Course Outline

Total Page:16

File Type:pdf, Size:1020Kb

Course Outline COURSE OUTLINE OXNARD COLLEGE I. Course Identification and Justification: A. Proposed course id: GEOG R101 Banner title: Elements of Physical Geography Full title: Elements of Physical Geography Previous course id: GEOG R101 Banner title: Elements of Physical Geography Full title: Elements of Physical Geography B. Reason(s) course is offered: This course is included in the Geography major program at four-year universities. It fulfills a general education requirement in Physical Sciences for the Associate Degree, CSU GE-Breadth, and IGETC. This course is one of the core courses in the AA-T in Geography. C. Reason(s) for current outline revision: Course Modification II. Catalog Information: A. Units: Current: 3.00 Previous: 3.00 B. Course Hours: 1. In-Class Contact Hours: Lecture: 52.5 Activity: 0 Lab: 0 2. Total In-Class Contact Hours: 52.5 3. Total Outside-of-Class Hours: 105 4. Total Student Learning Hours: 157.5 C. Prerequisites, Corequisites, Advisories, and Limitations on Enrollment: 1. Prerequisites Current: Previous: 2. Corequisites Current: Previous: 3. Advisories: Current: Previous: 4. Limitations on Enrollment: Current: Previous: D. Catalog description: Current: This course is an introduction to physical geography as a spatial study which investigates the “human/environment” interaction process incorporating the elements of the atmosphere, lithosphere, hydrosphere, and biosphere. Global environmental issues will also be reviewed. Previous, if different: E. Fees: Current: $ None Previous, if different: $ F. Field trips: Current: Will be required: [ ] May be required: [X] Will not be required: [ ] Previous, if different: Will be required: [ ] May be required: [ ] Will not be required: [ ] G. Repeatability: Current: A - Not designed as repeatable Previous: H. Credit basis: Current: Letter graded only [x] Pass/no pass [ ] Student option [ ] Previous, if different: Letter graded only [ ] Pass/no pass [ ] Student option [X] I. Credit by exam: Current: Petitions may be granted: [ ] Petitions will not be granted: [X] Previous, if different: Petitions may be granted: [ ] Petitions will not be granted: [ ] III. Course Objectives: Upon successful completion of this course, the student should be able to: A. Demonstrate an understanding of the four major physical components of the natural environment: atmosphere, lithosphere, hydrosphere, and biosphere. B. Analyze and interpret the global distribution of climate types following the Koppen climate classification system, including the general location, characteristics and controls of each major climate type. C. Utilize the methods of scientific investigation in analyzing spatial relationships of physical landscapes and how they relate to human environments. D. Recognize that all landforms are the result of the interaction of internal tectonic forces and external geomorphic processes. E. Describe and explain world distribution patterns of principal environmental components including air temperature, air pressure, wind, precipitation, climate, soil, vegetation, animals and landforms. F. Identify the characteristics and distribution of ecosystems. G. Utilize maps to illustrate how environmental hazards such as earthquakes and hurricanes can alter landscapes. H. Describe and explain El Nino and how it affects the weather patterns and marine ecosystems off the California coast. I. Calculate the adiabatic rate of cooling in examples of air lifting processes in the atmosphere. IV. Course Content: Topics to be covered include, but are not limited to: A. Planet Earth in Space 1. The geographic grid 2. Earth’s rotation and revolution 3. Earth/Sun relationship B. Earth’s Energy Balance 1. Composition and structure of atmosphere 2. Heat flows into atmosphere and on Earth’s surface C. Air Pressure and the Cause of Winds 1. Vertical and horizontal pressure differences 2. Forces that affect the velocity of winds: pressure gradient force, friction 3. Force that affects the direction of winds: Coriolis Force D. Circulation of Winds in the Atmosphere 1. Regional and local winds systems: sea breeze/land breeze cycle, mountain/valley breeze cycle, Santa Ana’s 2. Global scale of air pressure and wind belts: Doldrums, Subtropical High Pressure, Trade Winds, Westerlies 3. Monsoon process E. Global Pattern of Moisture and Precipitation 1. Measurement of humidity in the atmosphere 2. Measurement of adiabatic process 3. Forms of precipitation 4. Observation of cloud types 5. Characteristics of atmospheric instability and stability 6. Behavior of air masses 7. Violent thunderstorm characteristics 8. Weather conditions for tornadoes, hurricanes F. Koppen Global Climate System: Analysis of Climate Controls and Geographical Distribution of Climates G. Structure and Composition of Lithosphere 1. Rock cycle: igneous, sedimentary, metamorphic 2. Earth’s structure: composition and internal energy 3. Plate tectonics and continental drift 4. Orogenesis H. Lithosphere 1. Tectonic processes: folding, faulting, volcanism 2. Denudational processes: weathering, mass wasting, running water, wind, waves, moving ice 3. Desert landscape 4. Marine processes and coastline landforms 5. Landforms shaped by fluvial processes I. Formation of Soils 1. Composition 2. Texture 3. Structure 4. Soil profile 5. Soil classification J. Biogeography and the Water Cycle K. Global Themes Dealing with Human Impact on the Physical Environment 1. Global warming 2. Hole in the ozone layer 3. Deforestation of rain forest ecosystem 4. Desertification process 5. Fire ecology L. Impact of Environmental Hazards on the Physical Landscape 1. Tornadoes 2. Hurricanes 3. El Nino 4. Earthquakes 5. Volcanism 6. Mass Wasting V. Lab Content: VI. Methods of Instruction: Methods may include, but are not limited to: A. Hands-on demonstration and illustration of the rock cycle. Students are given samples of the three rock types: to identify the characteristics of igneous, sedimentary and metamorphic rocks. B. In-class discussion on how humans through their activities have contributed to increasing greenhouse gases and enhancing global warming. C. In-class problem solving where students work together on word problems, such as how to calculate the adiabatic rate of cooling in the atmosphere. D. Class lecture and discussion on how geographers interpret the landmass denudation processes that produce arid landscapes. E. In-class viewing of PowerPoint resources to recognize how volcanism shapes the physical landscape. F. Instructor-led panel discussion on the advantages and disadvantages of implementing a "prescribed burn" program for the Southern California landscape. VII. Methods of Evaluation and Assignments: A. Methods of evaluation for degree-applicable courses: Essays [X] Problem-solving assignments (Examples: Math-like problems, diagnosis & repair) [ ] Physical skills demonstrations (Examples: Performing arts, equipment operation) [ ] For any course, if "Essays" above is not checked, explain why. B. Typical graded assignments (methods of evaluation): 1. Students will generate maps of North America and the world identifying topographic features that indicate plate tectonic processes including major plate boundaries and landforms associated with crustal plate movement, earthquake activity, and volcanism. Students will be graded on accuracy of locating tectonic features on a map. 2. A critical essay assignment asks the students to discuss what is causing the disappearance of the American Gulf Coast and what measures could be taken to restore the wetlands in the Mississippi delta. Students will be assessed on their research techniques and writing organizational skills. 3. In-class exams will cover various topics reviewed in class such as the types of weathering processes that shape the physical landscape. The tests will incorporate multiple choice, short answer and essay question format. 4. Students participate in small groups to select and present an analysis of the various types of severe weather, their causes and potential consequences to human activities. Students will be evaluated on content material presented during class discussion. 5. Students will construct six climagraphs that exhibit the monthly average temperature and precipitation data from selected geographical locations and summarize the climate controls that contribute to each climate type. Students will be graded on correctly identifying the climate types for each city graphed. C. Typical outside of classroom assignments: 1. Reading a. Students may be assigned reading of selected articles on physical environment topics using such journals/periodicals as: Discovery, Scientific American, National Geographic and Nature. b. Students may be assigned a review of the Earth-atmosphere energy budget: to be able to sketch and summarize the elements that make up this solar energy driven system in preparation for a quiz. 2. Writing a. Essay assignment such as describing the local scale wind system. Explain how the development of the sea breeze over the Oxnard Plain affects local temperatures and provides an ocean air circulation for the Oxnard area. b. A take home essay assignment in partial fulfillment for the final exam such as to discuss the advantages of implementing a “prescribed burn” program and what impact it would have on the chaparral plant community in Southern California. 3. Other a. Review web sources such as: http://www.epa.gov/climatechange/emissions/ind_calculator.html in order to calculate their “carbon footprint” or evaluate how their lifestyle contributes personally to the increase of
Recommended publications
  • A Sense of Place: Human Geography in the Early Childhood Classroom
    Social Studies: From a Sense of Self to a Sense of the World Pamela Brillante and Sue Mankiw Preschool Through Primary Grades A Sense of Place: Human Geography in the Early Childhood Classroom Walking downtown is four-year-old Abby’s favorite thing to do with her dad. Today is the first day that Abby hasn’t had to wear a coat on their walk. They walk under shady trees and stop to notice all the white flowers blooming outside the library where Abbey and her grandma go for story hour with Abby’s friends. The smell of lilies of the valley permeates the air. As they get closer to downtown, Dad picks Abby up while they cross the broken sidewalk near the post office so she does not get hurt on the rough terrain. It can be difficult for her to navigate uneven ground with her walker. Approaching the town’s music stage, Abby tugs on her dad’s sleeve; she wants to hear the musicians playing their shiny instruments. Abby points out the sign that says STOP on the busy street corner by Poppy’s Bakery. The nice women who work there always talk to Abby and let her pick out a cookie while her dad buys warm, delicious-smelling bread for Sunday dinner. Abby loves going to “her downtown,” where she knows she is part of the community of friends, neighbors, and merchants she meets along the way. 1, 2, 3 ® © iStock.com/ktaylorg 2 Young Children July 2015 lthough they may not realize it, Abby physical world around them and in the social and cultural and her dad are studying geography on their world they share with others.
    [Show full text]
  • Lesson One United States of America: an Exploration Factsheet for Teachers
    Lesson one United States of America: An Exploration Factsheet for teachers Purpose of this lesson In order to develop an in-depth knowledge of the USA pupils need to understand the key geographical features of the country. In this lesson pupils will work with an atlas (and/or online maps) in order to create their own map of the USA. Vocabulary Geology the study of the origin, history, and structure of the earth. Lake a body of water surrounded by land. Latitude the distance of a place north or south of the earth's equator. Longitude the distance of a place east or west of the Greenwich meridian. Mountain a large landform that stretches above the surrounding land in a limited area, usually in the form of a peak. Mountain Range a series or chain of mountains that are close together. Prairie a large grassland. River a large stream of flowing fresh water. Topography the study of the shape of the surface features of an area. Key Features of the United States of America Political and Administrative Boundaries The USA shares borders with Canada, Mexico and maritime borders with Russia, Cuba and the Bahamas (as well as Canada and Mexico). The United States of America is a federal republic made up of 50 states. Map of USA © Wikimedia 1 The population distribution across the USA will be explored in more detail later in this module. However the exercises in this lesson introduce pupils to some of the key settlements in the USA. Map of USA © Wikimedia The National Geographic website entry for ‘Human Geography’ provides a good introduction to the different features of the country.
    [Show full text]
  • A New Geography of European Power?
    A NEW GEOGRAPHY OF EUROPEAN POWER? EGMONT PAPER 42 A NEW GEOGRAPHY OF EUROPEAN POWER? James ROGERS January 2011 The Egmont Papers are published by Academia Press for Egmont – The Royal Institute for International Relations. Founded in 1947 by eminent Belgian political leaders, Egmont is an independent think-tank based in Brussels. Its interdisciplinary research is conducted in a spirit of total academic freedom. A platform of quality information, a forum for debate and analysis, a melting pot of ideas in the field of international politics, Egmont’s ambition – through its publications, seminars and recommendations – is to make a useful contribution to the decision- making process. *** President: Viscount Etienne DAVIGNON Director-General: Marc TRENTESEAU Series Editor: Prof. Dr. Sven BISCOP *** Egmont - The Royal Institute for International Relations Address Naamsestraat / Rue de Namur 69, 1000 Brussels, Belgium Phone 00-32-(0)2.223.41.14 Fax 00-32-(0)2.223.41.16 E-mail [email protected] Website: www.egmontinstitute.be © Academia Press Eekhout 2 9000 Gent Tel. 09/233 80 88 Fax 09/233 14 09 [email protected] www.academiapress.be J. Story-Scientia NV Wetenschappelijke Boekhandel Sint-Kwintensberg 87 B-9000 Gent Tel. 09/225 57 57 Fax 09/233 14 09 [email protected] www.story.be All authors write in a personal capacity. Lay-out: proxess.be ISBN 978 90 382 1714 7 D/2011/4804/19 U 1547 NUR1 754 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the permission of the publishers.
    [Show full text]
  • Geography Introduction
    Geography Student Handbook CSUS Geography, Fall 2005 Geography Student Handbook contents ONE WELCOME TO GEOGRAPHY Part Welcome Geography Students 1 Reception 2 Keeping the Department Informed 2 Faculty Profiles and Contact Information 3 Maps 4 Campus 4 Bizzini Hall (Classroom Building) 2nd Floor 5 GIS Lab 6 Bio-Ag 7 TWO WHAT IS GEOGRAPHY? 8 Definitions 8 Areas of Geographic Study 9 General Readings in Geography and Teaching 10 THREE YOUR PROGRAM 11 Advising 11 Registration 12 Geography Courses (from Catalog) 13 BA Geography Worksheet (regular tract) 14 BA Geography with Applied Concentration Worksheet 15 Geography Minor Worksheet 16 Liberal Studies with Geography Concentration Worksheet 17 Social Science with Geography Concentration Worksheet 17 General Education Worksheet 18 Plagerism and Academic Dishonesty 19 Readings – Coping with Classes 20 Internships 21 FOUR GEOGRAPHY’S FACILITIES 22 Laboratories 22 The Field 22 GIS Lab 23 Bio-Ag 23 The Bridge 24 Study Abroad 25 Other Facilities 26 FIVE LIFE AFTER CSUS 27 Occupations 27 Graduate School 28 Letter of Reference 29 1 one - welcome to geography “Of all the disciplines, it is geography that has captured the vision of the earth as a whole.” Kenneth Boulding WELCOME GEOGRAPHY STUDENTS! This student handbook provides a way for you to track your degree progress and helps you navigate a path, not only to complete your degree, but to seek a profession in geography or attend graduate school. It serves as a convenient source for general information about the discipline of geography, department and campus resources, and who to contact with various questions. This handbook does not replace the personal one-to-one contact between yourself and your advisor.
    [Show full text]
  • And Others a Geographical Biblio
    DOCUMENT RESUME ED 052 108 SO 001 480 AUTHOR Lewtbwaite, Gordon R.; And Others TITLE A Geographical Bibliography for hmerican College Libraries. A Revision of a Basic Geographical Library: A Selected and Annotated Book List for American Colleges. INSTITUTION Association of American Geographers, Washington, D.C. Commission on College Geography. SPONS AGENCY National Science Foundation, Washington, D.C. PUB DATE 70 NOTE 225p. AVAILABLE FROM Commission on College Geography, Arizona State University, Tempe, Arizona 85281 (Paperback, $1.00) EDRS PRICE EDRS Price MF-$0.65 BC Not Available from EDRS. DESCRIPTORS *Annotated Bibliographies, Booklists, College Libraries, *Geography, Hi7her Education, Instructional Materials, *Library Collections, Resource Materials ABSTRACT This annotated bibliography, revised from "A Basic Geographical Library", presents a list of books selected as a core for the geography collection of an American undergraduate college library. Entries numbering 1,760 are limited to published books and serials; individual articles, maps, and pamphlets have been omii_ted. Books of recent date in English are favored, although older books and books in foreign languages have been included where their subject or quality seemed needed. Contents of the bibliography are arranged into four principal parts: 1) General Aids and Sources; 2)History, Philosophy, and Methods; 3)Works Grouped by Topic; and, 4)Works Grouped by Region. Each part is subdivided into sections in this general order: Bibliographies, Serials, Atlases, General, Special Subjects, and Regions. Books are arranged alphabetically by author with some cross-listings given; items for the introductory level are designated. In the introduction, information on entry format and abbreviations is given; an index is appended.
    [Show full text]
  • Exhumation Processes
    Exhumation processes UWE RING1, MARK T. BRANDON2, SEAN D. WILLETT3 & GORDON S. LISTER4 1Institut fur Geowissenschaften,Johannes Gutenberg-Universitiit,55099 Mainz, Germany 2Department of Geology and Geophysics, Yale University, New Haven, CT 06520, USA 3Department of Geosciences, Pennsylvania State University, University Park, PA I 6802, USA Present address: Department of Geological Sciences, University of Washington, Seattle, WA 98125, USA 4Department of Earth Sciences, Monash University, Clayton, Victoria VIC 3168,Australia Abstract: Deep-seated metamorphic rocks are commonly found in the interior of many divergent and convergent orogens. Plate tectonics can account for high-pressure meta­ morphism by subduction and crustal thickening, but the return of these metamorphosed crustal rocks back to the surface is a more complicated problem. In particular, we seek to know how various processes, such as normal faulting, ductile thinning, and erosion, con­ tribute to the exhumation of metamorphic rocks, and what evidence can be used to distin­ guish between these different exhumation processes. In this paper, we provide a selective overview of the issues associated with the exhuma­ tion problem. We start with a discussion of the terms exhumation, denudation and erosion, and follow with a summary of relevant tectonic parameters. Then, we review the charac­ teristics of exhumation in differenttectonic settings. For instance, continental rifts, such as the severely extended Basin-and-Range province, appear to exhume only middle and upper crustal rocks, whereas continental collision zones expose rocks from 125 km and greater. Mantle rocks are locally exhumed in oceanic rifts and transform zones, probably due to the relatively thin crust associated with oceanic lithosphere.
    [Show full text]
  • Earth/Environmental (2014) Released Final Exam
    Released Items Fall 2014 NC Final Exam Earth/Environmental Science RELEASED Public Schools of North Carolina Student Booklet State Board of Education Department of Public Instruction Raleigh, North Carolina 27699-6314 Copyrightã 2014 by the North Carolina Department of Public Instruction. All rights reserved. E ARTH/ENVIRONMENTAL S CIENCE — R ELEASED I TEMS 1 Cracks in rocks widen as water in them freezes and thaws. How does this affect the surface of the Earth? A It reduces the rates of soil formation. B It changes the chemical composition of the rocks. C It exposes rocks to increased rates of erosion and weathering. D It limits the exposure of rocks to acid precipitation. 2 How can urbanization affect a local area? A It can increase the number of invasive species in an area. B It can decrease the risk of water pollution in an area. C It can increase the risk of flooding in an area. D It can decrease the need for natural resources in an area. 3 Which is a farming technique that could improve the soil and the environment? A using fueled machines that will turn the soil continuously B creating undisturbed layers of mulch in the soil C placing inorganic chemical fertilizers in the soil D irrigating the RELEASEDsoil with salty water 1 Go to the next page. E ARTH/ENVIRONMENTAL S CIENCE — R ELEASED I TEMS 4 Subsurface ocean currents continually circulate from the warm waters near the equator to the colder waters in other parts of the world. What is the main cause of these currents? A differences in the topography along the ocean floor B differences
    [Show full text]
  • What Is the Importance of Islands to Environmental Conservation?
    Environmental Conservation (2017) 44 (4): 311–322 C Foundation for Environmental Conservation 2017 doi:10.1017/S0376892917000479 What is the importance of islands to environmental THEMATIC SECTION Humans and Island conservation? Environments CHRISTOPH KUEFFER∗ 1 AND KEALOHANUIOPUNA KINNEY2 1Institute of Integrative Biology, ETH Zurich, Universitätsstrasse 16, CH-8092 Zurich, Switzerland and 2Institute of Pacifc Islands Forestry, US Forest Service, 60 Nowelo St. Hilo, HI, USA Date submitted: 15 May 2017; Date accepted: 8 August 2017 SUMMARY islands of the world’s oceans, we cover both islands close to continents and others isolated far out in the oceans, and the This article discusses four features of islands that make full range from small to very large islands. Small and isolated them places of special importance to environmental islands represent unique cultural and biological values and the conservation. First, investment in island conservation environmental challenges of insularity in its most pronounced is both urgent and cost-effective. Islands are form. However, as we will demonstrate, all islands and island threatened hotspots of diversity that concentrate people share enough come concerns to consider them together unique cultural, biological and geophysical values, (Baldacchino 2007; Royle 2008; Gillespie & Clague 2009; and they form the basis of the livelihoods of Baldacchino & Niles 2011; Royle 2014). millions of islanders. Second, islands are paradigmatic Islands are hotspots of cultural, biological and geophysical places of human–environment relationships. Island diversity, and as such they form the basis of the livelihoods livelihoods have a long tradition of existing within of millions of islanders (Menard 1986; Nunn 1994; Royle spatial, ecological and ultimately social boundaries 2008; Gillespie & Clague 2009; Royle 2014; Kueffer et al.
    [Show full text]
  • Environmental Science in the Course of Different Levels
    THIS PAGE IS BLANK NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS New Delhi · Bangalore · Chennai · Cochin · Guwahati · Hyderabad Jalandhar · Kolkata · Lucknow · Mumbai · Ranchi PUBLISHING FOR ONE WORLD Visit us at www.newagepublishers.com Copyright © 2006 New Age International (P) Ltd., Publishers Published by New Age International (P) Ltd., Publishers All rights reserved. No part of this ebook may be reproduced in any form, by photostat, microfilm, xerography, or any other means, or incorporated into any information retrieval system, electronic or mechanical, without the written permission of the publisher. All inquiries should be emailed to [email protected] ISBN (10) : 81-224-2330-2 ISBN (13) : 978-81-224-2330-3 PUBLISHING FOR ONE WORLD NEW AGE INTERNATIONAL (P) LIMITED, PUBLISHERS 4835/24, Ansari Road, Daryaganj, New Delhi - 110002 Visit us at www.newagepublishers.com Education is a process of development which includes the three major activities, teaching, training and instruction. Teaching is social as well as a professional activity. It is science as well as art. Modern education is not in a sphere but it has a long and large area of study. Now a days most part of the world population is facing different problems related with the nature and they are studying the solutions to save the nature and global problems, but on the second hand we even today do not try to understand our local problems related to the nature. So for the awareness of the problems of P nature and pollution the higher education commission has suggested to add the Environmental Science in the course of different levels.
    [Show full text]
  • 168 2Nd Issue 2015
    ISSN 0019–1043 Ice News Bulletin of the International Glaciological Society Number 168 2nd Issue 2015 Contents 2 From the Editor 25 Annals of Glaciology 56(70) 5 Recent work 25 Annals of Glaciology 57(71) 5 Chile 26 Annals of Glaciology 57(72) 5 National projects 27 Report from the New Zealand Branch 9 Northern Chile Annual Workshop, July 2015 11 Central Chile 29 Report from the Kathmandu Symposium, 13 Lake district (37–41° S) March 2015 14 Patagonia and Tierra del Fuego (41–56° S) 43 News 20 Antarctica International Glaciological Society seeks a 22 Abbreviations new Chief Editor and three new Associate 23 International Glaciological Society Chief Editors 23 Journal of Glaciology 45 Glaciological diary 25 Annals of Glaciology 56(69) 48 New members Cover picture: Khumbu Glacier, Nepal. Photograph by Morgan Gibson. EXCLUSION CLAUSE. While care is taken to provide accurate accounts and information in this Newsletter, neither the editor nor the International Glaciological Society undertakes any liability for omissions or errors. 1 From the Editor Dear IGS member It is now confirmed. The International Glacio­ be moving from using the EJ Press system to logical Society and Cambridge University a ScholarOne system (which is the one CUP Press (CUP) have joined in a partnership in uses). For a transition period, both online which CUP will take over the production and submission/review systems will run in parallel. publication of our two journals, the Journal Submissions will be two­tiered – of Glaciology and the Annals of Glaciology. ‘Papers’ and ‘Letters’. There will no longer This coincides with our journals becoming be a distinction made between ‘General’ fully Gold Open Access on 1 January 2016.
    [Show full text]
  • Fluvial Response to Rapid Episodic Erosion by Earthquake and Typhoons, Tachia River, Central Taiwan
    Geomorphology 175–176 (2012) 126–138 Contents lists available at SciVerse ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Fluvial response to rapid episodic erosion by earthquake and typhoons, Tachia River, central Taiwan Michelle Y.-F. Huang ⁎, David R. Montgomery Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195-1310, USA article info abstract Article history: Analysis of typhoon- and earthquake-triggered landsliding and fluvial response in the Tachia River, central Received 28 January 2012 Taiwan, documents highly episodic sediment supply over decade to century timescales. Landslide data Received in revised form 2 July 2012 from the Chi-Chi earthquake (1999) and subsequent typhoons (2001, 2004, and 2005) quantify the sediment Accepted 5 July 2012 supply from these events. Fluvial response was investigated by decadal-scale and century-scale longitudinal Available online 16 July 2012 river profile data spanning 1904 to 2008 and by sediment delivery recorded in suspended sediment load and reservoir sedimentation data. Our results show that the different time periods of satellite images and aerial Keywords: fi Landslide photographs used in previous studies make it dif cult to unambiguously identify the causes of landslides pre- Earthquake viously attributed by some studies to the effects of the Chi-Chi earthquake rather than subsequent high inten- Typhoon sity precipitation. In response to significant variability in sediment delivery from hillslopes, century-scale Erosion profile variation data indicate substantial bed surface elevation change of 2.6±6.7 m, and decade-scale Channel response bed surface elevation change of 1.1±3.3 m. Since 1993, the downstream reaches incised in response to bedload sediment trapping by reservoirs while headwater reaches aggraded in response to increased sedi- ment delivery from uplands.
    [Show full text]
  • Landforms and Their Evolution
    CHAPTER LANDFORMS AND THEIR EVOLUTION fter weathering processes have had a part of the earth’s surface from one landform their actions on the earth materials into another or transformation of individual Amaking up the surface of the earth, the landforms after they are once formed. That geomorphic agents like running water, ground means, each and every landform has a history water, wind, glaciers, waves perform erosion. of development and changes through time. A It is already known to you that erosion causes landmass passes through stages of development changes on the surface of the earth. Deposition somewhat comparable to the stages of life — follows erosion and because of deposition too, youth, mature and old age. changes occur on the surface of the earth. As this chapter deals with landforms and What are the two important aspects of their evolution ‘first’ start with the question, the evolution of landforms? what is a landform? In simple words, small to medium tracts or parcels of the earth’s surface are called landforms. RUNNING WATER In humid regions, which receive heavy rainfall If landform is a small to medium sized running water is considered the most important part of the surface of the earth, what is a of the geomorphic agents in bringing about landscape? the degradation of the land surface. There are two components of running water. One is Several related landforms together make overland flow on general land surface as a up landscapes, (large tracts of earth’s surface). sheet. Another is linear flow as streams and Each landform has its own physical shape, size, materials and is a result of the action of rivers in valleys.
    [Show full text]