University of Groningen Polymerization of Hyperbrached

Total Page:16

File Type:pdf, Size:1020Kb

University of Groningen Polymerization of Hyperbrached University of Groningen Polymerization of hyperbrached polysaccharides by combined biocatalysis van der Vlist, Jeroen IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2011 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): van der Vlist, J. (2011). Polymerization of hyperbrached polysaccharides by combined biocatalysis. s.n. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 07-10-2021 Polymerization of hyperbranched polysaccharides by combined biocatalysis Jeroen van der Vlist Polymerization of hyperbranched polysaccharides by combined biocatalysis Jeroen van der Vlist PhD thesis University of Groningen The Netherlands January 2011 Printed by Ipskamp B.V. Enschede,The Netherlands Cover photo: branched vein system of a leaf (Bert van 't Hul / stock.xchng) ISSN 1570‐1530 ISBN 978‐90‐367‐4729‐5 (print) ISBN 978‐90‐367‐4730‐1 (electronic) Zernike Institute PhD thesis series 2011‐05 RIJKSUNIVERSITEIT GRONINGEN Polymerization of hyperbranched polysaccharides by combined biocatalysis Proefschrift ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 28 januari 2011 om 16.15 uur door Jeroen van der Vlist geboren op 25 oktober 1978 te Gouda Promotor : Prof. dr. K. Loos Beoordelingscommissie : Prof. dr. L. Dijkhuizen Prof. dr. P. Mischnick Prof. dr. A. Gandini TABLE OF CONTENTS CHAPTER 1 7 Introduction CHAPTER 2 35 Synthesis of hyperbranched polysaccharides CHAPTER 3 65 Hyperbranched polyglucan brushes CHAPTER 4 87 Hyperbranched polysaccharide sugar balls CHAPTER 5 111 Hyperbranched polyglucan diblock copolymers SUMMARY 126 SAMENVATTING 129 DANKWOORD 133 CHAPTER 1 General introduction CHAPTER 1 1.1 CARBOHYDRATE CHEMISTRY 1.1.1 Glucose based carbohydrates Carbohydrates or saccharides are one of the four major classes of biomolecules. Proteins, nucleic acids and lipids are the other three. Carbohydrates consist of an aldehyde group (aldoses) or ketone group (ketoses) with multiple hydroxy groups. The simplest carbohydrates are the monosaccharides that exist, due to a stereo center, in two configurations (D and L). Aldoses with six carbon atoms (hexoses) have even four stereo centers resulting in 16 stereoisomers, D‐glucose being one of them. FIGURE 1.1: Fischer projections of 8 of the 16 hexoses (only the D stereoisomers are shown). Although a linear structure of glucose occurs, the ring structure is the predominant configuration in solution (>99%). The aldehyde group can react intramolecular with the C5 hydroxy group to form a pyranose ring. An additional stereo center is created at the C1 atom with this cyclization and as a result, there are two different ring structures. In the configuration, the hydroxyl group attached to C1 is axial positioned while in the configuration the hydroxyl group is equatorially positioned. The configuration is energetically favoured and the ratio of : anomers is 36:63 in solution1. 8 GENERAL INTRODUCTION FIGURE 1.2: The open‐chain form of D‐glucose and the cyclic and configurations. The carbon atoms are numbered from 1 to 6, starting from the aldehyde group. 1.1.2 Polysaccharides Polysaccharides are monosaccharides linked together by glycosidic bonds. The notation used to distinguish different glycosidic bonds consists of the notation or (the 2 possible anomers of cyclic glucose) followed by the carbon numbers which actually join the monosaccharides between brackets. For example, the linkage that connects the two D‐glucose residues of the disaccharide maltose, which are joined at the C1 and C4 position, is written as: (1→4). Besides the multiple linking positions and linking types, monosaccharides can have different ring sizes, various stereoisomers and can carry different substituents. Hence, it is not difficult to imagine that there is a huge variety of polysaccharides. Some abundant homopolysaccharides constructed from D‐glucose are summarized below. Dextran consists of (1→6) linked D‐glucose residues and is the energy storage polysaccharide of yeasts and bacteria. Branching can occur at (1→2), (1→3) and (1→4) depending on the source2. Dextran is highly soluble in water, lacks nonspecific cell binding and resists protein adsorption, which makes dextran an interesting biomaterial for implantable purposes3. 9 CHAPTER 1 FIGURE 1.3: Linear chain of dextran, (1→6) linkage. Amylose is an (1→4) linked glucan and is the linear component of starch. Although the composition of starch from each plant is unique, most starches contain 20 to 25 % amylose. The degree of polymerization of amylose varies also with the origin. Amylose from potato or tapioca starch has a DP of 1000 to 6000 while amylose from maize or wheat amylose has a degree of polymerization varying between 200 and 12004. Due to intramolecular hydrogen bonding of the hydroxyl groups, amylose tends to wind up in a left‐handed double stranded helix5. This helical conformation, with a relatively hydrophobic inner part, can be filled with water molecules but also with more hydrophobic compounds, such as fatty acids6. FIGURE 1.4: Structure of amylose chain, (1→4) linkage. Cellulose is one of the most abundant biopolymers in the biosphere7. Almost half of the cell wall material of wood constitutes of cellulose but it is also produced by algae, bacteria and prokaryotes8. Cellulose is built up from (1→4) linked D‐glucose residues and is the isomer of amylose. In nature, most cellulose is synthesized as crystalline microfibrils. Within these microfibrils the cellulose chains are parallel aligned and forms intermolecular hydrogen bonding between neighbouring chains. The degree of polymerization varies by origin. Cotton and other plant fibers have for example DP values in the 800 – 10000 range while wood cellulose has a DP in the range of 300 to 17009. 10 GENERAL INTRODUCTION FIGURE 1.5: Structure of cellulose, (1→4) linkage. Chitin like cellulose is a (1→4) linked polyglucan but has an acetamido attached to C2 instead of a hydroxy group. Exoskeletons of insects are constructed from chitin and it is present in the cell walls of most fungi and many algae. Chitin is the second most abundant polysaccharide. Chitin itself is a hydrophobic polymer and insoluble in aqueous solutions at neutral pH. However, the (often incomplete) N‐deactetylation of chitin increases the water solubility and provides primary amines for further chemical modification10. The (partly) N‐deacetylated analogue of chitin is known as chitosan and has been investigated for different biomedical applications11. FIGURE 1.6: Structure of chitin, (1→4) linkage. Amylopectin and glycogen are branched (1→4) linked D‐glucose polysaccharides with a DP in the range of 60 000 and 6 000 00012,13. Branching occurs at the (1→6) position. Amylopectin is the branched energy storage polymer of plants while glycogen is the energy storage polymer of mammals. Glycogen has typically branch lengths of 10 D‐glucose units while amylopectin has branch lengths between 24 and 30 D‐glucose residues. Another major difference is the branching pattern. While the branching pattern of glycogen is random, the branching points of amylopectin are clustered in regions14. A stable opalescent solution is obtained when glycogen or amylopectin are dissolved in water. 11 CHAPTER 1 FIGURE 1.7: Part of the branched structure of glycogen. Amylopectin is branched in a similar way to glycogen but with the difference that the branch points are clustered. 1.1.3 Polysaccharides in industry Polysaccharides are an abundant source of raw materials that are interesting due to their biodegradable, biocompatible and renewable character. Saccharides are expected to play an increasingly relevant role as raw material in the future and, in particular, as a potential candidate to replace petrol‐based materials. Already, polysaccharides find their way in many different fields of industry. A short overview is given in TABLE 1.1. TABLE 1.1: Polysaccharide processing industries and used polysaccharides. Industry Polysaccharide Main function Paper Cellulose, starch Structural material, coating Food Starch Rheological control, texturizer Biomedical Dextran, chitosan, hyaluronan Drug carrier, wound dressing Package Starch/cellulose derivatives Reduction of synthetic polymers Coating Starch Rheological control Adhesive Starch Tackifier Textile Cellulose (cotton) Woven fabric
Recommended publications
  • Bacteria Belonging to Pseudomonas Typographi Sp. Nov. from the Bark Beetle Ips Typographus Have Genomic Potential to Aid in the Host Ecology
    insects Article Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology Ezequiel Peral-Aranega 1,2 , Zaki Saati-Santamaría 1,2 , Miroslav Kolaˇrik 3,4, Raúl Rivas 1,2,5 and Paula García-Fraile 1,2,4,5,* 1 Microbiology and Genetics Department, University of Salamanca, 37007 Salamanca, Spain; [email protected] (E.P.-A.); [email protected] (Z.S.-S.); [email protected] (R.R.) 2 Spanish-Portuguese Institute for Agricultural Research (CIALE), 37185 Salamanca, Spain 3 Department of Botany, Faculty of Science, Charles University, Benátská 2, 128 01 Prague, Czech Republic; [email protected] 4 Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology of the Academy of Sciences of the Czech Republic, 142 20 Prague, Czech Republic 5 Associated Research Unit of Plant-Microorganism Interaction, University of Salamanca-IRNASA-CSIC, 37008 Salamanca, Spain * Correspondence: [email protected] Received: 4 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Simple Summary: European Bark Beetle (Ips typographus) is a pest that affects dead and weakened spruce trees. Under certain environmental conditions, it has massive outbreaks, resulting in attacks of healthy trees, becoming a forest pest. It has been proposed that the bark beetle’s microbiome plays a key role in the insect’s ecology, providing nutrients, inhibiting pathogens, and degrading tree defense compounds, among other probable traits. During a study of bacterial associates from I. typographus, we isolated three strains identified as Pseudomonas from different beetle life stages. In this work, we aimed to reveal the taxonomic status of these bacterial strains and to sequence and annotate their genomes to mine possible traits related to a role within the bark beetle holobiont.
    [Show full text]
  • TO Thermostable Sucrose Phosphorylase 20120924
    Thermostable sucrose phosphorylase Ghent Bio-Energy Valley, a consortium of research laboratories of Ghent University, is seeking partners interested in the industrial and enzymatic production of glycosides or glucose-1-phosphate at temperatures of 60°C or higher using a thermostable phosphorylase. Introduction Sucrose phosphorylase catalyses the reversible phosphorolysis of sucrose into α-glucose-1-phosphate and fructose. Because of the broad acceptor specificity of the enzyme, it can further be used for the production of a number of glycosylated compounds. At the industrial scale, such production processes are preferably run at 60°C or higher, mainly to avoid microbial contamination. Unfortunately, no sucrose phosphorylases are known yet which perform well at such high temperatures. Technology Researchers at Ghent University have identified a thermostable sucrose phosphorylase derived from the prokaryote Bifidobacterium adolescentis which performs well at 60°C or higher. The enzyme is active for at least 16h at 60°C when it is in the continuous presence of its substrate, and/or, when it is mutated at specific residues, and/or, when it is immobilized on a carrier or when it is immobilized by cross-linking so that it is part of a so-called “cross- linked enzyme aggregate (CLEA)”. Applications Enzymatic and/or recombinant methods to produce high value glycosides at elevated temperatures. Advantages • being able to produce glycosylated compounds at high temperatures avoids microbial contamination; • recycling of the immobilized biocatalyst in consecutive reactions increases the commercial potential. Status of development The sucrose phosphorylase of B. adolescentis was recombinantly expressed in E. coli and further purified. In addition, the enzyme was immobilized on an epoxy- activated enzyme carrier (Sepabeads EC-HFA) or was incorporated in a CLEA or was mutated to obtain enzyme variants.
    [Show full text]
  • Metabolic Control of Hyaluronan Synthases
    MATBIO-00997; No of Pages 6 Matrix Biology xxx (2013) xxx–xxx Contents lists available at ScienceDirect Matrix Biology journal homepage: www.elsevier.com/locate/matbio Metabolic control of hyaluronan synthases Davide Vigetti, Manuela Viola, Evgenia Karousou, Giancarlo De Luca, Alberto Passi ⁎ Dipartimento di Scienze Chirurgiche e Morfologiche, Università degli Studi dell'Insubria, via J.H. Dunant 5, 21100 Varese, Italy article info abstract Available online xxxx Hyaluronan (HA) is a glycosaminoglycan composed by repeating units of D-glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc) that is ubiquitously present in the extracellular matrix (ECM) where it has a Keywords: critical role in the physiology and pathology of several mammalian tissues. HA represents a perfect environment Glycosaminoglycan in which cells can migrate and proliferate. Moreover, several receptors can interact with HA at cellular UDP-GlcUA level triggering multiple signal transduction responses. The control of the HA synthesis is therefore critical UDP-GlcNAc in ECM assembly and cell biology; in this review we address the metabolic regulation of HA synthesis. In AMPK O-GlcNAcylation contrast with other glycosaminoglycans, which are synthesized in the Golgi apparatus, HA is produced at the HBP plasma membrane by HA synthases (HAS1-3), which use cytoplasmic UDP-glucuronic acid and UDP-N- acetylglucosamine as substrates. UDP-GlcUA and UDP-hexosamine availability is critical for the synthesis of GAGs, which is an energy consuming process. AMP activated protein kinase (AMPK), which is considered a sensor of the energy status of the cell and is activated by low ATP:AMP ratio, leads to the inhibition of HA secretion by HAS2 phosphorylation at threonine 110.
    [Show full text]
  • Of Sucrose Phosphorylase: Combining Improved Stability with Altered Specificity
    Int. J. Mol. Sci. 2012, 13, 11333-11342; doi:10.3390/ijms130911333 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article An Imprinted Cross-Linked Enzyme Aggregate (iCLEA) of Sucrose Phosphorylase: Combining Improved Stability with Altered Specificity Karel De Winter, Wim Soetaert and Tom Desmet * Centre of Expertise for Industrial Biotechnology and Biocatalysis, Department of Biochemical and Microbial Technology, Faculty of Biosciences Engineering, Ghent University, Coupure Links 653, Ghent B-9000, Belgium; E-Mails: [email protected] (K.D.W.); [email protected] (W.S.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +32-9-2649-920; Fax: +32-9-2646-032. Received: 28 August 2012; in revised form: 5 September 2012 / Accepted: 5 September 2012 / Published: 11 September 2012 Abstract: The industrial use of sucrose phosphorylase (SP), an interesting biocatalyst for the selective transfer of α-glucosyl residues to various acceptor molecules, has been hampered by a lack of long-term stability and low activity towards alternative substrates. We have recently shown that the stability of the SP from Bifidobacterium adolescentis can be significantly improved by the formation of a cross-linked enzyme aggregate (CLEA). In this work, it is shown that the transglucosylation activity of such a CLEA can also be improved by molecular imprinting with a suitable substrate. To obtain proof of concept, SP was imprinted with α-glucosyl glycerol and subsequently cross-linked with glutaraldehyde. As a consequence, the enzyme’s specific activity towards glycerol as acceptor substrate was increased two-fold while simultaneously providing an exceptional stability at 60 °C.
    [Show full text]
  • 1/05661 1 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... - 12 May 2011 (12.05.2011) W 2 11/05661 1 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/00 (2006.0 1) C12Q 1/48 (2006.0 1) kind of national protection available): AE, AG, AL, AM, C12Q 1/42 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) Number: International Application DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 10/054171 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 26 October 2010 (26.10.2010) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (25) Filing Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, (26) Publication Language: English TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/255,068 26 October 2009 (26.10.2009) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, (71) Applicant (for all designated States except US): ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, MYREXIS, INC.
    [Show full text]
  • An Evolving Hierarchical Family Classification for Glycosyltransferases
    doi:10.1016/S0022-2836(03)00307-3 J. Mol. Biol. (2003) 328, 307–317 COMMUNICATION An Evolving Hierarchical Family Classification for Glycosyltransferases Pedro M. Coutinho1, Emeline Deleury1, Gideon J. Davies2 and Bernard Henrissat1* 1Architecture et Fonction des Glycosyltransferases are a ubiquitous group of enzymes that catalyse the Macromole´cules Biologiques transfer of a sugar moiety from an activated sugar donor onto saccharide UMR6098, CNRS and or non-saccharide acceptors. Although many glycosyltransferases catalyse Universite´s d’Aix-Marseille I chemically similar reactions, presumably through transition states with and II, 31 Chemin Joseph substantial oxocarbenium ion character, they display remarkable diversity Aiguier, 13402 Marseille in their donor, acceptor and product specificity and thereby generate a Cedex 20, France potentially infinite number of glycoconjugates, oligo- and polysacchar- ides. We have performed a comprehensive survey of glycosyltransferase- 2Structural Biology Laboratory related sequences (over 7200 to date) and present here a classification of Department of Chemistry, The these enzymes akin to that proposed previously for glycoside hydrolases, University of York, Heslington into a hierarchical system of families, clans, and folds. This evolving York YO10 5YW, UK classification rationalises structural and mechanistic investigation, harnesses information from a wide variety of related enzymes to inform cell biology and overcomes recurrent problems in the functional prediction of glycosyltransferase-related open-reading frames. q 2003 Elsevier Science Ltd. All rights reserved Keywords: glycosyltransferases; protein families; classification; modular *Corresponding author structure; genomic annotations The biosynthesis of complex carbohydrates and are involved in glycosyl transfer and thus conquer polysaccharides is of remarkable biological import- what Sharon has provocatively described as “the ance.
    [Show full text]
  • Bacterial Exopolysaccharides: Biosynthesis Pathways and Engineering Strategies
    REVIEW published: 26 May 2015 doi: 10.3389/fmicb.2015.00496 Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies Jochen Schmid1*,VolkerSieber1 and Bernd Rehm2,3 1 Chair of Chemistry of Biogenic Resources, Technische Universität München, Straubing, Germany, 2 Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand, 3 The MacDiarmid Institute for Advanced Materials and Nanotechnology, Palmerston North, New Zealand Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the Edited by: Weiwen Zhang, natural design space for production of a variety of biopolymer will open up a range of Tianjin University, China new applications. Here, we summarize the key aspects of microbial exopolysaccharide Reviewed by: biosynthesis and highlight the latest engineering approaches toward the production Jun-Jie Zhang, of tailor-made variants with the potential to be used as valuable renewable and Wuhan Institute of Virology, Chinese Academy of Sciences, China high-performance products
    [Show full text]
  • Application of Enzymes in Regioselective and Stereoselective Organic Reactions
    catalysts Review Application of Enzymes in Regioselective and Stereoselective Organic Reactions Ruipu Mu 1,*, Zhaoshuai Wang 2,3,* , Max C. Wamsley 1, Colbee N. Duke 1, Payton H. Lii 1, Sarah E. Epley 1, London C. Todd 1 and Patty J. Roberts 1 1 Department of Chemistry, Centenary College of Louisiana, Shreveport, LA 71104, USA; [email protected] (M.C.W.); [email protected] (C.N.D.); [email protected] (P.H.L.); [email protected] (S.E.E.); [email protected] (L.C.T.); [email protected] (P.J.R.) 2 Department of Pharmaceutical Science, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA 3 Center for Pharmaceutical Research and Innovation, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA * Correspondence: [email protected] (R.M.); [email protected] (Z.W.) Received: 22 June 2020; Accepted: 21 July 2020; Published: 24 July 2020 Abstract: Nowadays, biocatalysts have received much more attention in chemistry regarding their potential to enable high efficiency, high yield, and eco-friendly processes for a myriad of applications. Nature’s vast repository of catalysts has inspired synthetic chemists. Furthermore, the revolutionary technologies in bioengineering have provided the fast discovery and evolution of enzymes that empower chemical synthesis. This article attempts to deliver a comprehensive overview of the last two decades of investigation into enzymatic reactions and highlights the effective performance progress of bio-enzymes exploited in organic synthesis. Based on the types of enzymatic reactions and enzyme commission (E.C.) numbers, the enzymes discussed in the article are classified into oxidoreductases, transferases, hydrolases, and lyases.
    [Show full text]
  • Hyaluronan Synthases' Expression and Activity Are Induced by Fluid Shear Stress in Bone Marrow-Derived Mesenchymal Stem Cells
    International Journal of Molecular Sciences Article Hyaluronan Synthases’ Expression and Activity Are Induced by Fluid Shear Stress in Bone Marrow-Derived Mesenchymal Stem Cells Sebastian Reiprich, Elif Akova , Attila Aszódi and Veronika Schönitzer * Experimental Surgery and Regenerative Medicine (ExperiMed), Department of General, Trauma and Reconstructive Surgery, Munich University Hospital, Ludwig-Maximilians-University, 80336 Munich, Germany; [email protected] (S.R.); [email protected] (E.A.); [email protected] (A.A.) * Correspondence: [email protected]; Tel.: +49-89-4400-53147 Abstract: During biomineralization, the cells generating the biominerals must be able to sense the external physical stimuli exerted by the growing mineralized tissue and change their intracellular protein composition according to these stimuli. In molluscan shell, the myosin-chitin synthases have been suggested to be the link for this communication between cells and the biomaterial. Hyaluronan synthases (HAS) belong to the same enzyme family as chitin synthases. Their product hyaluronan (HA) occurs in the bone and is supposed to have a regulatory function during bone regeneration. We hypothesize that HASes’ expression and activity are controlled by fluid-induced mechanotrans- duction as it is known for molluscan chitin synthases. In this study, bone marrow-derived human mesenchymal stem cells (hMSCs) were exposed to fluid shear stress of 10 Pa. The RNA transcriptome was analyzed by RNA sequencing (RNAseq). HA concentrations in the supernatants were measured Citation: Reiprich, S.; Akova, E.; by ELISA. The cellular structure of hMSCs and HAS2-overexpressing hMSCs was investigated after Aszódi, A.; Schönitzer, V. Hyaluronan treatment with shear stress using confocal microscopy.
    [Show full text]
  • Protein & Peptide Letters
    696 Send Orders for Reprints to [email protected] Protein & Peptide Letters, 2017, 24, 696-709 REVIEW ARTICLE ISSN: 0929-8665 eISSN: 1875-5305 Impact Factor: 1.068 Glycan Phosphorylases in Multi-Enzyme Synthetic Processes BENTHAM Editor-in-Chief: SCIENCE Ben M. Dunn Giulia Pergolizzia, Sakonwan Kuhaudomlarpa, Eeshan Kalitaa,b and Robert A. Fielda,* aDepartment of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK; bDepartment of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam -784028, India Abstract: Glycoside phosphorylases catalyse the reversible synthesis of glycosidic bonds by glyco- A R T I C L E H I S T O R Y sylation with concomitant release of inorganic phosphate. The equilibrium position of such reac- tions can render them of limited synthetic utility, unless coupled with a secondary enzymatic step Received: January 17, 2017 Revised: May 24, 2017 where the reaction lies heavily in favour of product. This article surveys recent works on the com- Accepted: June 20, 2017 bined use of glycan phosphorylases with other enzymes to achieve synthetically useful processes. DOI: 10.2174/0929866524666170811125109 Keywords: Phosphorylase, disaccharide, α-glucan, cellodextrin, high-value products, biofuel. O O 1. INTRODUCTION + HO OH Glycoside phosphorylases (GPs) are carbohydrate-active GH enzymes (CAZymes) (URL: http://www.cazy.org/) [1] in- H2O O GP volved in the formation/cleavage of glycosidic bond together O O GT O O + HO O + HO with glycosyltransferase (GT) and glycoside hydrolase (GH) O -- NDP OPO3 NDP -- families (Figure 1) [2-6]. GT reactions favour the thermody- HPO4 namically more stable glycoside product [7]; however, these GS R enzymes can be challenging to work with because of their O O + HO current limited availability and relative instability, along R with the expense of sugar nucleotide substrates [7].
    [Show full text]
  • Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Archaeon Sulfolobus Tokodaii
    www.nature.com/scientificreports OPEN Doubling Power Output of Starch Biobattery Treated by the Most Thermostable Isoamylase from an Received: 09 March 2015 Accepted: 17 July 2015 Archaeon Sulfolobus tokodaii Published: 20 August 2015 Kun Cheng1,2, Fei Zhang3, Fangfang Sun3, Hongge Chen1 & Y-H Percival Zhang2,3,4 Biobattery, a kind of enzymatic fuel cells, can convert organic compounds (e.g., glucose, starch) to electricity in a closed system without moving parts. Inspired by natural starch metabolism catalyzed by starch phosphorylase, isoamylase is essential to debranch alpha-1,6-glycosidic bonds of starch, yielding linear amylodextrin – the best fuel for sugar-powered biobattery. However, there is no thermostable isoamylase stable enough for simultaneous starch gelatinization and enzymatic hydrolysis, different from the case of thermostable alpha-amylase. A putative isoamylase gene was mined from megagenomic database. The open reading frame ST0928 from a hyperthermophilic archaeron Sulfolobus tokodaii was cloned and expressed in E. coli. The recombinant protein was easily purified by heat precipitation at 80 oC for 30 min. This enzyme was characterized and required Mg2+ as an activator. This enzyme was the most stable isoamylase reported with a half lifetime of o 200 min at 90 C in the presence of 0.5 mM MgCl2, suitable for simultaneous starch gelatinization and isoamylase hydrolysis. The cuvett-based air-breathing biobattery powered by isoamylase-treated starch exhibited nearly doubled power outputs than that powered by the same concentration starch solution, suggesting more glucose 1-phosphate generated. Biological fuel cells are emerging electro-biochemical devices that directly convert chemical energy from a variety of fuels into electricity by using low-cost biocatalysts enzymes or microorganisms instead of costly precious metals1–3.
    [Show full text]
  • アミロース製造に利用する酵素の開発と改良 Phosphorylase and Muscle Phosphorylase B
    125 J. Appl. Glycosci., 54, 125―131 (2007) !C 2007 The Japanese Society of Applied Glycoscience Proceedings of the Symposium on Amylases and Related Enzymes, 2006 Developing and Engineering Enzymes for Manufacturing Amylose (Received December 5, 2006; Accepted January 5, 2007) Michiyo Yanase,1,* Takeshi Takaha1 and Takashi Kuriki1 1 Biochemical Research Laboratory, Ezaki Glico Co., Ltd. (4 ―6 ―5, Utajima, Nishiyodogawa-ku, Osaka 555-8502, Japan) Abstract: Amylose is a functional biomaterial and is expected to be used for various industries. However at present, manufacturing of amylose is not done, since the purification of amylose from starch is very difficult. It has been known that amylose can be produced in vitro by using α-glucan phosphorylases. In order to ob- tain α-glucan phosphorylase suitable for manufacturing amylose, we isolated an α-glucan phosphorylase gene from Thermus aquaticus and expressed it in Escherichia coli. We also obtained thermostable α-glucan phos- phorylase by introducing amino acid replacement onto potato enzyme. α-Glucan phosphorylase is suitable for the synthesis of amylose; the only problem is that it requires an expensive substrate, glucose 1-phosphate. We have avoided this problem by using α-glucan phosphorylase either with sucrose phosphorylase or cellobiose phosphorylase, where inexpensive raw material, sucrose or cellobiose, can be used instead. In these combined enzymatic systems, α-glucan phosphorylase is a key enzyme. This paper summarizes our work on engineering practical α-glucan phosphorylase for industrial processes and its use in the enzymatic synthesis of essentially linear amylose and other glucose polymers. Key words: amylose, glucose polymer, α-glucan phosphorylase, glycogen debranching enzyme, protein engi- neering α-1,4 glucan is the major form of energy reserve from Enzymes for amylose synthesis.
    [Show full text]