressed in thymocytes, was identified as a membrane, concomitant with anucleolytic pyknosis. Contra- rily, apoptotic cells shrink, leaving the plasma membrane component of the nuclear matrix protein fraction.
    [Show full text]
  • Missense Mutations in the Human Nanophthalmos Gene TMEM98 Cause Retinal Defects in the Mouse
    Genetics Missense Mutations in the Human Nanophthalmos Gene TMEM98 Cause Retinal Defects in the Mouse Sally H. Cross,1 Lisa Mckie,1 Margaret Keighren,1 Katrine West,1 Caroline Thaung,2,3 Tracey Davey,4 Dinesh C. Soares,*,1 Luis Sanchez-Pulido,1 and Ian J. Jackson1 1MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom 2Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom 3University College London Institute of Ophthalmology, London, United Kingdom 4Electron Microscopy Research Services, Newcastle University, Newcastle, United Kingdom Correspondence: Sally H. Cross, PURPOSE. We previously found a dominant mutation, Rwhs, causing white spots on the retina MRC Human Genetics Unit, MRC accompanied by retinal folds. Here we identify the mutant gene to be Tmem98. In humans, Institute of Genetics and Molecular mutations in the orthologous gene cause nanophthalmos. We modeled these mutations in Medicine, University of Edinburgh, mice and characterized the mutant eye phenotypes of these and Rwhs. Crewe Road, Edinburgh EH4 2XU, UK; METHODS. The Rwhs mutation was identified to be a missense mutation in Tmem98 by genetic [email protected]. mapping and sequencing. The human TMEM98 nanophthalmos missense mutations were Current affiliation: *ACS International made in the mouse gene by CRISPR-Cas9. Eyes were examined by indirect ophthalmoscopy Ltd., Oxford, United Kingdom and the retinas imaged using a retinal camera. Electroretinography was used to study retinal function. Histology, immunohistochemistry, and electron microscopy techniques were used Submitted: October 10, 2018 Accepted: May 28, 2019 to study adult eyes. Citation: Cross SH, Mckie L, Keighren RESULTS.
    [Show full text]
  • Recurrent Activating Mutations of CD28 in Peripheral T-Cell Lymphomas
    Leukemia (2016), 1–9 © 2016 Macmillan Publishers Limited All rights reserved 0887-6924/16 www.nature.com/leu ORIGINAL ARTICLE Recurrent activating mutations of CD28 in peripheral T-cell lymphomas J Rohr1,2,14, S Guo3,14, J Huo4, A Bouska1, C Lachel1,YLi2, PD Simone5, W Zhang1, Q Gong2, C Wang1,2,6, A Cannon1, T Heavican1, A Mottok7,8, S Hung7,8, A Rosenwald9, R Gascoyne7,8,KFu1, TC Greiner1, DD Weisenburger2, JM Vose10, LM Staudt11, W Xiao12, GEO Borgstahl13, S Davis4, C Steidl7,8, T McKeithan2, J Iqbal1 and WC Chan2 Peripheral T-cell lymphomas (PTCLs) comprise a heterogeneous group of mature T-cell neoplasms with a poor prognosis. Recently, mutations in TET2 and other epigenetic modifiers as well as RHOA have been identified in these diseases, particularly in angioimmunoblastic T-cell lymphoma (AITL). CD28 is the major co-stimulatory receptor in T cells which, upon binding ligand, induces sustained T-cell proliferation and cytokine production when combined with T-cell receptor stimulation. We have identified recurrent mutations in CD28 in PTCLs. Two residues—D124 and T195—were recurrently mutated in 11.3% of cases of AITL and in one case of PTCL, not otherwise specified (PTCL-NOS). Surface plasmon resonance analysis of mutations at these residues with predicted differential partner interactions showed increased affinity for ligand CD86 (residue D124) and increased affinity for intracellular adaptor proteins GRB2 and GADS/GRAP2 (residue T195). Molecular modeling studies on each of these mutations suggested how these mutants result in increased affinities. We found increased transcription of the CD28-responsive genes CD226 and TNFA in cells expressing the T195P mutant in response to CD3 and CD86 co-stimulation and increased downstream activation of NF-κB by both D124V and T195P mutants, suggesting a potential therapeutic target in CD28-mutated PTCLs.
    [Show full text]
  • The Proteomic Landscape of Resting and Activated CD4+ T Cells Reveal Insights Into Cell Differentiation and Function
    International Journal of Molecular Sciences Article The Proteomic Landscape of Resting and Activated CD4+ T Cells Reveal Insights into Cell Differentiation and Function Yashwanth Subbannayya 1 , Markus Haug 1, Sneha M. Pinto 1, Varshasnata Mohanty 2, Hany Zakaria Meås 1, Trude Helen Flo 1, T.S. Keshava Prasad 2 and Richard K. Kandasamy 1,* 1 Centre of Molecular Inflammation Research (CEMIR), Department of Clinical and Molecular Medicine (IKOM), Norwegian University of Science and Technology, 7491 Trondheim, Norway; [email protected] (Y.S.); [email protected] (M.H.); [email protected] (S.M.P.); [email protected] (H.Z.M.); trude.fl[email protected] (T.H.F.) 2 Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore 575018, India; [email protected] (V.M.); [email protected] (T.S.K.P.) * Correspondence: [email protected] Abstract: CD4+ T cells (T helper cells) are cytokine-producing adaptive immune cells that activate or regulate the responses of various immune cells. The activation and functional status of CD4+ T cells is important for adequate responses to pathogen infections but has also been associated with auto-immune disorders and survival in several cancers. In the current study, we carried out a label-free high-resolution FTMS-based proteomic profiling of resting and T cell receptor-activated (72 h) primary human CD4+ T cells from peripheral blood of healthy donors as well as SUP-T1 cells. We identified 5237 proteins, of which significant alterations in the levels of 1119 proteins were observed between resting and activated CD4+ T cells.
    [Show full text]
  • A Novel Senescence-Evasion Mechanism Involving Grap2 And
    Published OnlineFirst May 11, 2010; DOI: 10.1158/0008-5472.CAN-09-3791 Molecular and Cellular Pathobiology Cancer Research A Novel Senescence-Evasion Mechanism Involving Grap2 and Cyclin D Interacting Protein Inactivation by Ras Associated with Diabetes in Cancer Cells under Doxorubicin Treatment Inkyoung Lee1, Seon-Yong Yeom1, Sook-Ja Lee1, Won Ki Kang1,2, and Chaehwa Park1,2 Abstract Ras associated with diabetes (Rad) is a Ras-related GTPase that promotes cell growth by accelerating cell cycle transitions. Rad knockdown induced cell cycle arrest and premature senescence without additional cel- lular stress in multiple cancer cell lines, indicating that Rad expression might be critical for the cell cycle in these cells. To investigate the precise function of Rad in this process, we used human Rad as bait in a yeast two-hybrid screening system and sought Rad-interacting proteins. We identified the Grap2 and cyclin D inter- acting protein (GCIP)/DIP1/CCNDBP1/HHM, a cell cycle–inhibitory molecule, as a binding partner of Rad. Further analyses revealed that Rad binds directly to GCIP in vitro and coimmunoprecipitates with GCIP from cell lysates. Rad translocates GCIP from the nucleus to the cytoplasm, thereby inhibiting the tumor suppressor activity of GCIP, which occurs in the nucleus. Furthermore, in the presence of Rad, GCIP loses its ability to reduce retinoblastoma phosphorylation and inhibit cyclin D1 activity. The function of Rad in transformation is also evidenced by increased telomerase activity and colony formation according to Rad expression level. In vivo tumorigenesis analyses revealed that tumors derived from Rad knockdown cells were significantly smaller than those from control cells (P = 0.0131) and the preestablished tumors are reduced in size after the injection of siRad (P = 0.0064).
    [Show full text]
  • CD8 Co-Receptor Enhances T-Cell Activation Without Any Effect on Initial Attachment
    cells Article CD8 Co-Receptor Enhances T-Cell Activation without Any Effect on Initial Attachment Philippe Robert 1,2,*, Laurent Limozin 1,*, P. Anton van der Merwe 3,* and Pierre Bongrand 1,* 1 Laboratoire Adhesion et Inflammation, UMR INSERM 1067, UMR CNRS 7333, Aix-Marseille Université, Case 937, CEDEX 09, 13288 Marseille, France 2 Assistance Publique–Hôpitaux de Marseille, Lab. Immunologie, Hôpital de la Concception, 13005 Marseille, France 3 Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK * Correspondence: [email protected] (P.R.); [email protected] (L.L.); [email protected] (P.A.v.d.M.); [email protected] (P.B.) Abstract: The scanning of surrounding tissues by T lymphocytes to detect cognate antigens requires high speed, sensitivity and specificity. T-cell receptor (TCR) co-receptors such as CD8 increase detection performance, but the exact mechanism remains incompletely understood. Here, we used a laminar flow chamber to measure at the single molecule level the kinetics of bond formation and rupture between TCR- transfected CD8+ and CD8− Jurkat cells and surfaces coated with five peptide- exposing major histocompatibility antigens (pMHCs) of varying activating power. We also used interference reflection microscopy to image the spreading of these cells dropped on pMHC-exposing surfaces. CD8 did not influence the TCR–pMHC interaction during the first few seconds following cell surface encounter, but it promoted the subsequent spreading responses, suggesting that CD8 was involved in early activation rather than binding. Further, the rate and extent of spreading, but not the lag between contact and spreading initiation, depended on the pMHC.
    [Show full text]
  • Experimental Systems for Measuring HIV Latency and Reactivation
    viruses Review Experimental Systems for Measuring HIV Latency and Reactivation Koh Fujinaga 1,* and Daniele C. Cary 2 1 Division of Rheumatology, Department of Medicine, School of Medicine, University of California, San Francisco, CA 94143-0703, USA 2 Department of Medicine, Microbiology, and Immunology, School of Medicine, University of California, San Francisco, CA 94143-0703, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-415-502-1908 Received: 15 August 2020; Accepted: 5 November 2020; Published: 9 November 2020 Abstract: The final obstacle to achieving a cure to HIV/AIDS is the presence of latent HIV reservoirs scattered throughout the body. Although antiretroviral therapy maintains plasma viral loads below the levels of detection, upon cessation of therapy, the latent reservoir immediately produces infectious progeny viruses. This results in elevated plasma viremia, which leads to clinical progression to AIDS. Thus, if a HIV cure is ever to become a reality, it will be necessary to target and eliminate the latent reservoir. To this end, tremendous effort has been dedicated to locate the viral reservoir, understand the mechanisms contributing to latency, find optimal methods to reactivate HIV, and specifically kill latently infected cells. Although we have not yet identified a therapeutic approach to completely eliminate HIV from patients, these efforts have provided many technological breakthroughs in understanding the underlying mechanisms that regulate HIV latency and reactivation in vitro. In this review, we summarize and compare experimental systems which are frequently used to study HIV latency. While none of these models are a perfect proxy for the complex systems at work in HIV+ patients, each aim to replicate HIV latency in vitro.
    [Show full text]