RFS Briefings July 15, 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating Cosmic Snowballs
Investigating Cosmic Snowballs Professor David Jewitt CREDIT: NASA INVESTIGATING COSMIC SNOWBALLS Professor David Jewitt and his team at UCLA explore the nature of comets. These fleeting visitors to our cosmic shore are important sources of information, and can help to reveal the origin and evolution of the solar system. Most recently, Professor Jewitt’s team have explained the unusual activity of some of the most distant comets in the solar system. Comets play a vivid historical role in the orbital periods of less than 200 years), human psyche, often being interpreted and the other supplying long-period as portents of impending doom. In the objects (greater than 200 years). The era of modern science, we realise that nearest store of cometary precursors, comets are simply icy leftovers, frozen in containing billions of nuclei larger time since the solar system’s formation than a kilometre across, is called the about 4.6 billion years ago. Kuiper Belt. This is a fat disk of objects encircling the Sun with an inner edge Far from bringing us doom and disaster, at Neptune’s orbit – approximately 7.5 comets offer scientists unparalleled billion kilometres from the Sun, or 30 opportunities to learn about the earliest AU – and reaching out to at least several periods of the solar system’s evolution. thousand AU. Pluto resides in this region At the same time, they are some of and is now recognised as large Kuiper the most challenging objects to Belt object. study and remain some of the least well understood. The Kuiper belt was discovered by Professor David Jewitt and his former What Are Comets and Where Do student Jane Luu in 1992. -
Alector Strengthens Board of Directors with Appointments of David Wehner, Richard Scheller and Louis Lavigne
Alector Strengthens Board of Directors with Appointments of David Wehner, Richard Scheller and Louis Lavigne November 16, 2018 SOUTH SAN FRANCISCO, Calif.--(BUSINESS WIRE)--Alector, a privately held biotechnology company pioneering immuno-neurology, a novel therapeutic approach for the treatment of neurodegeneration, today announced the following additions to its board as independent directors: David Wehner, Chief Financial Officer of Facebook Richard Scheller, Ph.D., Chief Scientific Officer of 23andMe Louis J. Lavigne, Jr. former Executive Vice President and Chief Financial Officer of Genentech “David, Richard and Lou bring extensive technical and operational expertise to our team, as we continue our progress towards becoming a fully integrated biotechnology company,” said Arnon Rosenthal, Ph.D., president and chief executive officer of Alector. “We look forward to leveraging their insights in drug development, strategic financial management, business operations and corporate growth strategies in order to accelerate transformative medicines with the goal of curing neurodegenerative diseases.” Mr. Wehner brings extensive financial and operational experience to Alector. Prior to his current position as chief financial officer of Facebook, Mr. Wehner served as vice president of corporate finance and business planning at Facebook. Before that, he was the chief financial officer of Zynga and served in various positions at Allen & Company for nine years, where he ultimately served as a managing director. Earlier in his career, Mr. Wehner was an equity analyst at Hambrecht & Quist. Mr. Wehner holds an M.S. in applied physics from Stanford University and a B.S. in chemistry from Georgetown University. Dr. Scheller is a preeminent neuroscientist and experienced drug development leader. -
The Brain That Changes Itself
The Brain That Changes Itself Stories of Personal Triumph from the Frontiers of Brain Science NORMAN DOIDGE, M.D. For Eugene L. Goldberg, M.D., because you said you might like to read it Contents 1 A Woman Perpetually Falling . Rescued by the Man Who Discovered the Plasticity of Our Senses 2 Building Herself a Better Brain A Woman Labeled "Retarded" Discovers How to Heal Herself 3 Redesigning the Brain A Scientist Changes Brains to Sharpen Perception and Memory, Increase Speed of Thought, and Heal Learning Problems 4 Acquiring Tastes and Loves What Neuroplasticity Teaches Us About Sexual Attraction and Love 5 Midnight Resurrections Stroke Victims Learn to Move and Speak Again 6 Brain Lock Unlocked Using Plasticity to Stop Worries, OPsessions, Compulsions, and Bad Habits 7 Pain The Dark Side of Plasticity 8 Imagination How Thinking Makes It So 9 Turning Our Ghosts into Ancestors Psychoanalysis as a Neuroplastic Therapy 10 Rejuvenation The Discovery of the Neuronal Stem Cell and Lessons for Preserving Our Brains 11 More than the Sum of Her Parts A Woman Shows Us How Radically Plastic the Brain Can Be Appendix 1 The Culturally Modified Brain Appendix 2 Plasticity and the Idea of Progress Note to the Reader All the names of people who have undergone neuroplastic transformations are real, except in the few places indicated, and in the cases of children and their families. The Notes and References section at the end of the book includes comments on both the chapters and the appendices. Preface This book is about the revolutionary discovery that the human brain can change itself, as told through the stories of the scientists, doctors, and patients who have together brought about these astonishing transformations. -
Cold Spring Harbor Symposia on Quantitative Biology, Volume LXXIX: Cognition
This is a free sample of content from Cold Spring Harbor Symposia on Quantitative Biology, Volume LXXIX: Cognition. Click here for more information on how to buy the book. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME LXXIX Cognition symposium.cshlp.org Symposium organizers and Proceedings editors: Cori Bargmann (The Rockefeller University), Daphne Bavelier (University of Geneva, Switzerland, and University of Rochester), Terrence Sejnowski (The Salk Institute for Biological Studies), and David Stewart and Bruce Stillman (Cold Spring Harbor Laboratory) COLD SPRING HARBOR LABORATORY PRESS 2014 © 2014 by Cold Spring Harbor Laboratory Press. All rights reserved. This is a free sample of content from Cold Spring Harbor Symposia on Quantitative Biology, Volume LXXIX: Cognition. Click here for more information on how to buy the book. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME LXXIX # 2014 by Cold Spring Harbor Laboratory Press International Standard Book Number 978-1-621821-26-7 (cloth) International Standard Book Number 978-1-621821-27-4 (paper) International Standard Serial Number 0091-7451 Library of Congress Catalog Card Number 34-8174 Printed in the United States of America All rights reserved COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY Founded in 1933 by REGINALD G. HARRIS Director of the Biological Laboratory 1924 to 1936 Previous Symposia Volumes I (1933) Surface Phenomena XXXIX (1974) Tumor Viruses II (1934) Aspects of Growth XL (1975) The Synapse III (1935) Photochemical Reactions XLI (1976) Origins -
Curriculum Vitae
Linda Wilbrecht Department of Psychology Phone: +1 (510) 600–3560 Helen Wills Neuroscience Institute Email: [email protected] University of California, Berkeley Web: https://wilbrecht.org 2121 Berkeley Way West Pubmed: Wilbrecht L Berkeley, CA 94720-1650 ORCID: 0000-0003-3492-8141 Education 2007–2008 Postdoctoral Fellow, University of California, San Francisco Advisor: Michael Merzenich, Ph.D., UCSF 2003–2006 Postdoctoral Fellow, Cold Spring Harbor Laboratory, NY Advisor: Karel Svoboda, Ph.D., HHMI/Cold Spring Harbor, NY 1997–2003 Ph.D. The Rockefeller University, NY Advisor: Fernando Nottebohm, Ph.D.,Lab of Animal Behavior 1995–1997 B.A., with honours, University of Oxford, UK Experimental Psychology and Philosophy 1993–1994 Visiting student, University of Oxford, St. Catherine’s College, UK Studied social sciences with Drs. Avner Ofer and Paul Weindling 1990–1995 B.A. summa cum laude, University of Minnesota, Twin Cities Department of Cultural Studies and Comparative Literature Appointments 2015–present Associate Professor, Department of Psychology Helen Wills Neuroscience Institute, UC Berkeley 2013–2015 Assistant Professor, Department of Psychology Helen Wills Neuroscience Institute, UC Berkeley 2008–2013 Assistant Professor in Residence, Department of Neurology UC San Francisco Principal Investigator, Ernest Gallo Clinic and Research Center, Emeryville, CA Linda Wilbrecht CV October 2019 Honors and awards 2019–2020 Miller Professor, UC Berkeley Miller Institute 2011 Presidential Early Career Award for Scientists and Engineers (PECASE) -
Nanoscience Prize 2020 Explanatory Notes
NANOSCIENCE PRIZE 2020 EXPLANATORY NOTES Looking inside matter atom by atom Manipulating matter at very small scales — even as precisely as moving single atoms — to create particles and devices with new functionalities is the ultimate ambition of nanoscience and nanotechnol- ogy. None of this could be achieved with- out an imaging technique that allows materials and devices to be studied with atomic resolution. In making their award, the Kavli Prize in Nanoscience committee has selected four scientists who contributed to the develop- ment and use of two types of instrument, generally known collectively as aberration- corrected transmission electron micro- scopes, which can provide information about the structure and other properties of materials with sub-ångström resolution, hence allowing individual atoms to be distinguished. Figure 1. The schematic for an aberration corrector in the 1990 paper by Harald Rose. Optik 85, 19–24 (1990); © Elsevier GmbH Optical microscopes can at best resolve and additional lenses form a magnified analyse the energy lost by electrons when features a few hundred nanometres image which is recorded with a CCD or a the beam scatters from atoms in the across, so a different approach is neces- CMOS camera. Ruska’s design is today material. This technique, known as elec- sary to distinguish single atoms. The scan- called CTEM, for conventional transmis- tron energy loss spectroscopy, or EELS, ning tunnelling microscope and the atomic sion electron microscope. Conventional” can provide information on the atomic force microscope, invented in the 1980s, means that, apart from employing elec- composition and electronic states inside achieved atomic resolution. However, they tron radiation, CTEM follows the design of the material. -
VITA David Jewitt Address Dept. Earth, Planetary and Space
VITA David Jewitt Address Dept. Earth, Planetary and Space Sciences, UCLA 595 Charles Young Drive East, Box 951567 Los Angeles, CA 90095-1567 [email protected], http://www2.ess.ucla.edu/~jewitt/ Education B. Sc. University College London 1979 M. S. California Institute of Technology 1980 Ph. D. California Institute of Technology 1983 Professional Experience Summer Student Royal Greenwich Observatory 1978 Anthony Fellowship California Institute of Technology 1979-1980 Research Assistant California Institute of Technology 1980-1983 Assistant Professor Massachusetts Institute of Technology 1983-1988 Associate Professor and Astronomer University of Hawaii 1988-1993 Professor and Astronomer University of Hawaii 1993-2009 Professor Dept. Earth, Planetary & Space Sciences, UCLA 2009- Inst. of Geophys & Planetary Physics, UCLA 2009-2011 Dept. Physics & Astronomy, UCLA 2010- Director Institute for Planets & Exoplanets, UCLA, 2011- Honors Regent's Medal, University of Hawaii 1994 Scientist of the Year, ARCS 1996 Exceptional Scientific Achievement Award, NASA 1996 Fellow of University College London 1998 Fellow of the American Academy of Arts and Sciences 2005 Fellow of the American Association for the Advancement of Science 2005 Member of the National Academy of Sciences 2005 National Observatory, Chinese Academy of Sciences, Honorary Professor 2006-2011 National Central University, Taiwan, Adjunct Professor 2007 The Shaw Prize for Astronomy 2012 The Kavli Prize for Astrophysics 2012 Foreign Member, Norwegian Academy of Sciences & Letters 2012 Research -
By Ardem Patapoutian Mom Was an Elementary School Teacher and Principal and My Dad Was a Writer and Accountant
I was born in Beirut, Lebanon, where my by Ardem Patapoutian mom was an elementary school teacher and principal and my dad was a writer and accountant. The youngest of three kids, I attended small Armenian schools which was eight years old when the Lebanese continued shrinking in class size as more Civil War began. Life was often families escaped the war. By my freshman understandably stressful, with curfews, high school year, we were down to five limited hours of electricity, and the not students, all dear pals, where I was infrequent explosion. As Armenians, we perhaps middle of the pack in my subjects were usually treated as quasi-neutral but definitely the shortest in stature. The parties to the Christian-Muslim strife, and I school closed the next year, and I moved At age 13, front and center with basketball, Beirut, circa 1980 to a multicultural and academically rigorous private high school where I initially flailed but eventually found a knack for math and science classes, a classic late bloomer. I had three havens of childhood I remember with fondness: my sports club where I played basketball (not well, see height above) and table tennis (local champ!), our trips to the Mediterranean Sea and the wooded mountains surrounding Beirut, and the beautiful campus of the American University of Beirut, where I attended one year of undergraduate classes as a pre-med major. However, the conflict continued to At four years old, with older brother and sister next to the Mediterranean Sea in Beirut, Lebanon, ca 1970 escalate, and one fateful and terrifying morning, I was captured and held by armed militants. -
It's a Golden
It’s A Golden Age Miracles happen, and emotional plasticity may be one of them. A few years ago, I met with a warm, fatherly psychiatrist to explain the science and methods of EBT. During our conversation, there came a moment when words failed me. I suggested that he try one of the tools, and he demurred, so I volunteered to demonstrate the technique. I had not been aware of how stressed I was at the time – that I feared that I would never get this method out and would go to my grave with the tools still inside me. However, in the warm womb of his comfy office, I launched into using a tool. I fired up anger that sported a few expletives, made a brief pass through sadness with tears sparkling in my eyes, next touched on fear, and then on guilt. At that point, the bottom of my reptilian brain opened up. I had unlocked a previously unconscious, completely unreasonable expectation that had taken up residence in my brain. Perfect! Moments later, I had switched that expectation to a reasonable one of my choosing, and a burst of dopamine, oxytocin, and endorphins came over me. I was in joy! All of this had taken less than four minutes. He sat quietly. I had no idea what he would say. Then he gazed straight into my eyes and said, “Nothing in my 40 years of psychiatry has prepared me to explain what I just observed.” Through his eyes, my use of the tools must have seemed strange in two ways. -
Human GPS” – the 2014 Nobel Prize in Medicine: Great Scientific Fraud?
International Physical Medicine & Rehabilitation Journal Review Article Open Access The “human GPS” – the 2014 Nobel prize in medicine: great scientific fraud? Abstract Volume 3 Issue 3 - 2018 The 2014 Nobel Prize in Physiology or Medicine was awarded to John O’Keefe, David Salinas Flores May-Britt Moser and Edvard I. Moser, researchers for their discoveries of cells that Faculty of Medicine, Universidad Nacional Mayor de San Marcos, constitute a positioning system in the brain, an “inner GPS” in the brain. The Nobel Peru Foundation affirm that the proof which demonstrate that their researches performed on rats also work on humans, is based on information obtained from brain imaging Correspondence: David Salinas Flores, Faculty of Medicine, techniques and patients who have undergone neurosurgery. It is a mystery why the Universidad Nacional Mayor de San Marcos, Peru, Tel Nobel Foundation promotes with conviction that the 2014 Nobel Prize in Medicine +511996371790, Email [email protected] winners has found the human brain Global Positioning System. Nowadays, recent researches lead to suspicion that many neuroscientists’ researches can be based with Received: April 25, 2018 | Published: May 10, 2018 brain nanobots performed in Latin America, being one of the most suspicious, the BRAIN initiative, this project was promoted by The Klavi Foundation. The 2014 Nobel Prize in medicine winners have close relations with this foundation, Therefore, there is a strong suspicion that illicit human experimentation with brain nanobots would have been the real source of information about 2014 Nobel research. Keywords: Nobel prize, scientific fraud, nanotechnology, hippocampus, latin America, brain, computer interfaces Introduction A scientist from the National Autonomous University of Mexico thinks that it is erroneous to speak about the existence of a “human The Nobel Prize in Physiology or Medicine is considered the GPS”, because GPS equipment works receiving signals from satellites highest scientific award in science and it is the award a doctor orbiting the Earth. -
Studies in Physics, Brain Science Earn $1 Million Awards 2 June 2016, by Malcolm Ritter
Studies in physics, brain science earn $1 million awards 2 June 2016, by Malcolm Ritter Nine scientists will share three $1 million prizes for More information: Kavli Prizes: discoveries in how the brain can change over time, www.kavliprize.org how to move individual atoms around and how Albert Einstein was right again about the universe. © 2016 The Associated Press. All rights reserved. The Norwegian Academy of Science and Letters in Oslo on Thursday announced the winners of the Kavli Prizes, which are bestowed once every two years. The prize for astrophysics is shared by Ronald Drever and Kip Thorne of the California Institute of Technology and Rainer Weiss of the Massachusetts Institute of Technology. They were cited for the first direct detection of gravity waves, tiny ripples that spread through the universe. Einstein had predicted a century ago that the waves exist; the announcement that they'd been observed made headlines in February. The neuroscience prize is shared by Eve Marder of Brandeis University in Waltham, Massachusetts, Michael Merzenich of the University of California, San Francisco, and Carla Shatz of Stanford University. They were honored for discoveries in showing how the brain changes during learning and development, even as it keeps some basic stability over time. The prize for nanoscience—the study of structures smaller than bacteria for example—goes to Gerd Binnig of the IBM Zurich Research Laboratory in Switzerland, Christoph Gerber of the University of Basel in Switzerland and Calvin Quate of Stanford. They were honored for atomic force microscopy, a technique now widely used that can reveal the arrangement of individual atoms on a surface and remove, add or rearrange them. -
22 Neuronal Plasticity Prize of the Fondation Ipsen: Helen J. Neville, Isabelle Peretz and Robert J. Zatorre Awarded for Their
Press release 22nd Neuronal Plasticity Prize of the Fondation Ipsen: Helen J. Neville, Isabelle Peretz and Robert J. Zatorre awarded for their pioneering research into the domain of “Music and Brain Plasticity” Paris (France), 19 July 2011 – The 22nd annual Neuronal Plasticity Prize of the Fondation Ipsen has been awarded to Helen J. Neville (University of Oregon, Eugene, USA), Isabelle Peretz (Brams – University of Montreal, Montreal, Canada) and Robert J. Zatorre (Montreal Neurological Institute and Brams Laboratory, Montreal, Canada, USA) for their pioneering research in the domain of “Music and Brain Plasticity”. The €60,000 prize was awarded on July 15, 2011 by an international jury1 led by Professor Nikos Logothetis (Max Planck Institute for Biological Cybernetics, Tubingen, Germany) at the 8th International Brain Research Organization (IBRO) World Congress of Neuroscience, Florence, Italy. About the laureates Helen J. Neville is currently The Robert and Beverly Lewis Endowed Chair and Professor of Psychology and Neuroscience, Director of the Brain Development Lab, and Director of the Center for Cognitive Neuroscience at the University of Oregon in Eugene. Her work experience includes Director of the Laboratory for Neuropsychology at the Salk Institute. She has published in many journals such as Nature, Nature Neuroscience, Journal of Neuroscience, Journal of Cognitive Neuroscience, Cerebral Cortex and Brain Research and has made a DVD about the brain for non-scientists. She has received many honors like being elected to the American Academy of Arts and Sciences, the Board of Governors of the Cognitive Neuroscience Society, the Academic Panel of Birth to Three and is active in many educational outreach programs.