This Electronic Thesis Or Dissertation Has Been Downloaded from Explore Bristol Research

Total Page:16

File Type:pdf, Size:1020Kb

This Electronic Thesis Or Dissertation Has Been Downloaded from Explore Bristol Research This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Marcolino De Assis Junior, Eudmar Title: The regulation of PRH/HHEX by transforming growth factor General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. The regulation of PRH/HHEX by transforming growth factor β By Eudmar Marcolino de Assis Junior A thesis submitted to the University of Bristol, School of Biochemistry, for the degree of Doctor of Philosophy Word count: 56,442 ABSTRACT The transcription factor PRH/HHEX (Proline-Rich Homeodomain/Haematopoietically Expressed Homeobox) controls cell proliferation, cell differentiation and cell migration/invasion in a diverse range of cell types. Here I show that the gene encoding PRH is deleted in around 4% of sequenced samples from patients with prostate cancer. Additionally, I show that there is increased CpG DNA methylation at this gene in prostate cancer samples compared to samples from normal prostate and that PRH mRNA levels are reduced in prostate cancer. Using immunohistochemistry to stain 96 samples of prostate neoplasia, I show that PRH expression is negatively correlated to tumour differentiation in prostate cancer. Recent published work has shown that the down-regulation of PRH expression in breast and prostate cancer cells results in increased cell proliferation and increased cancer cell invasion. Moreover, PRH inhibits breast and prostate cancer cell migration and invasion in part at least by activating the transcription of Endoglin, a Transforming Growth Factor β (TGF-β) co-receptor. Here I show that the treatment of immortalised prostate epithelial (PNT2-C2) cells and prostate adenocarcinoma (PC3) cells with TGF-β increases cell migration and induces an epithelial to mesenchymal transition (EMT), with up-regulation of the EMT transcription factor Snail and down-regulation of the epithelial marker E-Cadherin. TGF-β treatment down-regulates the expression of PRH/HHEX in prostate cell lines at both the protein and mRNA level. Moreover, chromatin immunoprecipitation (ChIP) experiments show that the regulation of PRH/HHEX by TGF-β may be via the direct binding of the TGF-β effector pSmad3 at the PRH promoter. I also investigate the effects of PRH over-expression on PC3 cells. PRH expression in these cells re-activates the expression of E-cadherin, reduces the migratory ability of these cells and inhibits cell proliferation. PRH over-expression also down-regulates the expression of multiple genes involved in the TGF-β signalling pathway including TGFB2 and TGFBR2. ChIP shows that PRH binds to both the TGFB2 and TGFBR2 gene bodies, suggesting a direct effect of PRH on the expression of these genes. Prostate cancer cells are exposed to TGF-β from multiple sources in vivo and blood platelets were tested as a possible source of TGF- β using this model. Platelet treatment was able to increase cell migration, trigger EMT and down-regulate PRH expression in a similar way to TGF-β treatment. Platelets treatment resulted in the up-regulation of pSmad3 and the effect of platelets on cell migration were abolished when TGF-β signalling was blocked. In summary, the work described in this Thesis shows that TGF-β increases prostate cell migration in part at least by the down-regulation of PRH expression. PRH up- regulates E-cadherin expression and down-regulates cell migration suggesting that TGF-β alters E-cadherin levels and increases cell migration via its effects on PRH. Since PRH also regulates several genes important in TGF-β signalling this creates a feedback loop that enables a more precise control of cell behaviour. Changes in PRH levels or activity are likely to disrupt this control mechanism and to contribute to tumour progression. Acknowledgements I would like to say thank you, To mother, Sandra, for the unconditional love and support, without her I would not be here. To my family, especially my father and my siblings, Emanuel and Cinthya for the love and patience, I would not have the strength to carry on without them. To my supervisor, Prof. Kevin Gaston, for the guidance, patience, support and wisdom for these past four years. I learned so much from you I cannot thank you enough. To Dr. Sheela Jayaraman and her group, especially Dr. Philip Kitchen, who welcomed me into their group to learn new techniques that were essential to my thesis. To the D40 laboratory, you were an amazing support network, and were always there when I needed. I learned a lot from you. To my friends, Gabriel, Grace, Caitriona, Emma, Fruzsina, Lucy, Gemma, Jack, Alex, Anisha, Adriene, Jenifer, Gabriella, Emmanuelle, David and Andrew. You were like my family away from home. You love me and helped me when thing got very difficult. I truly love you all. Specially to Andrew and Adriene that helped me edit this thesis, I do not think I could had done without your help. To my friend in Brazil, Bruno, Gleyciane, Camila, Pedro, Debora, Evelin, Thayanne and my lovely god son Guilherme, who supported me coming to the UK, and who are there missing me and wishing great things for my future. I feel you close to my heart. To my previous supervisor, Prof. Roberto Cesar, thanks for introducing me to science and being a mentor to me. To the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) through the Sciences Without Borders program, for the financial support for the project and for the scholarship. This is dedicated to my mother, whom is my everything. "It is our choices that show what we truly are, far more than our abilities." Albus Dumbledore AUTHOR’S DECLARATION I declare that the work in this dissertation was carried out in accordance with the requirements of the University‘s regulations and Code of Practice for Research Degree Programmes and that it has not been submitted for any other academic award. Except where indicated by specific reference in the text, the work is the candidate’s own work. Work done in collaboration with, or with the assistance of, others, is indicated as such. Any views expressed in the dissertation are those of the author. SIGNED:…………………………….DATE:……………………… Table of contents Chapter 1: Introduction ....................................................................................... 18 Cancer .................................................................................................................. 19 Hallmarks of cancer .......................................................................................... 20 Epithelial to mesenchymal transition..................................................................... 31 Epithelial tissue ................................................................................................. 31 EMT .................................................................................................................. 35 The prostate gland ................................................................................................ 44 Morphology and physiology .............................................................................. 44 Prostate cancer ................................................................................................. 46 Transforming growth factor β ................................................................................ 56 Platelets ................................................................................................................ 60 Proline Rich Homeodomain .................................................................................. 62 Aims ...................................................................................................................... 66 Chapter 2: Methodology ...................................................................................... 67 List of chemicals ................................................................................................... 68 Buffers .................................................................................................................. 71 Plasmids, primers and antibodies ......................................................................... 73 Experimental protocols ......................................................................................... 77 Plasmid amplification ........................................................................................ 77 Lentivirus production ........................................................................................
Recommended publications
  • Mutations Affecting Cell Fates and Cellular Rearrangements During Gastrulation in Zebrafish
    Development 123, 67-80 67 Printed in Great Britain © The Company of Biologists Limited 1996 DEV3335 Mutations affecting cell fates and cellular rearrangements during gastrulation in zebrafish Lilianna Solnica-Krezel†, Derek L. Stemple, Eliza Mountcastle-Shah, Zehava Rangini‡, Stephan C. F. Neuhauss, Jarema Malicki, Alexander F. Schier§, Didier Y. R. Stainier¶, Fried Zwartkruis**, Salim Abdelilah and Wolfgang Driever* Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, 13th Street, Bldg. 149, Charlestown, MA 02129, USA †Present address: Department of Molecular Biology, Vanderbilt University, Box 1820, Station B, Nashville, TN 37235, USA ‡Present address: Department of Oncology, Sharett Institute, Hadassah Hospital, Jerusalem 91120, Israel §Present address: Skirball Institute of Biomolecular Medicine, NYU Medical Center, 550 First Avenue, New York, NY 10016, USA ¶Present address: School of Medicine, Department of Biochemistry and Biophysics, UCSF, San Francisco, CA 94143-0554, USA **Present address: Laboratory for Physiological Chemistry, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands *Author for correspondence (e-mail: [email protected]) SUMMARY One of the major challenges of developmental biology is mutations in these two groups identify genes necessary for understanding the inductive and morphogenetic processes the formation, maintenance or function of the dorsal that shape the vertebrate embryo. In a large-scale genetic organizer and the ventral signaling pathway, respectively. screen for zygotic effect, embryonic lethal mutations in Mutations in the third group affect primarily cellular zebrafish we have identified 25 mutations that affect spec- rearrangements during gastrulation and have complex ification of cell fates and/or cellular rearrangements during effects on cell fates in the embryo.
    [Show full text]
  • Hop Is an Unusual Homeobox Gene That Modulates Cardiac Development
    Cell, Vol. 110, 713–723, September 20, 2002, Copyright 2002 by Cell Press Hop Is an Unusual Homeobox Gene that Modulates Cardiac Development Fabian Chen,1 Hyun Kook,1 Rita Milewski,1 tion and are arranged in the genome in the order in Aaron D. Gitler,1,2 Min Min Lu,1 Jun Li,1 which they are expressed along the axis of the embryo. Ronniel Nazarian,1 Robert Schnepp,1 The “Hox code” represents an important paradigm for Kuangyu Jen,1 Christine Biben,3 Greg Runke,2 the definition of positional identity during embryogene- Joel P. Mackay,5 Jiri Novotny,3 sis in which the specific pattern of overlapping Hox gene Robert J. Schwartz,6 Richard P. Harvey,3,4 expression defines cellular identity. A plethora of non- Mary C. Mullins,2 and Jonathan A. Epstein1,2,7 clustered Hox genes have been identified that are scat- 1Department of Medicine tered throughout the genome and play additional roles 2 Department of Cell and Developmental Biology in cell fate specification in all organs and tissues of the University of Pennsylvania Health System body. Philadelphia, Pennsylvania 19104 Hox genes are defined by the presence of a 60 amino 3 The Victor Chang Cardiac Research Institute acid domain that mediates DNA binding. This domain Darlinghurst, NSW 2010 has been analyzed by NMR spectroscopy and X-ray Australia crystallography either free or in association with DNA 4 Faculties of Medicine and Life Sciences (Kissinger et al., 1990; Qian et al., 1989; Wolberger et University of New South Wales al., 1991). The 60 amino acid homeodomain is capable Kensington, NSW 2051 of adopting a fixed structure in solution composed of Australia three ␣ helices in which the second and third helices 5 School of Molecular and Microbial Biosciences form a helix-turn-helix motif.
    [Show full text]
  • Pig Antibodies
    Pig Antibodies gene_name sku Entry_Name Protein_Names Organism Length Identity CDX‐2 ARP31476_P050 D0V4H7_PIG Caudal type homeobox 2 (Fragment) Sus scrofa (Pig) 147 100.00% CDX‐2 ARP31476_P050 A7MAE3_PIG Caudal type homeobox transcription factor 2 (Fragment) Sus scrofa (Pig) 75 100.00% Tnnt3 ARP51286_P050 Q75NH3_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 271 85.00% Tnnt3 ARP51286_P050 Q75NH2_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 266 85.00% Tnnt3 ARP51286_P050 Q75NH1_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 260 85.00% Tnnt3 ARP51286_P050 Q75NH0_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 250 85.00% Tnnt3 ARP51286_P050 Q75NG8_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 266 85.00% Tnnt3 ARP51286_P050 Q75NG7_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 260 85.00% Tnnt3 ARP51286_P050 Q75NG6_PIG Troponin T fast skeletal muscle type Sus scrofa (Pig) 250 85.00% Tnnt3 ARP51286_P050 TNNT3_PIG Troponin T, fast skeletal muscle (TnTf) Sus scrofa (Pig) 271 85.00% ORF Names:PANDA_000462 EMBL EFB13877.1OrganismAiluropod High mobility group protein B2 (High mobility group protein a melanoleuca (Giant panda) ARP31939_P050 HMGB2_PIG 2) (HMG‐2) Sus scrofa (Pig) 210 100.00% Agpat5 ARP47429_P050 B8XTR3_PIG 1‐acylglycerol‐3‐phosphate O‐acyltransferase 5 Sus scrofa (Pig) 365 85.00% irf9 ARP31200_P050 Q29390_PIG Transcriptional regulator ISGF3 gamma subunit (Fragment) Sus scrofa (Pig) 57 100.00% irf9 ARP31200_P050 Q0GFA1_PIG Interferon regulatory factor 9 Sus scrofa (Pig)
    [Show full text]
  • Teri Melese, Ph.D
    Prepared: 02/015 University of California, San Diego Curriculum Vitae Name: Teri Melese, Ph.D Current Position: UCSD Assistant Vice Chancellor, Industry Research Alliances Adjunct Associate Professor, Department of Medicine and Rady School of Management Last Position Held: Adjunct Associate Professor UCSF Department of Medicine, School of Medicine, 2005-2012 UCSF Dean’s Office: Director of Business Strategy and Development, School of Medicine UCSF Helen Diller Comprehensive Cancer Center Executive Committee: Associate Director for Strategic Alliances Address: University of California, San Diego Office of Research Affairs 9500 Gilman Drive #0910 La Jolla, CA 92093-0043 Tel: (858) 822-5247 mobile: (408) 373-3651 [email protected] Education: 1975-77 University of California, Berkeley A.B. Neurobiology/ Literature 1977-82 University of California, San Francisco Ph.D. Regents Fellow 1982-86 University of California, Los Angeles Postdoctoral Fellow Biochemistry 1986-87 University of California, Los Angeles American Cancer Sr. Research Fellow Molecular Biology Principal Positions Held: 1988-92 Columbia University, New York Assistant Professor Biological Sciences 1993-97 Columbia University, New York Associate Professor Biological Sciences 1997-99 Columbia University, New York Adjunct Associate Professor Biological Sciences 1997-01 Iconix Pharmaceuticals Mountain View Founding Member & Director Chemical Genomics 2001-2012 University of California, San Francisco Adjunct Full Professor Step II Medicine Present University of California, San Diego
    [Show full text]
  • Molekulare Untersuchungen Zur Musterbildung Im Einfachen Vielzeller Hydra
    Molekulare Untersuchungen zur Musterbildung im einfachen Vielzeller Hydra Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Christian-Albrechts-Universität zu Kiel vorgelegt von René Augustin Kiel 2003 Referent/in: ...........................................Prof. Dr. T. C. G. Bosch....... Korreferent/in: .......................................Prof. Dr. M. Leippe............... Tag der mündlichen Prüfung: ..............10.02.2004............................. Zum Druck genehmigt: Kiel, ................10.02.2004............................. Teile der vorliegenden Arbeit wurden bereits veröffentlicht oder zur Publikation vorbereitet: Fedders, H. and Augustin, R., Bosch, T.C.G. 2003. A Dickkopf-3 related gene is expressed in differentiating nematocytes in the basal metazoan Hydra. Dev. Genes Evol.: im Druck INHALTSVERZEICHNIS Inhaltsverzeichnis ABKÜRZUNGEN: 9 MOLEKULARE UNTERSUCHUNGEN ZUR MUSTERBILDUNG IM EINFACHEN VIELZELLER HYDRA 13 1. EINLEITUNG 13 1.1 Hydra als Modellorganismus der Entwicklungsbiologie 13 1.1.1 Systematik, Morphologie und Biologie 13 1.1.2 Die interstitielle Zelllinie und die Differenzierung der Nesselzellen 17 1.2 Muster- und Achsenbildung in Hydra 18 1.2.1 Musterbildung in Hydra nach Gierer & Meinhardt 19 1.2.2 Signalmoleküle in Hydra 21 1.2.3 Regulatorische Gene in Hydra 26 1.3 Zielsetzung der Arbeit 31 2. ERGEBNISSE 32 2.1 Identifizierung von HEADY Zielgenen 32 2.1.1 Ein Dickkopf homologes Protein in Hydra 32 2.1.2 Suche nach HEADY – Zielgenen mittels SSH 42 2.2 Charakterisierung der Vorgänge bei Regeneration und Knospung in Hydra 59 2.2.1 Hybridisierung /Vergleich von Filtern mit Klonen einer normalisierten cDNA Bank 59 2.2.2 Identifizierung von Unterschieden in der Genexpression bei Knospung und Regeneration in Hydra durch SSH und cDNA Macroarray Hybridisierung 67 3.
    [Show full text]
  • Molecular Chaperones in Cancer
    CNIO - SPANISH”LA CAIXA”NATIONAL CANCER FOUNDATION RESEARCH CENTRE FRONTIERS MEETINGS 2017 Madrid 2nd- 4th May 2017 MOLECULAR CHAPERONES IN CANCER IN MEMORY OF SUSAN LINDQUIST Organisers Nabil Djouder Spanish National Cancer Research Centre (CNIO), Madrid, Spain Wilhelm Krek Institute for Molecular Health Sciences Zurich, Switzerland Paul Workman The Institute of Cancer Research London, UK Xiaohong Helena Yang Cancer Cell Cambridge, US EXCELENCIA MINISTERIO DE ECONOMÍA, INDUSTRIA SEVERO Y COMPETITIVIDAD OCHOA CNIO - SPANISH”LA CAIXA”NATIONAL CANCER FOUNDATION RESEARCH CENTRE FRONTIERS MEETINGS 2017 Madrid 2nd- 4th May 2017 MOLECULAR CHAPERONES IN CANCER CNIO - SPANISH”LA CAIXA”NATIONAL CANCER FOUNDATION RESEARCH CENTRE FRONTIERS MEETINGS 2017 Madrid 2nd- 4th May 2017 MOLECULAR CHAPERONES IN CANCER Summary 07 PROGRAMME 19 KEYNOTE LECTURE 23 SESSIONS 23 S #1 PROTEIN QUALITY CONTROL 31 S #2 FOLDING, MISFOLDING AND AGGREGATION 41 S #3 STRESS MECHANISMS IN CANCER 49 S #4 CHAPERONES IN CANCER 59 S #5 TARGETING CHAPERONES: CHAPERONOTHERAPY 67 CLOSING LECTURE 69 ORGANISERS AND SPEAKERS’ BIOGRAPHIES 99 POSTER SESSIONS 119 Previous CNIO Frontiers Meetings and CNIO Cancer Conferences 05 CNIO - SPANISH”LA CAIXA”NATIONAL CANCER FOUNDATION RESEARCH CENTRE FRONTIERS MEETINGS 2017 Madrid 2nd- 4th May 2017 MOLECULAR CHAPERONES IN CANCER PROGRAMME 07 PROGRAMME Madrid 2nd- 4th May 2017 MOLECULAR CHAPERONES IN CANCER Venue: Spanish National Cancer Research Centre – CNIO Auditorium, Madrid, Spain Chairpersons and organizing committee: Nabil Djouder, Spanish National Cancer Research Centre, Madrid, Spain Wilhelm Krek, Institute for Molecular Health Sciences, ETH, Zurich, Switzerland Paul Workman, The Institute of Cancer Research, London, UK Xiaohong Helena Yang, Cancer Cell, Cambridge, USA Rationale: Molecular chaperones play key roles in the folding, stability and activity of proteins in normal cell homeostasis and disease pa- thology, including cancer.
    [Show full text]
  • New Frontiers
    PROGRAM & BOOK OF ABSTRACTS JUNE 13-16, 2009 • PORTLAND, OREGON New Frontiers Children’s Tumor FoundaTION 95 PINE STREET, 16TH FLOOR, NEW YORK, NY 10005 | WWW.CTF.ORG | 212.344.6633 Dear NF Conference Attendees: On behalf of the Children’s Tumor Foundation, welcome to the 2009 NF Conference: New Frontiers. The theme references the meeting content and also Portland itself, historically a gateway port of the Pacific North West. The urban setting offers a ‘new frontier’ in comparison to the mountain and beach locales of past NF Conferences, but one which we feel you will enjoy. Portland is an easy-going city offering history, beauty and relaxation – features encapsulated in our host hotel The Nines, itself a part of the tapestry of Portland history, renovated from the former landmark Meier & Frank department store. The last year has seen major NF research advances. The dovetailing of discovery, translation and the clinic can be seen throughout the meeting. We are firmly in the age of NF clinical trials and proud that the Children’s Tumor Foundation is part of this advance: in 2009 we funded our first two pilot Clinical Trial Awards. We continue to build a pipeline of candidate NF drug therapies through the Foundation’s multi-center NF Preclinical Consortium and the seed grant Drug Discovery Initiative (DDI) program. Through these translational initiatives we are cultivating NF collaborations with the biotechnology and pharmaceutical sector, a critical factor in moving NF research forward to the clinic. At the same time, basic research advances continue, such as in the unraveling of schwannomatosis.
    [Show full text]
  • PAX Genes in Childhood Oncogenesis: Developmental Biology Gone Awry?
    Oncogene (2015) 34, 2681–2689 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc REVIEW PAX genes in childhood oncogenesis: developmental biology gone awry? P Mahajan1, PJ Leavey1 and RL Galindo1,2,3 Childhood solid tumors often arise from embryonal-like cells, which are distinct from the epithelial cancers observed in adults, and etiologically can be considered as ‘developmental patterning gone awry’. Paired-box (PAX) genes encode a family of evolutionarily conserved transcription factors that are important regulators of cell lineage specification, migration and tissue patterning. PAX loss-of-function mutations are well known to cause potent developmental phenotypes in animal models and underlie genetic disease in humans, whereas dysregulation and/or genetic modification of PAX genes have been shown to function as critical triggers for human tumorigenesis. Consequently, exploring PAX-related pathobiology generates insights into both normal developmental biology and key molecular mechanisms that underlie pediatric cancer, which are the topics of this review. Oncogene (2015) 34, 2681–2689; doi:10.1038/onc.2014.209; published online 21 July 2014 INTRODUCTION developmental mechanisms and PAX genes in medical (adult) The developmental mechanisms necessary to generate a fully oncology. patterned, complex organism from a nascent embryo are precise. Undifferentiated primordia undergo a vast array of cell lineage specification, migration and patterning, and differentiate into an STRUCTURAL MOTIFS DEFINE THE PAX FAMILY SUBGROUPS ensemble of interdependent connective, muscle, nervous and The mammalian PAX family of transcription factors is comprised of epithelial tissues. Dysregulation of these precise developmental nine members that function as ‘master regulators’ of organo- programs cause various diseases/disorders, including—and genesis4 (Figure 1).
    [Show full text]
  • Regulation of Ets Function by Protein ± Protein Interactions
    Oncogene (2000) 19, 6514 ± 6523 ã 2000 Macmillan Publishers Ltd All rights reserved 0950 ± 9232/00 $15.00 www.nature.com/onc Regulation of Ets function by protein ± protein interactions Runzhao Li*,1,2,4, Huiping Pei1,4 and Dennis K Watson1,3,4 1Center for Molecular and Structural Biology, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA; 2Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA; 3Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA; 4Hollings Cancer Center, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA Ets proteins are a family of transcription factors that biological processes. However, many physical interac- share an 85 amino acid conserved DNA binding domain, tions cannot be demonstrated by direct binding assays the ETS domain. Over 25 mammalian Ets family due to the weak anity, transient binding or absence members control important biological processes, includ- of required cofactors, such as DNA or a third partner. ing cellular proliferation, dierentiation, lymphocyte In recent years, based on the improved technologies, development and activation, transformation and apopto- such as two hybrid interactive screens, many novel sis by recognizing the GGA core motif in the promoter proteins have been identi®ed as Ets family partners. or enhancer of their target genes. Protein ± protein Evaluation of the physical interaction and correlation interactions regulates DNA binding, subcellular localiza- with function has greatly advanced our knowledge on tion, target gene selection and transcriptional activity of regulation of eukaryotic gene transcription. The net- Ets proteins.
    [Show full text]
  • Open Sarathy Danyas Schreyerthesis Final.Pdf
    THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF PHYSICS THE EFFECT OF EXTERNAL SIGNALS AND COMBINATORIAL INTERVENTIONS IN A NETWORK MODEL OF THE EPITHELIAL-TO-MESENCHYMAL TRANSITION DANYAS SARATHY SPRING 2017 A thesis submitted in partial fulfillment of the requirements for a baccalaureate degree in Physics with honors in Physics Reviewed and approved* by the following: Dr. Reka Albert Distinguished Professor of Physics and Biology Thesis Supervisor Dr. Richard Robinett Professor of Physics Honors Adviser * Signatures are on file in the Schreyer Honors College. i ABSTRACT The epithelial-mesenchymal transition (EMT) is a well-studied cell fate that appears in both physiological processes (embryonic development and wound healing), and in pathologically detrimental processes like cancer. This thesis aimed to study the effect of combinatorial interventions in a network model of EMT postulated by Steinway et al. These researchers, having developed a dynamic model of the intracellular signaling network, studied the effect of internal node knockouts and interventions—the goal of this thesis, however, was to study the effect of external signals and source nodes, and to also combine constitutive activation of source nodes with internal node knockouts. It was found that every source node in EMT—HGF, PDGF, IGF1, EGF, FGR, goosecoid, and hypoxia—drove the transition when constitutively activated through an asynchronous update method using BooleanNet. These nodes varied in their rate of achieving full cell turnover, and hypoxia was the fastest state that induced EMT. When Hypoxia was combined with three internal node knockouts—SMAD, TGFβ, and MiR200—three different patterns emerged. The node knockouts either prevented the transition from occurring altogether, did not affect the transition, or slowed down the rate at which the system reached the mesenchymal attractor.
    [Show full text]
  • Novel Mechanisms of Transcriptional Repression by the Paired- Like Homeodomain Transcription Factor Goosecoid
    Novel mechanisms of transcriptional repression by the paired- like homeodomain transcription factor Goosecoid. by Luisa Izzi A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Medical Biophysics University of Toronto © Copyright by Luisa Izzi (2008) Novel mechanisms of transcriptional repression by the paired-like homeodomain transcription factor Goosecoid Doctor of Philosophy, 2008 Luisa Izzi Department of Medical Biophysics, University of Toronto Abstract Gastrulation is the process by which the three germ layers are generated during vertebrate development. Nodal ligands, which form a subgroup of the Transforming Growth Factor β (TGFβ) superfamily, regulate the expression several transcription factors implicated in gastrulation. Among these are the paired-like homeodomain transcription factors Goosecoid (Gsc) and Mixl1. At the molecular level, Gsc has been described to function as a transcriptional repressor by directly binding to paired homedomain binding sites on target promoters. Here, I describe a novel mechanism of transcriptional repression by Gsc. Using a molecular and embryological approach, I demonstrate that the forkhead transcription factor Foxh1, a major transducer of Nodal signaling, associates with Gsc which in turn recruits histone deacetylases to negatively regulate Mixl1 expression during early mouse development. Post-translational modification of transcription factors by SUMO proteins represents an important mechanism through which their activity is controlled. Here, I also demonstrate that Gsc is sumoylated in mammalian cells by members of the PIAS family of proteins and this modification potentiates the repressive activity of Gsc on direct targets such as the Xbra and Gsc promoters, but not on indirect targets such as Mixl1.
    [Show full text]
  • LONG-TERM MEMBERS 25+ Years of Membership
    LONG-TERM MEMBERS 25+ Years of Membership Stuart A. Aaronson, MD Stephen P. Ackland, MBBS Carol Aghajanian, MD Steven A. Akman, MD Icahn School of Medicine at Mount Sinai University of Newcastle Memorial Sloan Kettering Cancer Center Roper St. Francis Healthcare United States Australia United States United States Active Member Active Member Active Member Active Member 38 Years of Membership 33 Years of Membership 27 Years of Membership 35 Years of Membership Cory Abate-Shen, PhD Edward M. Acton, PhD Irina U. Agoulnik, PhD Emmanuel T. Akporiaye, PhD Columbia University Irving Medical United States Florida International University Verana Therapeutics Center Emeritus Member United States United States United States 42 Years of Membership Active Member Emeritus Member Active Member 25 Years of Membership 31 Years of Membership 26 Years of Membership David J. Adams, PhD Duke University Medical Center Imran Ahmad, PhD Ala-Eddin Al Moustafa, PhD James L. Abbruzzese, MD United States Northwestern Medicine McGill University Duke University Emeritus Member United States Canada United States 32 Years of Membership Active Member Active Member Active Member 25 Years of Membership 26 Years of Membership 32 Years of Membership Gregory P. Adams, PhD Elucida Oncology Nihal Ahmad, PhD Abdul Al Saadi, PhD Ehtesham A. Abdi, MBBS United States Univ. of Wisconsin Madison Sch. of Med. William Beaumont Hospital The Tweed Hospital Active Member & Public Health United States Australia 29 Years of Membership United States Emeritus Member Emeritus Member Active Member 52 Years of Membership 33 Years of Membership Lucile L. Adams-Campbell, PhD 25 Years of Membership Georgetown Lombardi Comprehensive Suresh K.
    [Show full text]