Positive Natural Selection in the Human Lineage REVIEW
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Association Between Haplotypes and Specific Mutations in Swiss Cystic Fibrosis Families
003 I -3'19Xj9 1/3004-0304903.00/0 PEDIATRIC RESEARCH Vol. 30. No. 4, 199 1 Copyright (5 1991 International Pediatric Research Foundation. Inc. h.i~~rc,d~n U..S .,I Association between Haplotypes and Specific Mutations in Swiss Cystic Fibrosis Families SABINA LIECHTI-GALLATI. NASEEM MALIK, MUALLA ALKAN, MARC0 MAECHLER, MICHAEL MORRIS, FRANCINE THONNEY, FELIX SENNHAUSER. AND HANS MOSER Mrclic.al Gcnctics Unii, Dcy~ur/mo~to/'Pedinfrics (In.vel.~pitol). Universirv of Bun. 3010 Bern. S+t.itzerlancl [S.L.-G.. H. \I./: Dc,[)a~.~n~e/i/c!f Gc~ndics, Urli~~rr:cilj~ C'lli/dr.c,n'.c Ho.sl)ital. 4058 Rct.scl. S~.t'il~er.lr~tlrl/N.iC/., M.A I, 117slitrrcc~of iLlcelicol G'enclic.~,U~ri~~er.eitj~ c?fZuric/z, 8001 Zz~ricIi,Swi~z~rland /.IJLI.Mu.]; 11i.cfil~rle of Medicrcl Genetics, Uni1~wvi11,of Geticvu, Centre M6dical Uniro-situire, I21 1 Gencva 4. S~t~irzerluncl/Mi.Mo.J; Mediccrl Gcnrtic.~L'/li/. Uni~~c~r.sit~~of Lu~l.sc~nne, C'c~nrrc Hospitnlier U~iil~c~~sitaircI.i~ucloi.c.. 101 1 Larl.trrtlne. S~~~itserlanci [F T.];NIICI C/II/C/~CII'SHo.el~;tal. SI. Gallen, S~t.itzerlu~lc//F.S.] ABSTRACT. Cystic fibrosis (CF) is the most common CF is the most common severe autosomal recessive genetic severe autosomal recessive genetic disorder in Caucasian disorder in Caucasian populations. with an incidence of about 1 populations, with an incidence of about 1 in 2000 live in 2000 live births, implying a carrier frequency of about 1 in births, implying a carrier frequency of about 1 in 22. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
The Role of Haplotypes in Candidate Gene Studies
Genetic Epidemiology 27: 321–333 (2004) The Role of Haplotypes in Candidate Gene Studies Andrew G. Clarkn Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York Human geneticists working on systems for which it is possible to make a strong case for a set of candidate genes face the problem of whether it is necessary to consider the variation in those genes as phased haplotypes, or whether the one-SNP- at-a-time approach might perform as well. There are three reasons why the phased haplotype route should be an improvement. First, the protein products of the candidate genes occur in polypeptide chains whose folding and other properties may depend on particular combinations of amino acids. Second, population genetic principles show us that variation in populations is inherently structured into haplotypes. Third, the statistical power of association tests with phased data is likely to be improved because of the reduction in dimension. However, in reality it takes a great deal of extra work to obtain valid haplotype phase information, and inferred phase information may simply compound the errors. In addition, if the causal connection between SNPs and a phenotype is truly driven by just a single SNP, then the haplotype- based approach may perform worse than the one-SNP-at-a-time approach. Here we examine some of the factors that affect haplotype patterns in genes, how haplotypes may be inferred, and how haplotypes have been useful in the context of testing association between candidate genes and complex traits. Genet. Epidemiol. & 2004 Wiley-Liss, Inc. Key words: haplotype inference; haplotype association testing; candidate genes; linkage equilibrium Grant sponsor: NIH; Grant numbers: GM65509, HL072904. -
Physical and Linkage Mapping of Mammary-Derived Expressed Sequence Tags in Cattle
Genomics 83 (2004) 148–152 www.elsevier.com/locate/ygeno Physical and linkage mapping of mammary-derived expressed sequence tags in cattle E.E. Connor,a,* T.S. Sonstegard,a J.W. Keele,b G.L. Bennett,b J.L. Williams,c R. Papworth,c C.P. Van Tassell,a and M.S. Ashwella a U.S. Beltsville Agricultural Research Center, ARS, U.S. Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD 20705, USA b U.S. Meat Animal Research Center, ARS, U.S. Department of Agriculture, P.O. Box 166, Clay Center, NE 68933-0166, USA c Roslin Institute (Edinburgh), Roslin, Midlothian EH25 9PS, Scotland, United Kingdom Received 2 June 2003; accepted 5 July 2003 Abstract This study describes the physical and linkage mapping of 42 gene-associated markers developed from mammary gland-derived expressed sequence tags to the cattle genome. Of the markers, 25 were placed on the USDA reference linkage map and 37 were positioned on the Roslin 3000-rad radiation hybrid (RH) map, with 20 assignments shared between the maps. Although no novel regions of conserved synteny between the cattle and the human genomes were identified, the coverage was extended for bovine chromosomes 3, 7, 15, and 29 compared with previously published comparative maps between human and bovine genomes. Overall, these data improve the resolution of the human–bovine comparative maps and will assist future efforts to integrate bovine RH and linkage map data. Crown Copyright D 2003 Published by Elsevier Inc. All rights reserved. Keywords: RH mapping; Linkage mapping; SNP; Cattle; EST Selection of positional candidate genes controlling eco- pig [4,5], and cattle [6], and serve as a resource for nomically important traits in cattle requires a detailed candidate gene identification. -
Leukocyte-Specific Adaptor Protein Grap2 Interacts with Hematopoietic
Oncogene (2001) 20, 1703 ± 1714 ã 2001 Nature Publishing Group All rights reserved 0950 ± 9232/01 $15.00 www.nature.com/onc Leukocyte-speci®c adaptor protein Grap2 interacts with hematopoietic progenitor kinase 1 (HPK1) to activate JNK signaling pathway in T lymphocytes Wenbin Ma1, Chunzhi Xia1, Pin Ling2, Mengsheng Qiu3, Ying Luo4, Tse-Hua Tan2 and Mingyao Liu*,1 1Department of Medical Biochemistry and Genetics, Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Blvd., Houston, Texas, TX 77030, USA; 2Department of Immunology, Baylor College of Medicine, Houston, Texas, TX 77030, USA; 3Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, Kentucky, KY 40202, USA; 4Shanghai Genomics, Inc., Zhangjiang Hi-Tech Park, Pudong, Shangai 201204, P.R.C. Immune cell-speci®c adaptor proteins create various Introduction combinations of multiprotein complexes and integrate signals from cell surface receptors to the nucleus, Activation of resting T cells through the T-cell antigen modulating the speci®city and selectivity of intracellular receptor triggers a cascade of intracellular signaling signal transduction. Grap2 is a newly identi®ed adaptor events that lead to enhanced gene transcription, protein speci®cally expressed in lymphoid tissues. This cellular dierentiation and proliferation (Cantrell, protein shares 40 ± 50% sequence homology in the SH3 1996; Weiss and Littman, 1994; Chan and Shaw, and the SH2 domain with Grb2 and Grap. However, the 1996; Crabtree and Clipstone, 1994; Wange and Grap2 protein has a unique 120-amino acid glutamine- Samelson, 1996). Although components of the T-cell and proline-rich domain between the SH2 and C- receptor complex have no intrinsic kinase activity, the terminal SH3 domains. -
Haplotype Tagging Reveals Parallel Formation of Hybrid Races in Two Butterfly Species
bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.113688; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Haplotype tagging reveals parallel formation of hybrid races in two butterfly species One-sentence summary: Haplotagging, a novel linked-read sequencing technique that enables whole genome haplotyping in large populations, reveals the formation of a novel hybrid race in parallel hybrid zones of two co-mimicking Heliconius butterfly species through strikingly parallel divergences in their genomes. Short title: Haplotagging reveals parallel formation of hybrid races Keywords: Butterfly, Genomes, Clines, Hybrid zone, [local] adaptation, haplotypes, population genetics, evolution bioRxiv preprint doi: https://doi.org/10.1101/2020.05.25.113688; this version posted May 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Authors: Joana I. Meier1,2,*, Patricio A. Salazar1,3,*, Marek Kučka4,*, Robert William Davies5, Andreea Dréau4, Ismael Aldás6, Olivia Box Power1, Nicola J. Nadeau3, Jon R. Bridle7, Campbell Rolian8, Nicholas H. Barton9, W. Owen McMillan10, Chris D. Jiggins1,10,†, Yingguang Frank Chan4,† Affiliations: 1. Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom 2. St John’s College, University of Cambridge, Cambridge, CB2 1TP, United Kingdom 3. -
Haplotype Inference from Pedigree Data and Population Data
HAPLOTYPE INFERENCE FROM PEDIGREE DATA AND POPULATION DATA by XIN LI Submitted in partial ful¯llment of the requirements For the Degree of Doctor of Philosophy Dissertation Advisor: Jing Li Department of Electrical Engineering and Computer Science CASE WESTERN RESERVE UNIVERSITY January, 2010 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of _____________________________________________________ candidate for the ______________________degree *. (signed)_______________________________________________ (chair of the committee) ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ ________________________________________________ (date) _______________________ *We also certify that written approval has been obtained for any proprietary material contained therein. Table of Contents List of Tables iv List of Figures v Acknowledgments vi Abstract vii Chapter 1. Introduction 1 1.1 Statistical methods . 3 1.2 Rule-based methods . 4 1.2.1 MRHC . 4 1.2.2 ZRHC . 5 Chapter 2. Problem statement and solutions 8 2.1 Large Pedigrees: manipulation of Mendelian constraints . 9 2.2 Families with many markers: dealing with recombinations . 9 2.3 Mixed data: use of population information . 10 Chapter 3. Preliminaries 12 3.1 Mendelian and zero-recombinant constraints . 14 3.2 Locus graphs . 15 3.3 Linear constraints on h variables . 17 Chapter 4. Linear Systems on Mendelian Constraints 19 4.1 Methods to solve the linear systems . 19 4.1.1 Split nodes to break cycles . 20 4.1.2 Detect path constraints from locus graphs . 21 4.1.3 Encode path constraints in disjoint-set structure D . 26 ii 4.2 Analysis of the algorithm on tree pedigrees with complete data 31 4.3 Extension to General Cases . 33 4.3.1 Pedigrees with mating loops . -
(P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds. -
Statistical Genetics – Part I
Statistical Genetics –Part I Lecture 3: Haplotype reconstruction Su‐In Lee, CSE & GS, UW [email protected] 1 Outline Basic concepts Allele, allele frequencies, genotype frequencies Haplotype, haplotype frequency Recombination rate Linkage disequilibrium Haplotype reconstruction Parsimony‐based approach EM‐based approach Next topic Disease association studies 2 1 Alleles Alternative forms of a particular sequence Each allele has a frequency, which is the proportion of chromosomes of that type in the population C, G and -- are alleles …ACTCGGTTGGCCTTAATTCGGCCCGGACTCGGTTGGCCTAAATTCGGCCCGG … …ACTCGGTTGGCCTTAATTCGGCCCGGACTCGGTTGGCCTAAATTCGGCCCGG … …ACCCGGTAGGCCTTAATTCGGCCCGGACCCGGTAGGCCTTAATTCGGCCCGG … …ACCCGGTAGGCCTTAATTCGGCC--GGACCCGGTAGGCCTTAATTCGGCCCGG … …ACCCGGTTGGCCTTAATTCGGCCGGGACCCGGTTGGCCTTAATTCGGCCGGG … …ACCCGGTTGGCCTTAATTCGGCCGGGACCCGGTTGGCCTTAATTCGGCCGGG … single nucleotide polymorphism (SNP) allele frequencies for C, G, -- 3 Allele Frequency Notations For two alleles Usually labeled p and q = 1 –p e.g. p = frequency of C, q = frequency of G For more than 2 alleles Usually labeled pA, pB, pC ... … subscripts A, B and C indicate allele names 4 2 Genotype The pair of alleles carried by an individual If there are n alternative alleles … … there will be n(n+1)/2 possible genotypes In most cases, there are 3 possible genotypes Homozygotes The two alleles are in the same state (e.g. CC, GG, AA) Heterozygotes The two alleles are different (e.g. CG, AC) 5 Genotype Frequencies Since alleles occur in pairs, these -
Inaugural-Dissertation Zur Erlangung Der Doktorwürde Der Naturwissenschaftlich-Mathematischen Gesamtfakultät Der Ruprecht-Kar
Inaugural-Dissertation zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg vorgelegt von Diplom-Biochemiker Stefan Knoth Tag der mündlichen Prüfung: 25.07.2006 Titel der Arbeit: Regulation der Genexpression bei der Erythroiden Differenzierung Gutachter: Prof. Dr. Stefan Wölfl, Universität Heidelberg Prof. Dr. Katharina Pachmann, Universität Jena Prof. Dr. Jürgen Reichling Prof. Dr. Ulrich Hilgenfeldt Zusammenfassung Viele Erkrankungen des blutbildenden Systems, insbesondere Leukämien, haben ihre Ursache in einer Störung der Differenzierungvorgänge, die ausgehend von undifferenzierten Stammzellen des Knochenmarks zu allen Arten von hochspezialisierten Blutzellen führen. Bei der Chronischen Myeloischen Leukämie (CML) im Stadium der Blastenkrise kommt es zu einer unkontrollierten Vermehrung unreifer Blasten. Alle Chronischen Myeloischen Leukämien exprimieren dass Fusionsprotein BCR-ABL welches aus der Translokation t(9;22)(q34;q11) resultiert. BCR-ABL ist eine konstitutiv aktive Proteinkinase und stimuliert die Zellen zu unkontrolliertem Wachstum. Es ist bekannt, dass sich bei transformierten Zellen mit verschiedenen Substanzen wie AraC oder Butyrat die Proliferation unterdrücken und eine weitere Differenzierung induzieren lässt. Daher werden diese Substanzen oder ihre Derivate als Therapeutika eingesetzt bzw. als solche erprobt. Bei CML-Zellen geht man davon aus, dass durch die genannten Chemikalien die Differenzierung in Richtung der erythroiden Reihe stimuliert wird, da verstärkt Hämoglobine synthetisiert werden. Wegen ihrer einfachen Handhabung in Kultur wurden diese Zellsysteme in der Vergangenheit häufig als Modelle zur Untersuchung der erythroiden Differenzierung verwendet. Die therapeutikastimulierte erythroide Differenzierung von CML-Zellen ist also in zweierlei Hinsicht interessant, einerseits aus medizinischer Sicht zur Bewertung der Vorgänge im behandelten Patienten und andererseits hinsichtlich der Eignung dieser Systeme als Modelle zur Erforschung der Erythropoese. -
CD28 Costimulation in Jurkat Cells Signaling Networks Triggered By
Quantitative Analysis of Phosphotyrosine Signaling Networks Triggered by CD3 and CD28 Costimulation in Jurkat Cells This information is current as Ji-Eun Kim and Forest M. White of September 26, 2021. J Immunol 2006; 176:2833-2843; ; doi: 10.4049/jimmunol.176.5.2833 http://www.jimmunol.org/content/176/5/2833 Downloaded from References This article cites 47 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/176/5/2833.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 26, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Quantitative Analysis of Phosphotyrosine Signaling Networks Triggered by CD3 and CD28 Costimulation in Jurkat Cells1 Ji-Eun Kim and Forest M. White2 The mechanism by which stimulation of coreceptors such as CD28 contributes to full activation of TCR signaling pathways has been intensively studied, yet quantitative measurement of costimulation effects on functional TCR signaling networks has been lacking. -
Ubiquitin-Dependent Regulation of the WNT Cargo Protein EVI/WLS Handelt Es Sich Um Meine Eigenständig Erbrachte Leistung
DISSERTATION submitted to the Combined Faculty of Natural Sciences and Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Lucie Magdalena Wolf, M.Sc. born in Nuremberg, Germany Date of oral examination: 2nd February 2021 Ubiquitin-dependent regulation of the WNT cargo protein EVI/WLS Referees: Prof. Dr. Michael Boutros apl. Prof. Dr. Viktor Umansky If you don’t think you might, you won’t. Terry Pratchett This work was accomplished from August 2015 to November 2020 under the supervision of Prof. Dr. Michael Boutros in the Division of Signalling and Functional Genomics at the German Cancer Research Center (DKFZ), Heidelberg, Germany. Contents Contents ......................................................................................................................... ix 1 Abstract ....................................................................................................................xiii 1 Zusammenfassung .................................................................................................... xv 2 Introduction ................................................................................................................ 1 2.1 The WNT signalling pathways and cancer ........................................................................ 1 2.1.1 Intercellular communication ........................................................................................ 1 2.1.2 WNT ligands are conserved morphogens .................................................................